| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: mksource.c,v 2.12 2025/01/18 20:23:15 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Generate distant sources corresponding to the given environment map
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "ray.h"
|
| 9 |
#include "random.h"
|
| 10 |
#include "paths.h"
|
| 11 |
#include "resolu.h"
|
| 12 |
|
| 13 |
#define NTRUNKBR 4 /* number of branches at trunk */
|
| 14 |
#define NTRUNKVERT 4 /* number of vertices at trunk */
|
| 15 |
#define DEF_NSAMPS 262144L /* default # sphere samples */
|
| 16 |
#define DEF_MAXANG 15. /* maximum source angle (deg.) */
|
| 17 |
|
| 18 |
/* Data structure for geodesic samples */
|
| 19 |
|
| 20 |
typedef struct tritree {
|
| 21 |
int32 gdv[3]; /* spherical triangle vertex direc. */
|
| 22 |
int32 sd; /* sample direction if leaf */
|
| 23 |
struct tritree *kid; /* 4 children if branch node */
|
| 24 |
COLR val; /* sampled color value */
|
| 25 |
} TRITREE;
|
| 26 |
|
| 27 |
typedef struct lostlight {
|
| 28 |
struct lostlight *next; /* next in list */
|
| 29 |
int32 sd; /* lost source direction */
|
| 30 |
COLOR intens; /* output times solid angle */
|
| 31 |
} LOSTLIGHT;
|
| 32 |
|
| 33 |
FVECT scene_cent; /* center of octree cube */
|
| 34 |
RREAL scene_rad; /* radius to get outside cube from center */
|
| 35 |
|
| 36 |
const COLR blkclr = BLKCOLR;
|
| 37 |
|
| 38 |
#define isleaf(node) ((node)->kid == NULL)
|
| 39 |
|
| 40 |
/* Compute signum of signed volume for three vectors */
|
| 41 |
int
|
| 42 |
vol_sign(const FVECT v1, const FVECT v2, const FVECT v3)
|
| 43 |
{
|
| 44 |
double vol;
|
| 45 |
|
| 46 |
vol = v1[0]*(v2[1]*v3[2] - v2[2]*v3[1]);
|
| 47 |
vol += v1[1]*(v2[2]*v3[0] - v2[0]*v3[2]);
|
| 48 |
vol += v1[2]*(v2[0]*v3[1] - v2[1]*v3[0]);
|
| 49 |
if (vol > .0)
|
| 50 |
return(1);
|
| 51 |
if (vol < .0)
|
| 52 |
return(-1);
|
| 53 |
return(0);
|
| 54 |
}
|
| 55 |
|
| 56 |
/* Is the given direction contained within the specified spherical triangle? */
|
| 57 |
int
|
| 58 |
intriv(const int32 trid[3], const FVECT sdir)
|
| 59 |
{
|
| 60 |
int sv[3];
|
| 61 |
FVECT tri[3];
|
| 62 |
|
| 63 |
decodedir(tri[0], trid[0]);
|
| 64 |
decodedir(tri[1], trid[1]);
|
| 65 |
decodedir(tri[2], trid[2]);
|
| 66 |
sv[0] = vol_sign(sdir, tri[0], tri[1]);
|
| 67 |
sv[1] = vol_sign(sdir, tri[1], tri[2]);
|
| 68 |
sv[2] = vol_sign(sdir, tri[2], tri[0]);
|
| 69 |
if ((sv[0] == sv[1]) & (sv[1] == sv[2]))
|
| 70 |
return(1);
|
| 71 |
return(!sv[0] | !sv[1] | !sv[2]);
|
| 72 |
}
|
| 73 |
|
| 74 |
/* Find leaf containing the given sample direction */
|
| 75 |
TRITREE *
|
| 76 |
findleaf(TRITREE *node, const FVECT sdir)
|
| 77 |
{
|
| 78 |
int i;
|
| 79 |
|
| 80 |
if (isleaf(node))
|
| 81 |
return(intriv(node->gdv,sdir) ? node : (TRITREE *)NULL);
|
| 82 |
for (i = 0; i < 4; i++) {
|
| 83 |
TRITREE *chknode = &node->kid[i];
|
| 84 |
if (intriv(chknode->gdv, sdir))
|
| 85 |
return(isleaf(chknode) ? chknode :
|
| 86 |
findleaf(chknode, sdir));
|
| 87 |
}
|
| 88 |
return(NULL);
|
| 89 |
}
|
| 90 |
|
| 91 |
/* Initialize leaf with random sample inside the given spherical triangle */
|
| 92 |
void
|
| 93 |
leafsample(TRITREE *leaf)
|
| 94 |
{
|
| 95 |
RAY myray;
|
| 96 |
RREAL wt[3];
|
| 97 |
FVECT sdir;
|
| 98 |
int i, j;
|
| 99 |
/* random point on triangle */
|
| 100 |
i = random() % 3;
|
| 101 |
wt[i] = frandom();
|
| 102 |
j = random() & 1;
|
| 103 |
wt[(i+2-j)%3] = 1. - wt[i] -
|
| 104 |
(wt[(i+1+j)%3] = (1.-wt[i])*frandom());
|
| 105 |
sdir[0] = sdir[1] = sdir[2] = .0;
|
| 106 |
for (i = 0; i < 3; i++) {
|
| 107 |
FVECT vt;
|
| 108 |
decodedir(vt, leaf->gdv[i]);
|
| 109 |
VSUM(sdir, sdir, vt, wt[i]);
|
| 110 |
}
|
| 111 |
normalize(sdir); /* record sample direction */
|
| 112 |
leaf->sd = encodedir(sdir);
|
| 113 |
/* evaluate at inf. */
|
| 114 |
VSUM(myray.rorg, scene_cent, sdir, scene_rad);
|
| 115 |
VCOPY(myray.rdir, sdir);
|
| 116 |
myray.rmax = 0.;
|
| 117 |
ray_trace(&myray);
|
| 118 |
scolor_colr(leaf->val, myray.rcol);
|
| 119 |
}
|
| 120 |
|
| 121 |
/* Initialize a branch node contained in the given spherical triangle */
|
| 122 |
void
|
| 123 |
subdivide(TRITREE *branch, const int32 dv[3])
|
| 124 |
{
|
| 125 |
FVECT dvv[3], sdv[3];
|
| 126 |
int32 sd[3];
|
| 127 |
int i;
|
| 128 |
|
| 129 |
for (i = 0; i < 3; i++) { /* copy spherical triangle */
|
| 130 |
branch->gdv[i] = dv[i];
|
| 131 |
decodedir(dvv[i], dv[i]);
|
| 132 |
}
|
| 133 |
for (i = 0; i < 3; i++) { /* create new vertices */
|
| 134 |
int j = (i+1)%3;
|
| 135 |
VADD(sdv[i], dvv[i], dvv[j]);
|
| 136 |
normalize(sdv[i]);
|
| 137 |
sd[i] = encodedir(sdv[i]);
|
| 138 |
}
|
| 139 |
/* allocate leaves */
|
| 140 |
branch->kid = (TRITREE *)calloc(4, sizeof(TRITREE));
|
| 141 |
if (branch->kid == NULL)
|
| 142 |
error(SYSTEM, "out of memory in subdivide()");
|
| 143 |
/* assign subtriangle directions */
|
| 144 |
branch->kid[0].gdv[0] = dv[0];
|
| 145 |
branch->kid[0].gdv[1] = sd[0];
|
| 146 |
branch->kid[0].gdv[2] = sd[2];
|
| 147 |
branch->kid[1].gdv[0] = sd[0];
|
| 148 |
branch->kid[1].gdv[1] = dv[1];
|
| 149 |
branch->kid[1].gdv[2] = sd[1];
|
| 150 |
branch->kid[2].gdv[0] = sd[1];
|
| 151 |
branch->kid[2].gdv[1] = dv[2];
|
| 152 |
branch->kid[2].gdv[2] = sd[2];
|
| 153 |
branch->kid[3].gdv[0] = sd[0];
|
| 154 |
branch->kid[3].gdv[1] = sd[1];
|
| 155 |
branch->kid[3].gdv[2] = sd[2];
|
| 156 |
}
|
| 157 |
|
| 158 |
/* Recursively subdivide the given node to the specified quadtree depth */
|
| 159 |
void
|
| 160 |
branchsample(TRITREE *node, int depth)
|
| 161 |
{
|
| 162 |
int i;
|
| 163 |
|
| 164 |
if (depth <= 0)
|
| 165 |
return;
|
| 166 |
if (isleaf(node)) { /* subdivide leaf node */
|
| 167 |
TRITREE branch, *moved_leaf;
|
| 168 |
FVECT sdir;
|
| 169 |
subdivide(&branch, node->gdv);
|
| 170 |
decodedir(sdir, node->sd);
|
| 171 |
moved_leaf = findleaf(&branch, sdir);
|
| 172 |
if (moved_leaf != NULL) { /* bequeath old sample */
|
| 173 |
moved_leaf->sd = node->sd;
|
| 174 |
copycolr(moved_leaf->val, node->val);
|
| 175 |
}
|
| 176 |
for (i = 0; i < 4; i++) /* compute new samples */
|
| 177 |
if (&branch.kid[i] != moved_leaf)
|
| 178 |
leafsample(&branch.kid[i]);
|
| 179 |
*node = branch; /* replace leaf with branch */
|
| 180 |
}
|
| 181 |
for (i = 0; i < 4; i++) /* subdivide children */
|
| 182 |
branchsample(&node->kid[i], depth-1);
|
| 183 |
}
|
| 184 |
|
| 185 |
/* Sample sphere using triangular geodesic mesh */
|
| 186 |
TRITREE *
|
| 187 |
geosample(long nsamps)
|
| 188 |
{
|
| 189 |
int depth;
|
| 190 |
TRITREE *tree;
|
| 191 |
FVECT trunk[NTRUNKVERT];
|
| 192 |
int i, j;
|
| 193 |
/* figure out depth */
|
| 194 |
if ((nsamps -= 4) < 0)
|
| 195 |
error(USER, "minimum number of samples is 4");
|
| 196 |
nsamps = nsamps*(NTRUNKBR-1)/NTRUNKBR; /* round up */
|
| 197 |
for (depth = 0; nsamps > 1; depth++)
|
| 198 |
nsamps >>= 2;
|
| 199 |
/* make base tetrahedron */
|
| 200 |
tree = (TRITREE *)malloc(sizeof(TRITREE));
|
| 201 |
if (tree == NULL) goto memerr;
|
| 202 |
trunk[0][0] = trunk[0][1] = 0; trunk[0][2] = 1;
|
| 203 |
trunk[1][0] = 0;
|
| 204 |
trunk[1][2] = cos(2.*asin(sqrt(2./3.)));
|
| 205 |
trunk[1][1] = sqrt(1. - trunk[1][2]*trunk[1][2]);
|
| 206 |
spinvector(trunk[2], trunk[1], trunk[0], 2.*PI/3.);
|
| 207 |
spinvector(trunk[3], trunk[1], trunk[0], 4.*PI/3.);
|
| 208 |
tree->gdv[0] = tree->gdv[1] = tree->gdv[2] = encodedir(trunk[0]);
|
| 209 |
tree->kid = (TRITREE *)calloc(NTRUNKBR, sizeof(TRITREE));
|
| 210 |
if (tree->kid == NULL) goto memerr;
|
| 211 |
/* grow our tree from trunk */
|
| 212 |
for (i = 0; i < NTRUNKBR; i++) {
|
| 213 |
for (j = 0; j < 3; j++) /* XXX works for tetra only */
|
| 214 |
tree->kid[i].gdv[j] = encodedir(trunk[(i+j)%NTRUNKVERT]);
|
| 215 |
leafsample(&tree->kid[i]);
|
| 216 |
branchsample(&tree->kid[i], depth);
|
| 217 |
}
|
| 218 |
return(tree);
|
| 219 |
memerr:
|
| 220 |
error(SYSTEM, "out of memory in geosample()");
|
| 221 |
return NULL; /* dummy return */
|
| 222 |
}
|
| 223 |
|
| 224 |
/* Compute leaf exponent histogram */
|
| 225 |
void
|
| 226 |
get_ehisto(const TRITREE *node, long exphisto[256])
|
| 227 |
{
|
| 228 |
int i;
|
| 229 |
|
| 230 |
if (isleaf(node)) {
|
| 231 |
++exphisto[node->val[EXP]];
|
| 232 |
return;
|
| 233 |
}
|
| 234 |
for (i = 0; i < 4; i++)
|
| 235 |
get_ehisto(&node->kid[i], exphisto);
|
| 236 |
}
|
| 237 |
|
| 238 |
/* Get reasonable source threshold */
|
| 239 |
double
|
| 240 |
get_threshold(const TRITREE *tree)
|
| 241 |
{
|
| 242 |
long samptotal = 0;
|
| 243 |
long exphisto[256];
|
| 244 |
int i;
|
| 245 |
/* compute sample histogram */
|
| 246 |
memset(exphisto, 0, sizeof(exphisto));
|
| 247 |
for (i = 0; i < NTRUNKBR; i++)
|
| 248 |
get_ehisto(&tree->kid[i], exphisto);
|
| 249 |
/* use 98th percentile */
|
| 250 |
for (i = 0; i < 256; i++)
|
| 251 |
samptotal += exphisto[i];
|
| 252 |
samptotal /= 50;
|
| 253 |
for (i = 256; (--i > 0) & (samptotal > 0); )
|
| 254 |
samptotal -= exphisto[i];
|
| 255 |
return(ldexp(.75, i-COLXS));
|
| 256 |
}
|
| 257 |
|
| 258 |
/* Find leaf containing the maximum exponent */
|
| 259 |
TRITREE *
|
| 260 |
findemax(TRITREE *node, int *expp)
|
| 261 |
{
|
| 262 |
if (!isleaf(node)) {
|
| 263 |
TRITREE *maxleaf;
|
| 264 |
TRITREE *rleaf;
|
| 265 |
maxleaf = findemax(&node->kid[0], expp);
|
| 266 |
rleaf = findemax(&node->kid[1], expp);
|
| 267 |
if (rleaf != NULL) maxleaf = rleaf;
|
| 268 |
rleaf = findemax(&node->kid[2], expp);
|
| 269 |
if (rleaf != NULL) maxleaf = rleaf;
|
| 270 |
rleaf = findemax(&node->kid[3], expp);
|
| 271 |
if (rleaf != NULL) maxleaf = rleaf;
|
| 272 |
return(maxleaf);
|
| 273 |
}
|
| 274 |
if (node->val[EXP] <= *expp)
|
| 275 |
return(NULL);
|
| 276 |
*expp = node->val[EXP];
|
| 277 |
return(node);
|
| 278 |
}
|
| 279 |
|
| 280 |
/* Compute solid angle of spherical triangle (approx.) */
|
| 281 |
double
|
| 282 |
tri_omegav(const int32 vd[3])
|
| 283 |
{
|
| 284 |
FVECT v[3], e1, e2, vcross;
|
| 285 |
|
| 286 |
decodedir(v[0], vd[0]);
|
| 287 |
decodedir(v[1], vd[1]);
|
| 288 |
decodedir(v[2], vd[2]);
|
| 289 |
VSUB(e1, v[1], v[0]);
|
| 290 |
VSUB(e2, v[2], v[1]);
|
| 291 |
fcross(vcross, e1, e2);
|
| 292 |
return(.5*VLEN(vcross));
|
| 293 |
}
|
| 294 |
|
| 295 |
/* Sum intensity times direction for above-threshold perimiter within radius */
|
| 296 |
void
|
| 297 |
vector_sum(FVECT vsum, TRITREE *node,
|
| 298 |
FVECT cent, double maxr2, int ethresh)
|
| 299 |
{
|
| 300 |
if (isleaf(node)) {
|
| 301 |
double intens;
|
| 302 |
FVECT sdir;
|
| 303 |
if (node->val[EXP] < ethresh)
|
| 304 |
return; /* below threshold */
|
| 305 |
if (fdir2diff(node->sd,cent) > maxr2)
|
| 306 |
return; /* too far away */
|
| 307 |
intens = colrval(node->val,GRN) * tri_omegav(node->gdv);
|
| 308 |
decodedir(sdir, node->sd);
|
| 309 |
VSUM(vsum, vsum, sdir, intens);
|
| 310 |
return;
|
| 311 |
}
|
| 312 |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 &&
|
| 313 |
fdir2diff(node->gdv[0],cent) < maxr2 &&
|
| 314 |
fdir2diff(node->gdv[1],cent) < maxr2 &&
|
| 315 |
fdir2diff(node->gdv[2],cent) < maxr2)
|
| 316 |
return; /* containing node */
|
| 317 |
vector_sum(vsum, &node->kid[0], cent, maxr2, ethresh);
|
| 318 |
vector_sum(vsum, &node->kid[1], cent, maxr2, ethresh);
|
| 319 |
vector_sum(vsum, &node->kid[2], cent, maxr2, ethresh);
|
| 320 |
vector_sum(vsum, &node->kid[3], cent, maxr2, ethresh);
|
| 321 |
}
|
| 322 |
|
| 323 |
/* Claim source contributions within the given solid angle */
|
| 324 |
void
|
| 325 |
claimlight(COLOR intens, TRITREE *node, FVECT cent, double maxr2)
|
| 326 |
{
|
| 327 |
int remaining;
|
| 328 |
int i;
|
| 329 |
if (isleaf(node)) { /* claim contribution */
|
| 330 |
COLOR contrib;
|
| 331 |
if (node->val[EXP] <= 0)
|
| 332 |
return; /* already claimed */
|
| 333 |
if (fdir2diff(node->sd,cent) > maxr2)
|
| 334 |
return; /* too far away */
|
| 335 |
colr_color(contrib, node->val);
|
| 336 |
scalecolor(contrib, tri_omegav(node->gdv));
|
| 337 |
addcolor(intens, contrib);
|
| 338 |
copycolr(node->val, blkclr);
|
| 339 |
return;
|
| 340 |
}
|
| 341 |
if (dir2diff(node->gdv[0],node->gdv[1]) > maxr2 &&
|
| 342 |
fdir2diff(node->gdv[0],cent) < maxr2 &&
|
| 343 |
fdir2diff(node->gdv[1],cent) < maxr2 &&
|
| 344 |
fdir2diff(node->gdv[2],cent) < maxr2)
|
| 345 |
return; /* previously claimed node */
|
| 346 |
remaining = 0; /* recurse on children */
|
| 347 |
for (i = 0; i < 4; i++) {
|
| 348 |
claimlight(intens, &node->kid[i], cent, maxr2);
|
| 349 |
if (!isleaf(&node->kid[i]) || node->kid[i].val[EXP] != 0)
|
| 350 |
++remaining;
|
| 351 |
}
|
| 352 |
if (remaining)
|
| 353 |
return;
|
| 354 |
/* consolidate empties */
|
| 355 |
free(node->kid); node->kid = NULL;
|
| 356 |
copycolr(node->val, blkclr);
|
| 357 |
node->sd = node->gdv[0]; /* doesn't really matter */
|
| 358 |
}
|
| 359 |
|
| 360 |
/* Add lost light contribution to the given list */
|
| 361 |
void
|
| 362 |
add2lost(LOSTLIGHT **llp, COLOR intens, FVECT cent)
|
| 363 |
{
|
| 364 |
LOSTLIGHT *newll = (LOSTLIGHT *)malloc(sizeof(LOSTLIGHT));
|
| 365 |
|
| 366 |
if (newll == NULL)
|
| 367 |
return;
|
| 368 |
copycolor(newll->intens, intens);
|
| 369 |
newll->sd = encodedir(cent);
|
| 370 |
newll->next = *llp;
|
| 371 |
*llp = newll;
|
| 372 |
}
|
| 373 |
|
| 374 |
/* Check lost light list for contributions */
|
| 375 |
void
|
| 376 |
getlost(LOSTLIGHT **llp, COLOR intens, FVECT cent, double omega)
|
| 377 |
{
|
| 378 |
const double maxr2 = omega/PI;
|
| 379 |
LOSTLIGHT lhead, *lastp, *thisp;
|
| 380 |
|
| 381 |
lhead.next = *llp;
|
| 382 |
lastp = &lhead;
|
| 383 |
while ((thisp = lastp->next) != NULL)
|
| 384 |
if (fdir2diff(thisp->sd,cent) <= maxr2) {
|
| 385 |
LOSTLIGHT *mynext = thisp->next;
|
| 386 |
addcolor(intens, thisp->intens);
|
| 387 |
free(thisp);
|
| 388 |
lastp->next = mynext;
|
| 389 |
} else
|
| 390 |
lastp = thisp;
|
| 391 |
*llp = lhead.next;
|
| 392 |
}
|
| 393 |
|
| 394 |
/* Create & print distant sources */
|
| 395 |
void
|
| 396 |
mksources(TRITREE *samptree, double thresh, double maxang)
|
| 397 |
{
|
| 398 |
#define MAXITER 100
|
| 399 |
const int ethresh = (int)(log(thresh)/log(2.) + (COLXS+.5));
|
| 400 |
const double maxomega = 2.*PI*(1. - cos(PI/180./2.*maxang));
|
| 401 |
const double minintens = .05*thresh*maxomega;
|
| 402 |
int niter = MAXITER;
|
| 403 |
int nsrcs = 0;
|
| 404 |
LOSTLIGHT *lostlightlist = NULL;
|
| 405 |
int emax;
|
| 406 |
TRITREE *startleaf;
|
| 407 |
double growstep;
|
| 408 |
FVECT curcent;
|
| 409 |
double currad;
|
| 410 |
double curomega;
|
| 411 |
COLOR curintens;
|
| 412 |
double thisthresh;
|
| 413 |
int thisethresh;
|
| 414 |
int i;
|
| 415 |
/*
|
| 416 |
* General algorithm:
|
| 417 |
* 1) Start with brightest unclaimed pixel
|
| 418 |
* 2) Grow source toward brightest unclaimed perimeter until:
|
| 419 |
* a) Source exceeds maximum size, or
|
| 420 |
* b) Perimeter values all below threshold, or
|
| 421 |
* c) Source average drops below threshold
|
| 422 |
* 3) Loop until nothing over threshold
|
| 423 |
*
|
| 424 |
* Complexity added to absorb insignificant sources in larger ones.
|
| 425 |
*/
|
| 426 |
if (thresh <= FTINY)
|
| 427 |
return;
|
| 428 |
while (niter--) {
|
| 429 |
emax = ethresh; /* find brightest unclaimed */
|
| 430 |
startleaf = NULL;
|
| 431 |
for (i = 0; i < NTRUNKBR; i++) {
|
| 432 |
TRITREE *bigger = findemax(&samptree->kid[i], &emax);
|
| 433 |
if (bigger != NULL)
|
| 434 |
startleaf = bigger;
|
| 435 |
}
|
| 436 |
if (startleaf == NULL)
|
| 437 |
break;
|
| 438 |
/* claim it */
|
| 439 |
decodedir(curcent, startleaf->sd);
|
| 440 |
curomega = tri_omegav(startleaf->gdv);
|
| 441 |
currad = sqrt(curomega/PI);
|
| 442 |
growstep = 3.*currad;
|
| 443 |
colr_color(curintens, startleaf->val);
|
| 444 |
thisthresh = .15*bright(curintens);
|
| 445 |
if (thisthresh < thresh) thisthresh = thresh;
|
| 446 |
thisethresh = (int)(log(thisthresh)/log(2.) + (COLXS+.5));
|
| 447 |
scalecolor(curintens, curomega);
|
| 448 |
copycolr(startleaf->val, blkclr);
|
| 449 |
do { /* grow source */
|
| 450 |
FVECT vsum;
|
| 451 |
double movedist;
|
| 452 |
vsum[0] = vsum[1] = vsum[2] = .0;
|
| 453 |
for (i = 0; i < NTRUNKBR; i++)
|
| 454 |
vector_sum(vsum, &samptree->kid[i],
|
| 455 |
curcent, 2.-2.*cos(currad+growstep),
|
| 456 |
thisethresh);
|
| 457 |
if (normalize(vsum) == .0)
|
| 458 |
break;
|
| 459 |
movedist = Acos(DOT(vsum,curcent));
|
| 460 |
if (movedist > growstep) {
|
| 461 |
VSUB(vsum, vsum, curcent);
|
| 462 |
movedist = growstep/VLEN(vsum);
|
| 463 |
VSUM(curcent, curcent, vsum, movedist);
|
| 464 |
normalize(curcent);
|
| 465 |
} else
|
| 466 |
VCOPY(curcent, vsum);
|
| 467 |
currad += growstep;
|
| 468 |
curomega = 2.*PI*(1. - cos(currad));
|
| 469 |
for (i = 0; i < NTRUNKBR; i++)
|
| 470 |
claimlight(curintens, &samptree->kid[i],
|
| 471 |
curcent, 2.-2.*cos(currad));
|
| 472 |
} while (curomega < maxomega &&
|
| 473 |
bright(curintens)/curomega > thisthresh);
|
| 474 |
if (bright(curintens) < minintens) {
|
| 475 |
add2lost(&lostlightlist, curintens, curcent);
|
| 476 |
continue;
|
| 477 |
}
|
| 478 |
/* absorb lost contributions */
|
| 479 |
getlost(&lostlightlist, curintens, curcent, curomega);
|
| 480 |
++nsrcs; /* output source */
|
| 481 |
scalecolor(curintens, 1./curomega);
|
| 482 |
printf("\nvoid illum IBLout\n");
|
| 483 |
printf("0\n0\n3 %f %f %f\n",
|
| 484 |
colval(curintens,RED),
|
| 485 |
colval(curintens,GRN),
|
| 486 |
colval(curintens,BLU));
|
| 487 |
printf("\nIBLout source IBLsrc%d\n", nsrcs);
|
| 488 |
printf("0\n0\n4 %f %f %f %f\n",
|
| 489 |
curcent[0], curcent[1], curcent[2],
|
| 490 |
2.*180./PI*currad);
|
| 491 |
niter = MAXITER;
|
| 492 |
}
|
| 493 |
#undef MAXITER
|
| 494 |
}
|
| 495 |
|
| 496 |
int
|
| 497 |
main(int argc, char *argv[])
|
| 498 |
{
|
| 499 |
long nsamps = DEF_NSAMPS;
|
| 500 |
double maxang = DEF_MAXANG;
|
| 501 |
TRITREE *samptree;
|
| 502 |
double thresh = 0;
|
| 503 |
int i;
|
| 504 |
|
| 505 |
fixargv0(argv[0]); /* sets global progname */
|
| 506 |
|
| 507 |
for (i = 1; i < argc && argv[i][0] == '-'; i++)
|
| 508 |
switch (argv[i][1]) {
|
| 509 |
case 'd': /* number of samples */
|
| 510 |
if (i >= argc-1) goto userr;
|
| 511 |
nsamps = atol(argv[++i]);
|
| 512 |
break;
|
| 513 |
case 't': /* manual threshold */
|
| 514 |
if (i >= argc-1) goto userr;
|
| 515 |
thresh = atof(argv[++i]);
|
| 516 |
break;
|
| 517 |
case 'a': /* maximum source angle */
|
| 518 |
if (i >= argc-1) goto userr;
|
| 519 |
maxang = atof(argv[++i]);
|
| 520 |
if (maxang <= FTINY)
|
| 521 |
goto userr;
|
| 522 |
if (maxang > 180.)
|
| 523 |
maxang = 180.;
|
| 524 |
break;
|
| 525 |
default:
|
| 526 |
goto userr;
|
| 527 |
}
|
| 528 |
if (i < argc-1)
|
| 529 |
goto userr;
|
| 530 |
/* start our ray calculation */
|
| 531 |
directvis = 0;
|
| 532 |
ray_init(i == argc-1 ? argv[i] : (char *)NULL);
|
| 533 |
VCOPY(scene_cent, thescene.cuorg);
|
| 534 |
scene_cent[0] += 0.5*thescene.cusize;
|
| 535 |
scene_cent[1] += 0.5*thescene.cusize;
|
| 536 |
scene_cent[2] += 0.5*thescene.cusize;
|
| 537 |
scene_rad = 0.86603*thescene.cusize;
|
| 538 |
/* sample geodesic mesh */
|
| 539 |
samptree = geosample(nsamps);
|
| 540 |
/* get source threshold */
|
| 541 |
if (thresh <= FTINY)
|
| 542 |
thresh = get_threshold(samptree);
|
| 543 |
/* done with ray samples */
|
| 544 |
ray_done(1);
|
| 545 |
/* print header */
|
| 546 |
printf("# ");
|
| 547 |
printargs(argc, argv, stdout);
|
| 548 |
/* create & print sources */
|
| 549 |
mksources(samptree, thresh, maxang);
|
| 550 |
/* all done, no need to clean up */
|
| 551 |
return(0);
|
| 552 |
userr:
|
| 553 |
fprintf(stderr, "Usage: %s [-d nsamps][-t thresh][-a maxang] [octree]\n",
|
| 554 |
argv[0]);
|
| 555 |
exit(1);
|
| 556 |
}
|
| 557 |
|
| 558 |
void
|
| 559 |
eputs(const char *s)
|
| 560 |
{
|
| 561 |
static int midline = 0;
|
| 562 |
|
| 563 |
if (!*s)
|
| 564 |
return;
|
| 565 |
if (!midline++) {
|
| 566 |
fputs(progname, stderr);
|
| 567 |
fputs(": ", stderr);
|
| 568 |
}
|
| 569 |
fputs(s, stderr);
|
| 570 |
if (s[strlen(s)-1] == '\n') {
|
| 571 |
fflush(stderr);
|
| 572 |
midline = 0;
|
| 573 |
}
|
| 574 |
}
|
| 575 |
|
| 576 |
void
|
| 577 |
wputs(const char *s)
|
| 578 |
{
|
| 579 |
/* no warnings */
|
| 580 |
}
|