#ifndef lint static const char RCSid[] = "$Id: mkillum4.c,v 2.5 2007/12/05 20:07:34 greg Exp $"; #endif /* * Routines for handling BSDF data within mkillum */ #include "mkillum.h" #include "paths.h" #include "random.h" #include "ezxml.h" struct BSDF_data * load_BSDF( /* load BSDF data from file */ char *fname ) { char *path; ezxml_t fl, wld, wdb; struct BSDF_data *dp; path = getpath(fname, getrlibpath(), R_OK); if (path == NULL) { sprintf(errmsg, "cannot find BSDF file \"%s\"", fname); error(WARNING, errmsg); return(NULL); } fl = ezxml_parse_file(path); if (fl == NULL) { sprintf(errmsg, "cannot open BSDF \"%s\"", path); error(WARNING, errmsg); return(NULL); } dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data)); if (dp == NULL) goto memerr; for (wld = ezxml_child(fl, "WavelengthData"); fl != NULL; fl = fl->next) { if (strcmp(ezxml_child(wld, "Wavelength")->txt, "Visible")) continue; wdb = ezxml_child(wld, "WavelengthDataBlock"); if (wdb == NULL) continue; if (strcmp(ezxml_child(wdb, "WavelengthDataDirection")->txt, "Transmission Front")) continue; } /* etc... */ ezxml_free(fl); return(dp); memerr: error(SYSTEM, "out of memory in load_BSDF"); return NULL; /* pro forma return */ } void free_BSDF( /* free BSDF data structure */ struct BSDF_data *b ) { if (b == NULL) return; free(b->bsdf); free(b); } void r_BSDF_incvec( /* compute random input vector at given location */ FVECT v, struct BSDF_data *b, int i, double rv, MAT4 xm ) { FVECT pert; double rad; int j; getBSDF_incvec(v, b, i); rad = getBSDF_incrad(b, i); multisamp(pert, 3, rv); for (j = 0; j < 3; j++) v[j] += rad*(2.*pert[j] - 1.); if (xm != NULL) multv3(v, v, xm); normalize(v); } void r_BSDF_outvec( /* compute random output vector at given location */ FVECT v, struct BSDF_data *b, int o, double rv, MAT4 xm ) { FVECT pert; double rad; int j; getBSDF_outvec(v, b, o); rad = getBSDF_outrad(b, o); multisamp(pert, 3, rv); for (j = 0; j < 3; j++) v[j] += rad*(2.*pert[j] - 1.); if (xm != NULL) multv3(v, v, xm); normalize(v); } #define FEQ(a,b) ((a)-(b) <= 1e-7 && (b)-(a) <= 1e-7) static int addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */ char *xfarg[], FVECT xp, FVECT yp, FVECT zp ) { static char bufs[3][16]; int bn = 0; char **xfp = xfarg; double theta; theta = atan2(yp[2], zp[2]); if (!FEQ(theta,0.0)) { *xfp++ = "-rx"; sprintf(bufs[bn], "%f", theta*(180./PI)); *xfp++ = bufs[bn++]; } theta = asin(-xp[2]); if (!FEQ(theta,0.0)) { *xfp++ = "-ry"; sprintf(bufs[bn], " %f", theta*(180./PI)); *xfp++ = bufs[bn++]; } theta = atan2(xp[1], xp[0]); if (!FEQ(theta,0.0)) { *xfp++ = "-rz"; sprintf(bufs[bn], "%f", theta*(180./PI)); *xfp++ = bufs[bn++]; } *xfp = NULL; return(xfp - xfarg); } int getBSDF_xfm( /* compute transform for the given surface */ MAT4 xm, FVECT nrm, UpDir ud ) { char *xfargs[7]; XF myxf; FVECT updir, xdest, ydest; updir[0] = updir[1] = updir[2] = 0.; switch (ud) { case UDzneg: updir[2] = -1.; break; case UDyneg: updir[1] = -1.; break; case UDxneg: updir[0] = -1.; break; case UDxpos: updir[0] = 1.; break; case UDypos: updir[1] = 1.; break; case UDzpos: updir[2] = 1.; break; case UDunknown: error(WARNING, "unspecified up direction"); return(0); } fcross(xdest, updir, nrm); if (normalize(xdest) == 0.0) return(0); fcross(ydest, nrm, xdest); xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs); copymat4(xm, myxf.xfm); return(1); } void redistribute( /* pass distarr ray sums through BSDF */ struct BSDF_data *b, int nalt, int nazi, FVECT u, FVECT v, FVECT w, MAT4 xm ) { MAT4 mymat, inmat; COLORV *idist; COLORV *cp, *csum; FVECT dv; double wt; int i, j, k, h; COLOR col, cinc; /* copy incoming distribution */ if (b->ninc != distsiz) error(INTERNAL, "error 1 in redistribute"); idist = (COLORV *)malloc(sizeof(COLOR)*distsiz); if (idist == NULL) error(SYSTEM, "out of memory in redistribute"); memcpy(idist, distarr, sizeof(COLOR)*distsiz); /* compose direction transform */ for (i = 3; i--; ) { mymat[i][0] = u[i]; mymat[i][1] = v[i]; mymat[i][2] = w[i]; mymat[i][3] = 0.; } mymat[3][0] = mymat[3][1] = mymat[3][2] = 0.; mymat[3][3] = 1.; if (xm != NULL) multmat4(mymat, xm, mymat); for (i = 3; i--; ) { /* make sure it's normalized */ wt = 1./sqrt( mymat[0][i]*mymat[0][i] + mymat[1][i]*mymat[1][i] + mymat[2][i]*mymat[2][i] ); for (j = 3; j--; ) mymat[j][i] *= wt; } if (!invmat4(inmat, mymat)) /* need inverse as well */ error(INTERNAL, "cannot invert BSDF transform"); newdist(nalt*nazi); /* resample distribution */ for (i = b->ninc; i--; ) { getBSDF_incvec(dv, b, i); /* compute incident irrad. */ multv3(dv, dv, mymat); if (dv[2] < 0.0) dv[2] = -dv[2]; wt = getBSDF_incrad(b, i); wt *= wt*PI * dv[2]; /* solid_angle*cosine(theta) */ cp = &idist[3*i]; copycolor(cinc, cp); scalecolor(cinc, wt); for (k = nalt; k--; ) /* loop over distribution */ for (j = nazi; j--; ) { flatdir(dv, (k + .5)/nalt, (double)j/nazi); multv3(dv, dv, inmat); /* evaluate BSDF @ outgoing */ wt = BSDF_visible(b, i, getBSDF_outndx(b, dv)); copycolor(col, cinc); scalecolor(col, wt); csum = &distarr[3*(k*nazi + j)]; addcolor(csum, col); /* sum into distribution */ } } free(idist); /* free temp space */ }