/* Copyright (c) 1995 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Routines to do the actual calculation for mkillum */ #include "mkillum.h" #include "face.h" #include "cone.h" #include "random.h" o_default(ob, il, rt, nm) /* default illum action */ OBJREC *ob; struct illum_args *il; struct rtproc *rt; char *nm; { sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"", nm, ofun[ob->otype].funame, ob->oname); error(WARNING, errmsg); printobj(il->altmat, ob); } o_face(ob, il, rt, nm) /* make an illum face */ OBJREC *ob; struct illum_args *il; struct rtproc *rt; char *nm; { #define MAXMISS (5*n*il->nsamps) int dim[3]; int n, nalt, nazi, h; float *distarr; double sp[2], r1, r2; FVECT dn, org, dir; FVECT u, v; double ur[2], vr[2]; int nmisses; register FACE *fa; register int i, j; /* get/check arguments */ fa = getface(ob); if (fa->area == 0.0) { freeface(ob); o_default(ob, il, rt, nm); return; } /* set up sampling */ if (il->sampdens <= 0) nalt = nazi = 1; else { n = PI * il->sampdens; nalt = sqrt(n/PI) + .5; nazi = PI*nalt + .5; } n = nalt*nazi; distarr = (float *)calloc(n, 3*sizeof(float)); if (distarr == NULL) error(SYSTEM, "out of memory in o_face"); /* take first edge longer than sqrt(area) */ for (j = fa->nv-1, i = 0; i < fa->nv; j = i++) { u[0] = VERTEX(fa,i)[0] - VERTEX(fa,j)[0]; u[1] = VERTEX(fa,i)[1] - VERTEX(fa,j)[1]; u[2] = VERTEX(fa,i)[2] - VERTEX(fa,j)[2]; if ((r1 = DOT(u,u)) >= fa->area-FTINY) break; } if (i < fa->nv) { /* got one! -- let's align our axes */ r2 = 1.0/sqrt(r1); u[0] *= r2; u[1] *= r2; u[2] *= r2; fcross(v, fa->norm, u); } else /* oh well, we'll just have to wing it */ mkaxes(u, v, fa->norm); /* now, find limits in (u,v) coordinates */ ur[0] = vr[0] = FHUGE; ur[1] = vr[1] = -FHUGE; for (i = 0; i < fa->nv; i++) { r1 = DOT(VERTEX(fa,i),u); if (r1 < ur[0]) ur[0] = r1; if (r1 > ur[1]) ur[1] = r1; r2 = DOT(VERTEX(fa,i),v); if (r2 < vr[0]) vr[0] = r2; if (r2 > vr[1]) vr[1] = r2; } dim[0] = random(); /* sample polygon */ nmisses = 0; for (dim[1] = 0; dim[1] < nalt; dim[1]++) for (dim[2] = 0; dim[2] < nazi; dim[2]++) for (i = 0; i < il->nsamps; i++) { /* random direction */ h = ilhash(dim, 3) + i; multisamp(sp, 2, urand(h)); r1 = (dim[1] + sp[0])/nalt; r2 = (dim[2] + sp[1] - .5)/nazi; flatdir(dn, r1, r2); for (j = 0; j < 3; j++) dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*fa->norm[j]; /* random location */ do { multisamp(sp, 2, urand(h+4862+nmisses)); r1 = ur[0] + (ur[1]-ur[0]) * sp[0]; r2 = vr[0] + (vr[1]-vr[0]) * sp[1]; for (j = 0; j < 3; j++) org[j] = r1*u[j] + r2*v[j] + fa->offset*fa->norm[j]; } while (!inface(org, fa) && nmisses++ < MAXMISS); if (nmisses > MAXMISS) { objerror(ob, WARNING, "bad aspect"); rt->nrays = 0; freeface(ob); free((char *)distarr); o_default(ob, il, rt, nm); return; } for (j = 0; j < 3; j++) org[j] += .001*fa->norm[j]; /* send sample */ raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt); } rayflush(rt); /* write out the face and its distribution */ if (average(il, distarr, nalt*nazi)) { if (il->sampdens > 0) flatout(il, distarr, nalt, nazi, u, v, fa->norm); illumout(il, ob); } else printobj(il->altmat, ob); /* clean up */ freeface(ob); free((char *)distarr); #undef MAXMISS } o_sphere(ob, il, rt, nm) /* make an illum sphere */ register OBJREC *ob; struct illum_args *il; struct rtproc *rt; char *nm; { int dim[3]; int n, nalt, nazi; float *distarr; double sp[4], r1, r2, r3; FVECT org, dir; FVECT u, v; register int i, j; /* check arguments */ if (ob->oargs.nfargs != 4) objerror(ob, USER, "bad # of arguments"); /* set up sampling */ if (il->sampdens <= 0) nalt = nazi = 1; else { n = 4.*PI * il->sampdens; nalt = sqrt(2./PI*n) + .5; nazi = PI/2.*nalt + .5; } n = nalt*nazi; distarr = (float *)calloc(n, 3*sizeof(float)); if (distarr == NULL) error(SYSTEM, "out of memory in o_sphere"); dim[0] = random(); /* sample sphere */ for (dim[1] = 0; dim[1] < nalt; dim[1]++) for (dim[2] = 0; dim[2] < nazi; dim[2]++) for (i = 0; i < il->nsamps; i++) { /* next sample point */ multisamp(sp, 4, urand(ilhash(dim,3)+i)); /* random direction */ r1 = (dim[1] + sp[0])/nalt; r2 = (dim[2] + sp[1] - .5)/nazi; rounddir(dir, r1, r2); /* random location */ mkaxes(u, v, dir); /* yuck! */ r3 = sqrt(sp[2]); r2 = 2.*PI*sp[3]; r1 = r3*ob->oargs.farg[3]*cos(r2); r2 = r3*ob->oargs.farg[3]*sin(r2); r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3); for (j = 0; j < 3; j++) { org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] + r3*dir[j]; dir[j] = -dir[j]; } /* send sample */ raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt); } rayflush(rt); /* write out the sphere and its distribution */ if (average(il, distarr, nalt*nazi)) { if (il->sampdens > 0) roundout(il, distarr, nalt, nazi); else objerror(ob, WARNING, "diffuse distribution"); illumout(il, ob); } else printobj(il->altmat, ob); /* clean up */ free((char *)distarr); } o_ring(ob, il, rt, nm) /* make an illum ring */ OBJREC *ob; struct illum_args *il; struct rtproc *rt; char *nm; { int dim[3]; int n, nalt, nazi; float *distarr; double sp[4], r1, r2, r3; FVECT dn, org, dir; FVECT u, v; register CONE *co; register int i, j; /* get/check arguments */ co = getcone(ob, 0); /* set up sampling */ if (il->sampdens <= 0) nalt = nazi = 1; else { n = PI * il->sampdens; nalt = sqrt(n/PI) + .5; nazi = PI*nalt + .5; } n = nalt*nazi; distarr = (float *)calloc(n, 3*sizeof(float)); if (distarr == NULL) error(SYSTEM, "out of memory in o_ring"); mkaxes(u, v, co->ad); dim[0] = random(); /* sample disk */ for (dim[1] = 0; dim[1] < nalt; dim[1]++) for (dim[2] = 0; dim[2] < nazi; dim[2]++) for (i = 0; i < il->nsamps; i++) { /* next sample point */ multisamp(sp, 4, urand(ilhash(dim,3)+i)); /* random direction */ r1 = (dim[1] + sp[0])/nalt; r2 = (dim[2] + sp[1] - .5)/nazi; flatdir(dn, r1, r2); for (j = 0; j < 3; j++) dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j]; /* random location */ r3 = sqrt(CO_R0(co)*CO_R0(co) + sp[2]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co))); r2 = 2.*PI*sp[3]; r1 = r3*cos(r2); r2 = r3*sin(r2); for (j = 0; j < 3; j++) org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j] + .001*co->ad[j]; /* send sample */ raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt); } rayflush(rt); /* write out the ring and its distribution */ if (average(il, distarr, nalt*nazi)) { if (il->sampdens > 0) flatout(il, distarr, nalt, nazi, u, v, co->ad); illumout(il, ob); } else printobj(il->altmat, ob); /* clean up */ freecone(ob); free((char *)distarr); } raysamp(res, org, dir, rt) /* compute a ray sample */ float res[3]; FVECT org, dir; register struct rtproc *rt; { register float *fp; if (rt->nrays == rt->bsiz) rayflush(rt); rt->dest[rt->nrays] = res; fp = rt->buf + 6*rt->nrays++; *fp++ = org[0]; *fp++ = org[1]; *fp++ = org[2]; *fp++ = dir[0]; *fp++ = dir[1]; *fp = dir[2]; } rayflush(rt) /* flush buffered rays */ register struct rtproc *rt; { register int i; if (rt->nrays <= 0) return; bzero(rt->buf+6*rt->nrays, 6*sizeof(float)); errno = 0; if ( process(rt->pd, (char *)rt->buf, (char *)rt->buf, 3*sizeof(float)*rt->nrays, 6*sizeof(float)*(rt->nrays+1)) < 3*sizeof(float)*rt->nrays ) error(SYSTEM, "error reading from rtrace process"); i = rt->nrays; while (i--) { rt->dest[i][0] += rt->buf[3*i]; rt->dest[i][1] += rt->buf[3*i+1]; rt->dest[i][2] += rt->buf[3*i+2]; } rt->nrays = 0; } mkaxes(u, v, n) /* compute u and v to go with n */ FVECT u, v, n; { register int i; v[0] = v[1] = v[2] = 0.0; for (i = 0; i < 3; i++) if (n[i] < 0.6 && n[i] > -0.6) break; v[i] = 1.0; fcross(u, v, n); normalize(u); fcross(v, n, u); } rounddir(dv, alt, azi) /* compute uniform spherical direction */ register FVECT dv; double alt, azi; { double d1, d2; dv[2] = 1. - 2.*alt; d1 = sqrt(1. - dv[2]*dv[2]); d2 = 2.*PI * azi; dv[0] = d1*cos(d2); dv[1] = d1*sin(d2); } flatdir(dv, alt, azi) /* compute uniform hemispherical direction */ register FVECT dv; double alt, azi; { double d1, d2; d1 = sqrt(alt); d2 = 2.*PI * azi; dv[0] = d1*cos(d2); dv[1] = d1*sin(d2); dv[2] = sqrt(1. - alt); }