| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: mkillum2.c,v 2.43 2023/11/17 20:02:07 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Routines to do the actual calculation for mkillum
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include <string.h>
|
| 9 |
|
| 10 |
#include "mkillum.h"
|
| 11 |
#include "face.h"
|
| 12 |
#include "cone.h"
|
| 13 |
#include "source.h"
|
| 14 |
#include "paths.h"
|
| 15 |
|
| 16 |
#ifndef R_EPS
|
| 17 |
#define R_EPS 0.005 /* relative epsilon for ray origin */
|
| 18 |
#endif
|
| 19 |
|
| 20 |
COLORV * distarr = NULL; /* distribution array */
|
| 21 |
int distsiz = 0;
|
| 22 |
|
| 23 |
|
| 24 |
void
|
| 25 |
newdist( /* allocate & clear distribution array */
|
| 26 |
int siz
|
| 27 |
)
|
| 28 |
{
|
| 29 |
if (siz <= 0) {
|
| 30 |
if (distsiz > 0)
|
| 31 |
free(distarr);
|
| 32 |
distarr = NULL;
|
| 33 |
distsiz = 0;
|
| 34 |
return;
|
| 35 |
}
|
| 36 |
if (distsiz < siz) {
|
| 37 |
if (distsiz > 0)
|
| 38 |
free(distarr);
|
| 39 |
distarr = (COLORV *)malloc(sizeof(COLOR)*siz);
|
| 40 |
if (distarr == NULL)
|
| 41 |
error(SYSTEM, "out of memory in newdist");
|
| 42 |
distsiz = siz;
|
| 43 |
}
|
| 44 |
memset(distarr, '\0', sizeof(COLOR)*siz);
|
| 45 |
}
|
| 46 |
|
| 47 |
|
| 48 |
int
|
| 49 |
process_ray( /* process a ray result or report error */
|
| 50 |
RAY *r,
|
| 51 |
int rv
|
| 52 |
)
|
| 53 |
{
|
| 54 |
COLORV *colp;
|
| 55 |
|
| 56 |
if (rv == 0) /* no result ready */
|
| 57 |
return(0);
|
| 58 |
if (rv < 0)
|
| 59 |
error(USER, "ray tracing process died");
|
| 60 |
if (r->rno >= distsiz)
|
| 61 |
error(INTERNAL, "bad returned index in process_ray");
|
| 62 |
smultscolor(r->rcol, r->rcoef); /* in case it's a source ray */
|
| 63 |
colp = &distarr[r->rno * 3];
|
| 64 |
addscolor(colp, r->rcol);
|
| 65 |
return(1);
|
| 66 |
}
|
| 67 |
|
| 68 |
|
| 69 |
void
|
| 70 |
raysamp( /* queue a ray sample */
|
| 71 |
int ndx,
|
| 72 |
FVECT org,
|
| 73 |
FVECT dir
|
| 74 |
)
|
| 75 |
{
|
| 76 |
RAY myRay;
|
| 77 |
int rv;
|
| 78 |
|
| 79 |
if ((ndx < 0) | (ndx >= distsiz))
|
| 80 |
error(INTERNAL, "bad index in raysamp");
|
| 81 |
VCOPY(myRay.rorg, org);
|
| 82 |
VCOPY(myRay.rdir, dir);
|
| 83 |
myRay.rmax = .0;
|
| 84 |
rayorigin(&myRay, PRIMARY|SPECULAR, NULL, NULL);
|
| 85 |
myRay.rno = ndx;
|
| 86 |
/* queue ray, check result */
|
| 87 |
process_ray(&myRay, ray_pqueue(&myRay));
|
| 88 |
}
|
| 89 |
|
| 90 |
|
| 91 |
void
|
| 92 |
srcsamps( /* sample sources from this surface position */
|
| 93 |
struct illum_args *il,
|
| 94 |
FVECT org,
|
| 95 |
double eps,
|
| 96 |
MAT4 ixfm
|
| 97 |
)
|
| 98 |
{
|
| 99 |
int nalt=1, nazi=1;
|
| 100 |
SRCINDEX si;
|
| 101 |
RAY sr;
|
| 102 |
FVECT v;
|
| 103 |
double d;
|
| 104 |
int i, j;
|
| 105 |
/* get sampling density */
|
| 106 |
if (il->sampdens > 0) {
|
| 107 |
i = PI * il->sampdens;
|
| 108 |
nalt = sqrt(i/PI) + .5;
|
| 109 |
nazi = PI*nalt + .5;
|
| 110 |
}
|
| 111 |
initsrcindex(&si); /* loop over (sub)sources */
|
| 112 |
for ( ; ; ) {
|
| 113 |
VCOPY(sr.rorg, org); /* pick side to shoot from */
|
| 114 |
samplendx++; /* increment sample counter */
|
| 115 |
if (!srcray(&sr, NULL, &si))
|
| 116 |
break; /* end of sources */
|
| 117 |
/* index direction */
|
| 118 |
if (ixfm != NULL)
|
| 119 |
multv3(v, sr.rdir, ixfm);
|
| 120 |
else
|
| 121 |
VCOPY(v, sr.rdir);
|
| 122 |
if (v[2] >= -FTINY)
|
| 123 |
continue; /* only sample transmission */
|
| 124 |
v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2];
|
| 125 |
sr.rno = flatindex(v, nalt, nazi);
|
| 126 |
d = nalt*nazi*(1./PI) * v[2];
|
| 127 |
d *= si.dom; /* solid angle correction */
|
| 128 |
scalescolor(sr.rcoef, d);
|
| 129 |
VSUM(sr.rorg, sr.rorg, sr.rdir, -eps);
|
| 130 |
process_ray(&sr, ray_pqueue(&sr));
|
| 131 |
}
|
| 132 |
}
|
| 133 |
|
| 134 |
|
| 135 |
void
|
| 136 |
rayclean() /* finish all pending rays */
|
| 137 |
{
|
| 138 |
RAY myRay;
|
| 139 |
|
| 140 |
while (process_ray(&myRay, ray_presult(&myRay, 0)))
|
| 141 |
;
|
| 142 |
}
|
| 143 |
|
| 144 |
|
| 145 |
static void
|
| 146 |
mkaxes( /* compute u and v to go with n */
|
| 147 |
FVECT u,
|
| 148 |
FVECT v,
|
| 149 |
FVECT n
|
| 150 |
)
|
| 151 |
{
|
| 152 |
getperpendicular(u, n, 1);
|
| 153 |
fcross(v, n, u);
|
| 154 |
}
|
| 155 |
|
| 156 |
|
| 157 |
static void
|
| 158 |
rounddir( /* compute uniform spherical direction */
|
| 159 |
FVECT dv,
|
| 160 |
double alt,
|
| 161 |
double azi
|
| 162 |
)
|
| 163 |
{
|
| 164 |
double d1, d2;
|
| 165 |
|
| 166 |
dv[2] = 1. - 2.*alt;
|
| 167 |
d1 = sqrt(1. - dv[2]*dv[2]);
|
| 168 |
d2 = 2.*PI * azi;
|
| 169 |
dv[0] = d1*cos(d2);
|
| 170 |
dv[1] = d1*sin(d2);
|
| 171 |
}
|
| 172 |
|
| 173 |
|
| 174 |
void
|
| 175 |
flatdir( /* compute uniform hemispherical direction */
|
| 176 |
FVECT dv,
|
| 177 |
double alt,
|
| 178 |
double azi
|
| 179 |
)
|
| 180 |
{
|
| 181 |
double d1, d2;
|
| 182 |
|
| 183 |
d1 = sqrt(alt);
|
| 184 |
d2 = 2.*PI * azi;
|
| 185 |
dv[0] = d1*cos(d2);
|
| 186 |
dv[1] = d1*sin(d2);
|
| 187 |
dv[2] = sqrt(1. - alt);
|
| 188 |
}
|
| 189 |
|
| 190 |
|
| 191 |
int
|
| 192 |
flatindex( /* compute index for hemispherical direction */
|
| 193 |
FVECT dv,
|
| 194 |
int nalt,
|
| 195 |
int nazi
|
| 196 |
)
|
| 197 |
{
|
| 198 |
double d;
|
| 199 |
int i, j;
|
| 200 |
|
| 201 |
d = 1.0 - dv[2]*dv[2];
|
| 202 |
i = d*nalt;
|
| 203 |
d = atan2(dv[1], dv[0]) * (0.5/PI);
|
| 204 |
if (d < 0.0) d += 1.0;
|
| 205 |
j = d*nazi + 0.5;
|
| 206 |
if (j >= nazi) j = 0;
|
| 207 |
return(i*nazi + j);
|
| 208 |
}
|
| 209 |
|
| 210 |
|
| 211 |
int
|
| 212 |
my_default( /* default illum action */
|
| 213 |
OBJREC *ob,
|
| 214 |
struct illum_args *il,
|
| 215 |
char *nm
|
| 216 |
)
|
| 217 |
{
|
| 218 |
sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"",
|
| 219 |
nm, ofun[ob->otype].funame, ob->oname);
|
| 220 |
error(WARNING, errmsg);
|
| 221 |
printobj(il->altmat, ob);
|
| 222 |
return(1);
|
| 223 |
}
|
| 224 |
|
| 225 |
|
| 226 |
int
|
| 227 |
my_face( /* make an illum face */
|
| 228 |
OBJREC *ob,
|
| 229 |
struct illum_args *il,
|
| 230 |
char *nm
|
| 231 |
)
|
| 232 |
{
|
| 233 |
int dim[2];
|
| 234 |
int n, nalt, nazi, alti;
|
| 235 |
double sp[2], r1, r2;
|
| 236 |
unsigned long h;
|
| 237 |
FVECT dn, org, dir;
|
| 238 |
FVECT u, v;
|
| 239 |
double ur[2], vr[2];
|
| 240 |
double epsilon;
|
| 241 |
MAT4 xfm;
|
| 242 |
char xfrot[64];
|
| 243 |
int nallow;
|
| 244 |
FACE *fa;
|
| 245 |
int i, j;
|
| 246 |
/* get/check arguments */
|
| 247 |
fa = getface(ob);
|
| 248 |
if (fa->area == 0.0) {
|
| 249 |
freeface(ob);
|
| 250 |
return(my_default(ob, il, nm));
|
| 251 |
}
|
| 252 |
/* set up sampling */
|
| 253 |
if (il->sampdens <= 0) {
|
| 254 |
nalt = nazi = 1; /* diffuse assumption */
|
| 255 |
} else {
|
| 256 |
n = PI * il->sampdens;
|
| 257 |
nalt = sqrt(n/PI) + .5;
|
| 258 |
nazi = PI*nalt + .5;
|
| 259 |
}
|
| 260 |
n = nazi*nalt;
|
| 261 |
newdist(n);
|
| 262 |
/* take first edge >= sqrt(area) */
|
| 263 |
for (j = fa->nv-1, i = 0; i < fa->nv; j = i++) {
|
| 264 |
u[0] = VERTEX(fa,i)[0] - VERTEX(fa,j)[0];
|
| 265 |
u[1] = VERTEX(fa,i)[1] - VERTEX(fa,j)[1];
|
| 266 |
u[2] = VERTEX(fa,i)[2] - VERTEX(fa,j)[2];
|
| 267 |
if ((r1 = DOT(u,u)) >= fa->area-FTINY)
|
| 268 |
break;
|
| 269 |
}
|
| 270 |
if (i < fa->nv) { /* got one! -- let's align our axes */
|
| 271 |
r2 = 1.0/sqrt(r1);
|
| 272 |
u[0] *= r2; u[1] *= r2; u[2] *= r2;
|
| 273 |
fcross(v, fa->norm, u);
|
| 274 |
} else /* oh well, we'll just have to wing it */
|
| 275 |
mkaxes(u, v, fa->norm);
|
| 276 |
/* now, find limits in (u,v) coordinates */
|
| 277 |
ur[0] = vr[0] = FHUGE;
|
| 278 |
ur[1] = vr[1] = -FHUGE;
|
| 279 |
for (i = 0; i < fa->nv; i++) {
|
| 280 |
r1 = DOT(VERTEX(fa,i),u);
|
| 281 |
if (r1 < ur[0]) ur[0] = r1;
|
| 282 |
if (r1 > ur[1]) ur[1] = r1;
|
| 283 |
r2 = DOT(VERTEX(fa,i),v);
|
| 284 |
if (r2 < vr[0]) vr[0] = r2;
|
| 285 |
if (r2 > vr[1]) vr[1] = r2;
|
| 286 |
}
|
| 287 |
dim[0] = random();
|
| 288 |
/* sample polygon */
|
| 289 |
nallow = 5*n*il->nsamps;
|
| 290 |
epsilon = R_EPS*sqrt(fa->area);
|
| 291 |
for (dim[1] = 0; dim[1] < n; dim[1]++)
|
| 292 |
for (i = 0; i < il->nsamps; i++) {
|
| 293 |
/* randomize direction */
|
| 294 |
h = ilhash(dim, 2) + i;
|
| 295 |
multisamp(sp, 2, urand(h));
|
| 296 |
alti = dim[1]/nazi;
|
| 297 |
r1 = (alti + sp[0])/nalt;
|
| 298 |
r2 = (dim[1] - alti*nazi + sp[1] - .5)/nazi;
|
| 299 |
flatdir(dn, r1, r2);
|
| 300 |
for (j = 0; j < 3; j++)
|
| 301 |
dir[j] = -dn[0]*u[j] - dn[1]*v[j] -
|
| 302 |
dn[2]*fa->norm[j];
|
| 303 |
/* randomize location */
|
| 304 |
do {
|
| 305 |
multisamp(sp, 2, urand(h+4862+nallow));
|
| 306 |
r1 = ur[0] + (ur[1]-ur[0]) * sp[0];
|
| 307 |
r2 = vr[0] + (vr[1]-vr[0]) * sp[1];
|
| 308 |
for (j = 0; j < 3; j++)
|
| 309 |
org[j] = r1*u[j] + r2*v[j]
|
| 310 |
+ fa->offset*fa->norm[j];
|
| 311 |
} while (!inface(org, fa) && nallow-- > 0);
|
| 312 |
if (nallow < 0) {
|
| 313 |
objerror(ob, WARNING, "bad aspect");
|
| 314 |
rayclean();
|
| 315 |
freeface(ob);
|
| 316 |
return(my_default(ob, il, nm));
|
| 317 |
}
|
| 318 |
VSUM(org, org, dir, -epsilon);
|
| 319 |
/* send sample */
|
| 320 |
raysamp(dim[1], org, dir);
|
| 321 |
}
|
| 322 |
/* add in direct component? */
|
| 323 |
if (il->flags & IL_LIGHT) {
|
| 324 |
MAT4 ixfm;
|
| 325 |
for (i = 3; i--; ) {
|
| 326 |
ixfm[i][0] = u[i];
|
| 327 |
ixfm[i][1] = v[i];
|
| 328 |
ixfm[i][2] = fa->norm[i];
|
| 329 |
ixfm[i][3] = 0.;
|
| 330 |
}
|
| 331 |
ixfm[3][0] = ixfm[3][1] = ixfm[3][2] = 0.;
|
| 332 |
ixfm[3][3] = 1.;
|
| 333 |
dim[0] = random();
|
| 334 |
nallow = 10*il->nsamps;
|
| 335 |
for (i = 0; i < il->nsamps; i++) {
|
| 336 |
/* randomize location */
|
| 337 |
h = dim[0] + samplendx++;
|
| 338 |
do {
|
| 339 |
multisamp(sp, 2, urand(h+nallow));
|
| 340 |
r1 = ur[0] + (ur[1]-ur[0]) * sp[0];
|
| 341 |
r2 = vr[0] + (vr[1]-vr[0]) * sp[1];
|
| 342 |
for (j = 0; j < 3; j++)
|
| 343 |
org[j] = r1*u[j] + r2*v[j]
|
| 344 |
+ fa->offset*fa->norm[j];
|
| 345 |
} while (!inface(org, fa) && nallow-- > 0);
|
| 346 |
if (nallow < 0) {
|
| 347 |
objerror(ob, WARNING, "bad aspect");
|
| 348 |
rayclean();
|
| 349 |
freeface(ob);
|
| 350 |
return(my_default(ob, il, nm));
|
| 351 |
}
|
| 352 |
/* sample source rays */
|
| 353 |
srcsamps(il, org, epsilon, ixfm);
|
| 354 |
}
|
| 355 |
}
|
| 356 |
/* wait for all rays to finish */
|
| 357 |
rayclean();
|
| 358 |
/* write out the face and its distribution */
|
| 359 |
if (average(il, distarr, n)) {
|
| 360 |
if (il->sampdens > 0)
|
| 361 |
flatout(il, distarr, nalt, nazi, u, v, fa->norm);
|
| 362 |
illumout(il, ob);
|
| 363 |
} else
|
| 364 |
printobj(il->altmat, ob);
|
| 365 |
/* clean up */
|
| 366 |
freeface(ob);
|
| 367 |
return(0);
|
| 368 |
}
|
| 369 |
|
| 370 |
|
| 371 |
int
|
| 372 |
my_sphere( /* make an illum sphere */
|
| 373 |
OBJREC *ob,
|
| 374 |
struct illum_args *il,
|
| 375 |
char *nm
|
| 376 |
)
|
| 377 |
{
|
| 378 |
int dim[3];
|
| 379 |
int n, nalt, nazi;
|
| 380 |
double sp[4], r1, r2, r3;
|
| 381 |
FVECT org, dir;
|
| 382 |
FVECT u, v;
|
| 383 |
int i, j;
|
| 384 |
/* check arguments */
|
| 385 |
if (ob->oargs.nfargs != 4)
|
| 386 |
objerror(ob, USER, "bad # of arguments");
|
| 387 |
/* set up sampling */
|
| 388 |
if (il->sampdens <= 0)
|
| 389 |
nalt = nazi = 1;
|
| 390 |
else {
|
| 391 |
n = 4.*PI * il->sampdens;
|
| 392 |
nalt = sqrt(2./PI*n) + .5;
|
| 393 |
nazi = PI/2.*nalt + .5;
|
| 394 |
}
|
| 395 |
n = nalt*nazi;
|
| 396 |
newdist(n);
|
| 397 |
dim[0] = random();
|
| 398 |
/* sample sphere */
|
| 399 |
for (dim[1] = 0; dim[1] < nalt; dim[1]++)
|
| 400 |
for (dim[2] = 0; dim[2] < nazi; dim[2]++)
|
| 401 |
for (i = 0; i < il->nsamps; i++) {
|
| 402 |
/* next sample point */
|
| 403 |
multisamp(sp, 4, urand(ilhash(dim,3)+i));
|
| 404 |
/* random direction */
|
| 405 |
r1 = (dim[1] + sp[0])/nalt;
|
| 406 |
r2 = (dim[2] + sp[1] - .5)/nazi;
|
| 407 |
rounddir(dir, r1, r2);
|
| 408 |
/* random location */
|
| 409 |
mkaxes(u, v, dir); /* yuck! */
|
| 410 |
r3 = sqrt(sp[2]);
|
| 411 |
r2 = 2.*PI*sp[3];
|
| 412 |
r1 = r3*ob->oargs.farg[3]*cos(r2);
|
| 413 |
r2 = r3*ob->oargs.farg[3]*sin(r2);
|
| 414 |
r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3);
|
| 415 |
for (j = 0; j < 3; j++) {
|
| 416 |
org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] +
|
| 417 |
r3*dir[j];
|
| 418 |
dir[j] = -dir[j];
|
| 419 |
}
|
| 420 |
/* send sample */
|
| 421 |
raysamp(dim[1]*nazi+dim[2], org, dir);
|
| 422 |
}
|
| 423 |
/* wait for all rays to finish */
|
| 424 |
rayclean();
|
| 425 |
/* write out the sphere and its distribution */
|
| 426 |
if (average(il, distarr, n)) {
|
| 427 |
if (il->sampdens > 0)
|
| 428 |
roundout(il, distarr, nalt, nazi);
|
| 429 |
else
|
| 430 |
objerror(ob, WARNING, "diffuse distribution");
|
| 431 |
illumout(il, ob);
|
| 432 |
} else
|
| 433 |
printobj(il->altmat, ob);
|
| 434 |
/* clean up */
|
| 435 |
return(1);
|
| 436 |
}
|
| 437 |
|
| 438 |
|
| 439 |
int
|
| 440 |
my_ring( /* make an illum ring */
|
| 441 |
OBJREC *ob,
|
| 442 |
struct illum_args *il,
|
| 443 |
char *nm
|
| 444 |
)
|
| 445 |
{
|
| 446 |
int dim[2];
|
| 447 |
int n, nalt, nazi, alti;
|
| 448 |
double sp[2], r1, r2, r3;
|
| 449 |
double epsilon;
|
| 450 |
int h;
|
| 451 |
FVECT dn, org, dir;
|
| 452 |
FVECT u, v;
|
| 453 |
MAT4 xfm;
|
| 454 |
CONE *co;
|
| 455 |
int i, j;
|
| 456 |
/* get/check arguments */
|
| 457 |
co = getcone(ob, 0);
|
| 458 |
if (co == NULL)
|
| 459 |
objerror(ob, USER, "cannot create illum");
|
| 460 |
/* set up sampling */
|
| 461 |
if (il->sampdens <= 0) {
|
| 462 |
nalt = nazi = 1; /* diffuse assumption */
|
| 463 |
} else {
|
| 464 |
n = PI * il->sampdens;
|
| 465 |
nalt = sqrt(n/PI) + .5;
|
| 466 |
nazi = PI*nalt + .5;
|
| 467 |
}
|
| 468 |
epsilon = R_EPS*CO_R1(co);
|
| 469 |
n = nazi*nalt;
|
| 470 |
newdist(n);
|
| 471 |
mkaxes(u, v, co->ad);
|
| 472 |
dim[0] = random();
|
| 473 |
/* sample disk */
|
| 474 |
for (dim[1] = 0; dim[1] < n; dim[1]++)
|
| 475 |
for (i = 0; i < il->nsamps; i++) {
|
| 476 |
/* next sample point */
|
| 477 |
h = ilhash(dim,2) + i;
|
| 478 |
/* randomize direction */
|
| 479 |
multisamp(sp, 2, urand(h));
|
| 480 |
alti = dim[1]/nazi;
|
| 481 |
r1 = (alti + sp[0])/nalt;
|
| 482 |
r2 = (dim[1] - alti*nazi + sp[1] - .5)/nazi;
|
| 483 |
flatdir(dn, r1, r2);
|
| 484 |
for (j = 0; j < 3; j++)
|
| 485 |
dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j];
|
| 486 |
/* randomize location */
|
| 487 |
multisamp(sp, 2, urand(h+8371));
|
| 488 |
r3 = sqrt(CO_R0(co)*CO_R0(co) +
|
| 489 |
sp[0]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co)));
|
| 490 |
r2 = 2.*PI*sp[1];
|
| 491 |
r1 = r3*cos(r2);
|
| 492 |
r2 = r3*sin(r2);
|
| 493 |
for (j = 0; j < 3; j++)
|
| 494 |
org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j] +
|
| 495 |
epsilon*co->ad[j];
|
| 496 |
/* send sample */
|
| 497 |
raysamp(dim[1], org, dir);
|
| 498 |
}
|
| 499 |
/* add in direct component? */
|
| 500 |
if (il->flags & IL_LIGHT) {
|
| 501 |
MAT4 ixfm;
|
| 502 |
for (i = 3; i--; ) {
|
| 503 |
ixfm[i][0] = u[i];
|
| 504 |
ixfm[i][1] = v[i];
|
| 505 |
ixfm[i][2] = co->ad[i];
|
| 506 |
ixfm[i][3] = 0.;
|
| 507 |
}
|
| 508 |
ixfm[3][0] = ixfm[3][1] = ixfm[3][2] = 0.;
|
| 509 |
ixfm[3][3] = 1.;
|
| 510 |
dim[0] = random();
|
| 511 |
for (i = 0; i < il->nsamps; i++) {
|
| 512 |
/* randomize location */
|
| 513 |
h = dim[0] + samplendx++;
|
| 514 |
multisamp(sp, 2, urand(h));
|
| 515 |
r3 = sqrt(CO_R0(co)*CO_R0(co) +
|
| 516 |
sp[0]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co)));
|
| 517 |
r2 = 2.*PI*sp[1];
|
| 518 |
r1 = r3*cos(r2);
|
| 519 |
r2 = r3*sin(r2);
|
| 520 |
for (j = 0; j < 3; j++)
|
| 521 |
org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j];
|
| 522 |
/* sample source rays */
|
| 523 |
srcsamps(il, org, epsilon, ixfm);
|
| 524 |
}
|
| 525 |
}
|
| 526 |
/* wait for all rays to finish */
|
| 527 |
rayclean();
|
| 528 |
/* write out the ring and its distribution */
|
| 529 |
if (average(il, distarr, n)) {
|
| 530 |
if (il->sampdens > 0)
|
| 531 |
flatout(il, distarr, nalt, nazi, u, v, co->ad);
|
| 532 |
illumout(il, ob);
|
| 533 |
} else
|
| 534 |
printobj(il->altmat, ob);
|
| 535 |
/* clean up */
|
| 536 |
freecone(ob);
|
| 537 |
return(1);
|
| 538 |
}
|