#ifndef lint static const char RCSid[] = "$Id: mkillum2.c,v 2.34 2009/09/09 15:32:20 greg Exp $"; #endif /* * Routines to do the actual calculation for mkillum */ #include #include "mkillum.h" #include "face.h" #include "cone.h" #include "source.h" #ifndef NBSDFSAMPS #define NBSDFSAMPS 256 /* BSDF resampling count */ #endif COLORV * distarr = NULL; /* distribution array */ int distsiz = 0; COLORV * direct_discount = NULL; /* amount to take off direct */ void newdist( /* allocate & clear distribution array */ int siz ) { if (siz <= 0) { if (distsiz > 0) free((void *)distarr); distarr = NULL; distsiz = 0; return; } if (distsiz < siz) { if (distsiz > 0) free((void *)distarr); distarr = (COLORV *)malloc(sizeof(COLOR)*siz); if (distarr == NULL) error(SYSTEM, "out of memory in newdist"); distsiz = siz; } memset(distarr, '\0', sizeof(COLOR)*siz); } static void new_discount() /* allocate space for direct contrib. record */ { if (distsiz <= 0) return; direct_discount = (COLORV *)calloc(distsiz, sizeof(COLOR)); if (direct_discount == NULL) error(SYSTEM, "out of memory in new_discount"); } static void done_discount() /* clear off direct contrib. record */ { if (direct_discount == NULL) return; free((void *)direct_discount); direct_discount = NULL; } int process_ray( /* process a ray result or report error */ RAY *r, int rv ) { COLORV *colp; if (rv == 0) /* no result ready */ return(0); if (rv < 0) error(USER, "ray tracing process died"); if (r->rno >= distsiz) error(INTERNAL, "bad returned index in process_ray"); multcolor(r->rcol, r->rcoef); /* in case it's a source ray */ colp = &distarr[r->rno * 3]; addcolor(colp, r->rcol); if (r->rsrc >= 0 && /* remember source contrib. */ direct_discount != NULL) { colp = &direct_discount[r->rno * 3]; addcolor(colp, r->rcol); } return(1); } void raysamp( /* queue a ray sample */ int ndx, FVECT org, FVECT dir ) { RAY myRay; int rv; if ((ndx < 0) | (ndx >= distsiz)) error(INTERNAL, "bad index in raysamp"); VCOPY(myRay.rorg, org); VCOPY(myRay.rdir, dir); myRay.rmax = .0; rayorigin(&myRay, PRIMARY, NULL, NULL); myRay.rno = ndx; /* queue ray, check result */ process_ray(&myRay, ray_pqueue(&myRay)); } void srcsamps( /* sample sources from this surface position */ struct illum_args *il, FVECT org, FVECT nrm, MAT4 ixfm ) { int nalt, nazi; SRCINDEX si; RAY sr; FVECT v; double d; int i, j; /* get sampling density */ if (il->sampdens <= 0) { nalt = nazi = 1; } else { i = PI * il->sampdens; nalt = sqrt(i/PI) + .5; nazi = PI*nalt + .5; } initsrcindex(&si); /* loop over (sub)sources */ for ( ; ; ) { VCOPY(sr.rorg, org); /* pick side to shoot from */ if (il->sd != NULL) { int sn = si.sn; if (si.sp+1 >= si.np) ++sn; if (sn >= nsources) break; if (source[sn].sflags & SDISTANT) d = DOT(source[sn].sloc, nrm); else { VSUB(v, source[sn].sloc, org); d = DOT(v, nrm); } } else d = 1.0; /* only transmission */ if (d < 0.0) d = -1.0001*il->thick - 5.*FTINY; else d = 5.*FTINY; for (i = 3; i--; ) sr.rorg[i] += d*nrm[i]; samplendx++; /* increment sample counter */ if (!srcray(&sr, NULL, &si)) break; /* end of sources */ /* index direction */ if (ixfm != NULL) multv3(v, sr.rdir, ixfm); else VCOPY(v, sr.rdir); if (il->sd != NULL) { i = getBSDF_incndx(il->sd, v); if (i < 0) continue; /* must not be important */ sr.rno = i; d = 1.0/getBSDF_incohm(il->sd, i); } else { if (v[2] >= -FTINY) continue; /* only sample transmission */ v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; sr.rno = flatindex(v, nalt, nazi); d = nalt*nazi*(1./PI) * v[2]; } d *= si.dom; /* solid angle correction */ scalecolor(sr.rcoef, d); process_ray(&sr, ray_pqueue(&sr)); } } void rayclean() /* finish all pending rays */ { RAY myRay; while (process_ray(&myRay, ray_presult(&myRay, 0))) ; } static void mkaxes( /* compute u and v to go with n */ FVECT u, FVECT v, FVECT n ) { register int i; v[0] = v[1] = v[2] = 0.0; for (i = 0; i < 3; i++) if (n[i] < 0.6 && n[i] > -0.6) break; v[i] = 1.0; fcross(u, v, n); normalize(u); fcross(v, n, u); } static void rounddir( /* compute uniform spherical direction */ register FVECT dv, double alt, double azi ) { double d1, d2; dv[2] = 1. - 2.*alt; d1 = sqrt(1. - dv[2]*dv[2]); d2 = 2.*PI * azi; dv[0] = d1*cos(d2); dv[1] = d1*sin(d2); } void flatdir( /* compute uniform hemispherical direction */ FVECT dv, double alt, double azi ) { double d1, d2; d1 = sqrt(alt); d2 = 2.*PI * azi; dv[0] = d1*cos(d2); dv[1] = d1*sin(d2); dv[2] = sqrt(1. - alt); } int flatindex( /* compute index for hemispherical direction */ FVECT dv, int nalt, int nazi ) { double d; int i, j; d = 1.0 - dv[2]*dv[2]; i = d*nalt; d = atan2(dv[1], dv[0]) * (0.5/PI); if (d < 0.0) d += 1.0; j = d*nazi + 0.5; if (j >= nazi) j = 0; return(i*nazi + j); } int my_default( /* default illum action */ OBJREC *ob, struct illum_args *il, char *nm ) { sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"", nm, ofun[ob->otype].funame, ob->oname); error(WARNING, errmsg); printobj(il->altmat, ob); return(1); } int my_face( /* make an illum face */ OBJREC *ob, struct illum_args *il, char *nm ) { int dim[2]; int n, nalt, nazi, alti; double sp[2], r1, r2; int h; FVECT dn, org, dir; FVECT u, v; double ur[2], vr[2]; MAT4 xfm; int nallow; FACE *fa; int i, j; /* get/check arguments */ fa = getface(ob); if (fa->area == 0.0) { freeface(ob); return(my_default(ob, il, nm)); } /* set up sampling */ if (il->sd != NULL) { if (!getBSDF_xfm(xfm, fa->norm, il->udir)) { objerror(ob, WARNING, "illegal up direction"); freeface(ob); return(my_default(ob, il, nm)); } n = il->sd->ninc; } else { if (il->sampdens <= 0) { nalt = nazi = 1; /* diffuse assumption */ } else { n = PI * il->sampdens; nalt = sqrt(n/PI) + .5; nazi = PI*nalt + .5; } n = nazi*nalt; } newdist(n); /* take first edge >= sqrt(area) */ for (j = fa->nv-1, i = 0; i < fa->nv; j = i++) { u[0] = VERTEX(fa,i)[0] - VERTEX(fa,j)[0]; u[1] = VERTEX(fa,i)[1] - VERTEX(fa,j)[1]; u[2] = VERTEX(fa,i)[2] - VERTEX(fa,j)[2]; if ((r1 = DOT(u,u)) >= fa->area-FTINY) break; } if (i < fa->nv) { /* got one! -- let's align our axes */ r2 = 1.0/sqrt(r1); u[0] *= r2; u[1] *= r2; u[2] *= r2; fcross(v, fa->norm, u); } else /* oh well, we'll just have to wing it */ mkaxes(u, v, fa->norm); /* now, find limits in (u,v) coordinates */ ur[0] = vr[0] = FHUGE; ur[1] = vr[1] = -FHUGE; for (i = 0; i < fa->nv; i++) { r1 = DOT(VERTEX(fa,i),u); if (r1 < ur[0]) ur[0] = r1; if (r1 > ur[1]) ur[1] = r1; r2 = DOT(VERTEX(fa,i),v); if (r2 < vr[0]) vr[0] = r2; if (r2 > vr[1]) vr[1] = r2; } dim[0] = random(); /* sample polygon */ nallow = 5*n*il->nsamps; for (dim[1] = 0; dim[1] < n; dim[1]++) for (i = 0; i < il->nsamps; i++) { /* randomize direction */ h = ilhash(dim, 2) + i; if (il->sd != NULL) { r_BSDF_incvec(dir, il->sd, dim[1], urand(h), xfm); } else { multisamp(sp, 2, urand(h)); alti = dim[1]/nazi; r1 = (alti + sp[0])/nalt; r2 = (dim[1] - alti*nazi + sp[1] - .5)/nazi; flatdir(dn, r1, r2); for (j = 0; j < 3; j++) dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*fa->norm[j]; } /* randomize location */ do { multisamp(sp, 2, urand(h+4862+nallow)); r1 = ur[0] + (ur[1]-ur[0]) * sp[0]; r2 = vr[0] + (vr[1]-vr[0]) * sp[1]; for (j = 0; j < 3; j++) org[j] = r1*u[j] + r2*v[j] + fa->offset*fa->norm[j]; } while (!inface(org, fa) && nallow-- > 0); if (nallow < 0) { objerror(ob, WARNING, "bad aspect"); rayclean(); freeface(ob); return(my_default(ob, il, nm)); } if (il->sd != NULL && DOT(dir, fa->norm) < -FTINY) r1 = -1.0001*il->thick - 5.*FTINY; else r1 = 5.*FTINY; for (j = 0; j < 3; j++) org[j] += r1*fa->norm[j]; /* send sample */ raysamp(dim[1], org, dir); } /* add in direct component? */ if (!directvis && (il->flags & IL_LIGHT || il->sd != NULL)) { MAT4 ixfm; if (il->sd == NULL) { for (i = 3; i--; ) { ixfm[i][0] = u[i]; ixfm[i][1] = v[i]; ixfm[i][2] = fa->norm[i]; ixfm[i][3] = 0.; } ixfm[3][0] = ixfm[3][1] = ixfm[3][2] = 0.; ixfm[3][3] = 1.; } else { if (!invmat4(ixfm, xfm)) objerror(ob, INTERNAL, "cannot invert BSDF transform"); if (!(il->flags & IL_LIGHT)) new_discount(); } dim[0] = random(); nallow = 10*il->nsamps; for (i = 0; i < il->nsamps; i++) { /* randomize location */ h = dim[0] + samplendx++; do { multisamp(sp, 2, urand(h+nallow)); r1 = ur[0] + (ur[1]-ur[0]) * sp[0]; r2 = vr[0] + (vr[1]-vr[0]) * sp[1]; for (j = 0; j < 3; j++) org[j] = r1*u[j] + r2*v[j] + fa->offset*fa->norm[j]; } while (!inface(org, fa) && nallow-- > 0); if (nallow < 0) { objerror(ob, WARNING, "bad aspect"); rayclean(); freeface(ob); return(my_default(ob, il, nm)); } /* sample source rays */ srcsamps(il, org, fa->norm, ixfm); } } /* wait for all rays to finish */ rayclean(); if (il->sd != NULL) { /* run distribution through BSDF */ nalt = sqrt(il->sd->nout/PI) + .5; nazi = PI*nalt + .5; redistribute(il->sd, nalt, nazi, u, v, fa->norm, xfm); done_discount(); if (!il->sampdens) il->sampdens = nalt*nazi/PI + .999; } /* write out the face and its distribution */ if (average(il, distarr, n)) { if (il->sampdens > 0) flatout(il, distarr, nalt, nazi, u, v, fa->norm); illumout(il, ob); } else printobj(il->altmat, ob); /* clean up */ freeface(ob); return(0); } int my_sphere( /* make an illum sphere */ register OBJREC *ob, struct illum_args *il, char *nm ) { int dim[3]; int n, nalt, nazi; double sp[4], r1, r2, r3; FVECT org, dir; FVECT u, v; register int i, j; /* check arguments */ if (ob->oargs.nfargs != 4) objerror(ob, USER, "bad # of arguments"); /* set up sampling */ if (il->sampdens <= 0) nalt = nazi = 1; else { n = 4.*PI * il->sampdens; nalt = sqrt(2./PI*n) + .5; nazi = PI/2.*nalt + .5; } if (il->sd != NULL) objerror(ob, WARNING, "BSDF ignored"); n = nalt*nazi; newdist(n); dim[0] = random(); /* sample sphere */ for (dim[1] = 0; dim[1] < nalt; dim[1]++) for (dim[2] = 0; dim[2] < nazi; dim[2]++) for (i = 0; i < il->nsamps; i++) { /* next sample point */ multisamp(sp, 4, urand(ilhash(dim,3)+i)); /* random direction */ r1 = (dim[1] + sp[0])/nalt; r2 = (dim[2] + sp[1] - .5)/nazi; rounddir(dir, r1, r2); /* random location */ mkaxes(u, v, dir); /* yuck! */ r3 = sqrt(sp[2]); r2 = 2.*PI*sp[3]; r1 = r3*ob->oargs.farg[3]*cos(r2); r2 = r3*ob->oargs.farg[3]*sin(r2); r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3); for (j = 0; j < 3; j++) { org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] + r3*dir[j]; dir[j] = -dir[j]; } /* send sample */ raysamp(dim[1]*nazi+dim[2], org, dir); } /* wait for all rays to finish */ rayclean(); /* write out the sphere and its distribution */ if (average(il, distarr, n)) { if (il->sampdens > 0) roundout(il, distarr, nalt, nazi); else objerror(ob, WARNING, "diffuse distribution"); illumout(il, ob); } else printobj(il->altmat, ob); /* clean up */ return(1); } int my_ring( /* make an illum ring */ OBJREC *ob, struct illum_args *il, char *nm ) { int dim[2]; int n, nalt, nazi, alti; double sp[2], r1, r2, r3; int h; FVECT dn, org, dir; FVECT u, v; MAT4 xfm; CONE *co; int i, j; /* get/check arguments */ co = getcone(ob, 0); /* set up sampling */ if (il->sd != NULL) { if (!getBSDF_xfm(xfm, co->ad, il->udir)) { objerror(ob, WARNING, "illegal up direction"); freecone(ob); return(my_default(ob, il, nm)); } n = il->sd->ninc; } else { if (il->sampdens <= 0) { nalt = nazi = 1; /* diffuse assumption */ } else { n = PI * il->sampdens; nalt = sqrt(n/PI) + .5; nazi = PI*nalt + .5; } n = nazi*nalt; } newdist(n); mkaxes(u, v, co->ad); dim[0] = random(); /* sample disk */ for (dim[1] = 0; dim[1] < n; dim[1]++) for (i = 0; i < il->nsamps; i++) { /* next sample point */ h = ilhash(dim,2) + i; /* randomize direction */ if (il->sd != NULL) { r_BSDF_incvec(dir, il->sd, dim[1], urand(h), xfm); } else { multisamp(sp, 2, urand(h)); alti = dim[1]/nazi; r1 = (alti + sp[0])/nalt; r2 = (dim[1] - alti*nazi + sp[1] - .5)/nazi; flatdir(dn, r1, r2); for (j = 0; j < 3; j++) dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j]; } /* randomize location */ multisamp(sp, 2, urand(h+8371)); r3 = sqrt(CO_R0(co)*CO_R0(co) + sp[0]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co))); r2 = 2.*PI*sp[1]; r1 = r3*cos(r2); r2 = r3*sin(r2); if (il->sd != NULL && DOT(dir, co->ad) < -FTINY) r3 = -1.0001*il->thick - 5.*FTINY; else r3 = 5.*FTINY; for (j = 0; j < 3; j++) org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j] + r3*co->ad[j]; /* send sample */ raysamp(dim[1], org, dir); } /* add in direct component? */ if (!directvis && (il->flags & IL_LIGHT || il->sd != NULL)) { MAT4 ixfm; if (il->sd == NULL) { for (i = 3; i--; ) { ixfm[i][0] = u[i]; ixfm[i][1] = v[i]; ixfm[i][2] = co->ad[i]; ixfm[i][3] = 0.; } ixfm[3][0] = ixfm[3][1] = ixfm[3][2] = 0.; ixfm[3][3] = 1.; } else { if (!invmat4(ixfm, xfm)) objerror(ob, INTERNAL, "cannot invert BSDF transform"); if (!(il->flags & IL_LIGHT)) new_discount(); } dim[0] = random(); for (i = 0; i < il->nsamps; i++) { /* randomize location */ h = dim[0] + samplendx++; multisamp(sp, 2, urand(h)); r3 = sqrt(CO_R0(co)*CO_R0(co) + sp[0]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co))); r2 = 2.*PI*sp[1]; r1 = r3*cos(r2); r2 = r3*sin(r2); for (j = 0; j < 3; j++) org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j]; /* sample source rays */ srcsamps(il, org, co->ad, ixfm); } } /* wait for all rays to finish */ rayclean(); if (il->sd != NULL) { /* run distribution through BSDF */ nalt = sqrt(il->sd->nout/PI) + .5; nazi = PI*nalt + .5; redistribute(il->sd, nalt, nazi, u, v, co->ad, xfm); done_discount(); if (!il->sampdens) il->sampdens = nalt*nazi/PI + .999; } /* write out the ring and its distribution */ if (average(il, distarr, n)) { if (il->sampdens > 0) flatout(il, distarr, nalt, nazi, u, v, co->ad); illumout(il, ob); } else printobj(il->altmat, ob); /* clean up */ freecone(ob); return(1); } void redistribute( /* pass distarr ray sums through BSDF */ struct BSDF_data *b, int nalt, int nazi, FVECT u, FVECT v, FVECT w, MAT4 xm ) { int nout = 0; MAT4 mymat, inmat; COLORV *idist; COLORV *cp; FVECT dv; double wt; int i, j, k, c, o; COLOR col, cinc; /* copy incoming distribution */ if (b->ninc > distsiz) error(INTERNAL, "error 1 in redistribute"); idist = (COLORV *)malloc(sizeof(COLOR)*b->ninc); if (idist == NULL) error(SYSTEM, "out of memory in redistribute"); memcpy(idist, distarr, sizeof(COLOR)*b->ninc); /* compose direction transform */ for (i = 3; i--; ) { mymat[i][0] = u[i]; mymat[i][1] = v[i]; mymat[i][2] = w[i]; mymat[i][3] = 0.; } mymat[3][0] = mymat[3][1] = mymat[3][2] = 0.; mymat[3][3] = 1.; if (xm != NULL) multmat4(mymat, xm, mymat); for (i = 3; i--; ) { /* make sure it's normalized */ wt = 1./sqrt( mymat[0][i]*mymat[0][i] + mymat[1][i]*mymat[1][i] + mymat[2][i]*mymat[2][i] ); for (j = 3; j--; ) mymat[j][i] *= wt; } if (!invmat4(inmat, mymat)) /* need inverse as well */ error(INTERNAL, "cannot invert BSDF transform"); newdist(nalt*nazi); /* resample distribution */ for (i = b->ninc; i--; ) { int direct_out = -1; COLOR cdir; getBSDF_incvec(dv, b, i); /* compute incident irrad. */ multv3(dv, dv, mymat); if (dv[2] < 0.0) { dv[0] = -dv[0]; dv[1] = -dv[1]; dv[2] = -dv[2]; direct_out += (direct_discount != NULL); } wt = getBSDF_incohm(b, i); wt *= dv[2]; /* solid_angle*cosine(theta) */ cp = &idist[3*i]; copycolor(cinc, cp); scalecolor(cinc, wt); if (!direct_out) { /* discount direct contr. */ cp = &direct_discount[3*i]; copycolor(cdir, cp); scalecolor(cdir, -wt); if (b->nout != b->ninc) direct_out = flatindex(dv, nalt, nazi); else direct_out = i; /* assumes dist. mirroring */ } for (k = nalt; k--; ) /* loop over distribution */ for (j = nazi; j--; ) { int rstart = random(); for (c = NBSDFSAMPS; c--; ) { double sp[2]; multisamp(sp, 2, urand(rstart+c)); flatdir(dv, (k + sp[0])/nalt, (j + .5 - sp[1])/nazi); multv3(dv, dv, inmat); /* evaluate BSDF @ outgoing */ o = getBSDF_outndx(b, dv); if (o < 0) { nout++; continue; } wt = BSDF_value(b, i, o) * (1./NBSDFSAMPS); copycolor(col, cinc); if (b->nout != b->ninc) o = k*nazi + j; if (o == direct_out) addcolor(col, cdir); /* minus direct */ scalecolor(col, wt); cp = &distarr[3*(k*nazi + j)]; addcolor(cp, col); /* sum into distribution */ } } } free(idist); /* free temp space */ if (nout) { sprintf(errmsg, "missing %.1f%% of BSDF directions", 100.*nout/(b->ninc*nalt*nazi*NBSDFSAMPS)); error(WARNING, errmsg); } }