ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/mkillum2.c
Revision: 2.14
Committed: Sun Mar 28 20:33:12 2004 UTC (20 years ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.13: +2 -1 lines
Log Message:
Continued ANSIfication, and other fixes and clarifications.

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: mkillum2.c,v 2.13 2003/11/21 07:15:30 greg Exp $";
3 #endif
4 /*
5 * Routines to do the actual calculation for mkillum
6 */
7
8 #include <string.h>
9
10 #include "mkillum.h"
11 #include "face.h"
12 #include "cone.h"
13 #include "random.h"
14
15
16 int o_default(FUN_ARGLIST);
17 int o_face(FUN_ARGLIST);
18 int o_sphere(FUN_ARGLIST);
19 int o_ring(FUN_ARGLIST);
20 void raysamp(float res[3], FVECT org, FVECT dir, struct rtproc *rt);
21 void rayflush(struct rtproc *rt);
22 void mkaxes(FVECT u, FVECT v, FVECT n);
23 void rounddir(FVECT dv, double alt, double azi);
24 void flatdir(FVECT dv, double alt, double azi);
25
26
27 int /* XXX type conflict with otypes.h */
28 o_default( /* default illum action */
29 OBJREC *ob,
30 struct illum_args *il,
31 struct rtproc *rt,
32 char *nm
33 )
34 {
35 sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"",
36 nm, ofun[ob->otype].funame, ob->oname);
37 error(WARNING, errmsg);
38 printobj(il->altmat, ob);
39 return(1);
40 }
41
42
43 int
44 o_face( /* make an illum face */
45 OBJREC *ob,
46 struct illum_args *il,
47 struct rtproc *rt,
48 char *nm
49 )
50 {
51 #define MAXMISS (5*n*il->nsamps)
52 int dim[3];
53 int n, nalt, nazi, h;
54 float *distarr;
55 double sp[2], r1, r2;
56 FVECT dn, org, dir;
57 FVECT u, v;
58 double ur[2], vr[2];
59 int nmisses;
60 register FACE *fa;
61 register int i, j;
62 /* get/check arguments */
63 fa = getface(ob);
64 if (fa->area == 0.0) {
65 freeface(ob);
66 return(o_default(ob, il, rt, nm));
67 }
68 /* set up sampling */
69 if (il->sampdens <= 0)
70 nalt = nazi = 1;
71 else {
72 n = PI * il->sampdens;
73 nalt = sqrt(n/PI) + .5;
74 nazi = PI*nalt + .5;
75 }
76 n = nalt*nazi;
77 distarr = (float *)calloc(n, 3*sizeof(float));
78 if (distarr == NULL)
79 error(SYSTEM, "out of memory in o_face");
80 /* take first edge longer than sqrt(area) */
81 for (j = fa->nv-1, i = 0; i < fa->nv; j = i++) {
82 u[0] = VERTEX(fa,i)[0] - VERTEX(fa,j)[0];
83 u[1] = VERTEX(fa,i)[1] - VERTEX(fa,j)[1];
84 u[2] = VERTEX(fa,i)[2] - VERTEX(fa,j)[2];
85 if ((r1 = DOT(u,u)) >= fa->area-FTINY)
86 break;
87 }
88 if (i < fa->nv) { /* got one! -- let's align our axes */
89 r2 = 1.0/sqrt(r1);
90 u[0] *= r2; u[1] *= r2; u[2] *= r2;
91 fcross(v, fa->norm, u);
92 } else /* oh well, we'll just have to wing it */
93 mkaxes(u, v, fa->norm);
94 /* now, find limits in (u,v) coordinates */
95 ur[0] = vr[0] = FHUGE;
96 ur[1] = vr[1] = -FHUGE;
97 for (i = 0; i < fa->nv; i++) {
98 r1 = DOT(VERTEX(fa,i),u);
99 if (r1 < ur[0]) ur[0] = r1;
100 if (r1 > ur[1]) ur[1] = r1;
101 r2 = DOT(VERTEX(fa,i),v);
102 if (r2 < vr[0]) vr[0] = r2;
103 if (r2 > vr[1]) vr[1] = r2;
104 }
105 dim[0] = random();
106 /* sample polygon */
107 nmisses = 0;
108 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
109 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
110 for (i = 0; i < il->nsamps; i++) {
111 /* random direction */
112 h = ilhash(dim, 3) + i;
113 multisamp(sp, 2, urand(h));
114 r1 = (dim[1] + sp[0])/nalt;
115 r2 = (dim[2] + sp[1] - .5)/nazi;
116 flatdir(dn, r1, r2);
117 for (j = 0; j < 3; j++)
118 dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*fa->norm[j];
119 /* random location */
120 do {
121 multisamp(sp, 2, urand(h+4862+nmisses));
122 r1 = ur[0] + (ur[1]-ur[0]) * sp[0];
123 r2 = vr[0] + (vr[1]-vr[0]) * sp[1];
124 for (j = 0; j < 3; j++)
125 org[j] = r1*u[j] + r2*v[j]
126 + fa->offset*fa->norm[j];
127 } while (!inface(org, fa) && nmisses++ < MAXMISS);
128 if (nmisses > MAXMISS) {
129 objerror(ob, WARNING, "bad aspect");
130 rt->nrays = 0;
131 freeface(ob);
132 free((void *)distarr);
133 return(o_default(ob, il, rt, nm));
134 }
135 for (j = 0; j < 3; j++)
136 org[j] += .001*fa->norm[j];
137 /* send sample */
138 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
139 }
140 rayflush(rt);
141 /* write out the face and its distribution */
142 if (average(il, distarr, nalt*nazi)) {
143 if (il->sampdens > 0)
144 flatout(il, distarr, nalt, nazi, u, v, fa->norm);
145 illumout(il, ob);
146 } else
147 printobj(il->altmat, ob);
148 /* clean up */
149 freeface(ob);
150 free((void *)distarr);
151 #undef MAXMISS
152 /* XXX we need to return something here. what is it? */
153 }
154
155
156 int
157 o_sphere( /* make an illum sphere */
158 register OBJREC *ob,
159 struct illum_args *il,
160 struct rtproc *rt,
161 char *nm
162 )
163 {
164 int dim[3];
165 int n, nalt, nazi;
166 float *distarr;
167 double sp[4], r1, r2, r3;
168 FVECT org, dir;
169 FVECT u, v;
170 register int i, j;
171 /* check arguments */
172 if (ob->oargs.nfargs != 4)
173 objerror(ob, USER, "bad # of arguments");
174 /* set up sampling */
175 if (il->sampdens <= 0)
176 nalt = nazi = 1;
177 else {
178 n = 4.*PI * il->sampdens;
179 nalt = sqrt(2./PI*n) + .5;
180 nazi = PI/2.*nalt + .5;
181 }
182 n = nalt*nazi;
183 distarr = (float *)calloc(n, 3*sizeof(float));
184 if (distarr == NULL)
185 error(SYSTEM, "out of memory in o_sphere");
186 dim[0] = random();
187 /* sample sphere */
188 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
189 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
190 for (i = 0; i < il->nsamps; i++) {
191 /* next sample point */
192 multisamp(sp, 4, urand(ilhash(dim,3)+i));
193 /* random direction */
194 r1 = (dim[1] + sp[0])/nalt;
195 r2 = (dim[2] + sp[1] - .5)/nazi;
196 rounddir(dir, r1, r2);
197 /* random location */
198 mkaxes(u, v, dir); /* yuck! */
199 r3 = sqrt(sp[2]);
200 r2 = 2.*PI*sp[3];
201 r1 = r3*ob->oargs.farg[3]*cos(r2);
202 r2 = r3*ob->oargs.farg[3]*sin(r2);
203 r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3);
204 for (j = 0; j < 3; j++) {
205 org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] +
206 r3*dir[j];
207 dir[j] = -dir[j];
208 }
209 /* send sample */
210 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
211 }
212 rayflush(rt);
213 /* write out the sphere and its distribution */
214 if (average(il, distarr, nalt*nazi)) {
215 if (il->sampdens > 0)
216 roundout(il, distarr, nalt, nazi);
217 else
218 objerror(ob, WARNING, "diffuse distribution");
219 illumout(il, ob);
220 } else
221 printobj(il->altmat, ob);
222 /* clean up */
223 free((void *)distarr);
224 return(1);
225 }
226
227
228 int
229 o_ring( /* make an illum ring */
230 OBJREC *ob,
231 struct illum_args *il,
232 struct rtproc *rt,
233 char *nm
234 )
235 {
236 int dim[3];
237 int n, nalt, nazi;
238 float *distarr;
239 double sp[4], r1, r2, r3;
240 FVECT dn, org, dir;
241 FVECT u, v;
242 register CONE *co;
243 register int i, j;
244 /* get/check arguments */
245 co = getcone(ob, 0);
246 /* set up sampling */
247 if (il->sampdens <= 0)
248 nalt = nazi = 1;
249 else {
250 n = PI * il->sampdens;
251 nalt = sqrt(n/PI) + .5;
252 nazi = PI*nalt + .5;
253 }
254 n = nalt*nazi;
255 distarr = (float *)calloc(n, 3*sizeof(float));
256 if (distarr == NULL)
257 error(SYSTEM, "out of memory in o_ring");
258 mkaxes(u, v, co->ad);
259 dim[0] = random();
260 /* sample disk */
261 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
262 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
263 for (i = 0; i < il->nsamps; i++) {
264 /* next sample point */
265 multisamp(sp, 4, urand(ilhash(dim,3)+i));
266 /* random direction */
267 r1 = (dim[1] + sp[0])/nalt;
268 r2 = (dim[2] + sp[1] - .5)/nazi;
269 flatdir(dn, r1, r2);
270 for (j = 0; j < 3; j++)
271 dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j];
272 /* random location */
273 r3 = sqrt(CO_R0(co)*CO_R0(co) +
274 sp[2]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co)));
275 r2 = 2.*PI*sp[3];
276 r1 = r3*cos(r2);
277 r2 = r3*sin(r2);
278 for (j = 0; j < 3; j++)
279 org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j] +
280 .001*co->ad[j];
281
282 /* send sample */
283 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
284 }
285 rayflush(rt);
286 /* write out the ring and its distribution */
287 if (average(il, distarr, nalt*nazi)) {
288 if (il->sampdens > 0)
289 flatout(il, distarr, nalt, nazi, u, v, co->ad);
290 illumout(il, ob);
291 } else
292 printobj(il->altmat, ob);
293 /* clean up */
294 freecone(ob);
295 free((void *)distarr);
296 return(1);
297 }
298
299
300 void
301 raysamp( /* compute a ray sample */
302 float res[3],
303 FVECT org,
304 FVECT dir,
305 register struct rtproc *rt
306 )
307 {
308 register float *fp;
309
310 if (rt->nrays == rt->bsiz)
311 rayflush(rt);
312 rt->dest[rt->nrays] = res;
313 fp = rt->buf + 6*rt->nrays++;
314 *fp++ = org[0]; *fp++ = org[1]; *fp++ = org[2];
315 *fp++ = dir[0]; *fp++ = dir[1]; *fp = dir[2];
316 }
317
318
319 void
320 rayflush( /* flush buffered rays */
321 register struct rtproc *rt
322 )
323 {
324 register int i;
325
326 if (rt->nrays <= 0)
327 return;
328 memset(rt->buf+6*rt->nrays, '\0', 6*sizeof(float));
329 errno = 0;
330 if ( process(&(rt->pd), (char *)rt->buf, (char *)rt->buf,
331 3*sizeof(float)*(rt->nrays+1),
332 6*sizeof(float)*(rt->nrays+1)) <
333 3*sizeof(float)*(rt->nrays+1) )
334 error(SYSTEM, "error reading from rtrace process");
335 i = rt->nrays;
336 while (i--) {
337 rt->dest[i][0] += rt->buf[3*i];
338 rt->dest[i][1] += rt->buf[3*i+1];
339 rt->dest[i][2] += rt->buf[3*i+2];
340 }
341 rt->nrays = 0;
342 }
343
344
345 void
346 mkaxes( /* compute u and v to go with n */
347 FVECT u,
348 FVECT v,
349 FVECT n
350 )
351 {
352 register int i;
353
354 v[0] = v[1] = v[2] = 0.0;
355 for (i = 0; i < 3; i++)
356 if (n[i] < 0.6 && n[i] > -0.6)
357 break;
358 v[i] = 1.0;
359 fcross(u, v, n);
360 normalize(u);
361 fcross(v, n, u);
362 }
363
364
365 void
366 rounddir( /* compute uniform spherical direction */
367 register FVECT dv,
368 double alt,
369 double azi
370 )
371 {
372 double d1, d2;
373
374 dv[2] = 1. - 2.*alt;
375 d1 = sqrt(1. - dv[2]*dv[2]);
376 d2 = 2.*PI * azi;
377 dv[0] = d1*cos(d2);
378 dv[1] = d1*sin(d2);
379 }
380
381
382 void
383 flatdir( /* compute uniform hemispherical direction */
384 register FVECT dv,
385 double alt,
386 double azi
387 )
388 {
389 double d1, d2;
390
391 d1 = sqrt(alt);
392 d2 = 2.*PI * azi;
393 dv[0] = d1*cos(d2);
394 dv[1] = d1*sin(d2);
395 dv[2] = sqrt(1. - alt);
396 }