ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/mkillum2.c
Revision: 2.11
Committed: Mon Jun 30 14:59:11 2003 UTC (20 years, 10 months ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.10: +4 -2 lines
Log Message:
Replaced most outdated BSD function calls with their posix equivalents, and cleaned up a few other platform dependencies.

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: mkillum2.c,v 2.10 2003/06/26 00:58:09 schorsch Exp $";
3 #endif
4 /*
5 * Routines to do the actual calculation for mkillum
6 */
7
8 #include <string.h>
9
10 #include "mkillum.h"
11 #include "face.h"
12 #include "cone.h"
13 #include "random.h"
14
15
16 o_default(ob, il, rt, nm) /* default illum action */
17 OBJREC *ob;
18 struct illum_args *il;
19 struct rtproc *rt;
20 char *nm;
21 {
22 sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"",
23 nm, ofun[ob->otype].funame, ob->oname);
24 error(WARNING, errmsg);
25 printobj(il->altmat, ob);
26 }
27
28
29 o_face(ob, il, rt, nm) /* make an illum face */
30 OBJREC *ob;
31 struct illum_args *il;
32 struct rtproc *rt;
33 char *nm;
34 {
35 #define MAXMISS (5*n*il->nsamps)
36 int dim[3];
37 int n, nalt, nazi, h;
38 float *distarr;
39 double sp[2], r1, r2;
40 FVECT dn, org, dir;
41 FVECT u, v;
42 double ur[2], vr[2];
43 int nmisses;
44 register FACE *fa;
45 register int i, j;
46 /* get/check arguments */
47 fa = getface(ob);
48 if (fa->area == 0.0) {
49 freeface(ob);
50 o_default(ob, il, rt, nm);
51 return;
52 }
53 /* set up sampling */
54 if (il->sampdens <= 0)
55 nalt = nazi = 1;
56 else {
57 n = PI * il->sampdens;
58 nalt = sqrt(n/PI) + .5;
59 nazi = PI*nalt + .5;
60 }
61 n = nalt*nazi;
62 distarr = (float *)calloc(n, 3*sizeof(float));
63 if (distarr == NULL)
64 error(SYSTEM, "out of memory in o_face");
65 /* take first edge longer than sqrt(area) */
66 for (j = fa->nv-1, i = 0; i < fa->nv; j = i++) {
67 u[0] = VERTEX(fa,i)[0] - VERTEX(fa,j)[0];
68 u[1] = VERTEX(fa,i)[1] - VERTEX(fa,j)[1];
69 u[2] = VERTEX(fa,i)[2] - VERTEX(fa,j)[2];
70 if ((r1 = DOT(u,u)) >= fa->area-FTINY)
71 break;
72 }
73 if (i < fa->nv) { /* got one! -- let's align our axes */
74 r2 = 1.0/sqrt(r1);
75 u[0] *= r2; u[1] *= r2; u[2] *= r2;
76 fcross(v, fa->norm, u);
77 } else /* oh well, we'll just have to wing it */
78 mkaxes(u, v, fa->norm);
79 /* now, find limits in (u,v) coordinates */
80 ur[0] = vr[0] = FHUGE;
81 ur[1] = vr[1] = -FHUGE;
82 for (i = 0; i < fa->nv; i++) {
83 r1 = DOT(VERTEX(fa,i),u);
84 if (r1 < ur[0]) ur[0] = r1;
85 if (r1 > ur[1]) ur[1] = r1;
86 r2 = DOT(VERTEX(fa,i),v);
87 if (r2 < vr[0]) vr[0] = r2;
88 if (r2 > vr[1]) vr[1] = r2;
89 }
90 dim[0] = random();
91 /* sample polygon */
92 nmisses = 0;
93 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
94 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
95 for (i = 0; i < il->nsamps; i++) {
96 /* random direction */
97 h = ilhash(dim, 3) + i;
98 multisamp(sp, 2, urand(h));
99 r1 = (dim[1] + sp[0])/nalt;
100 r2 = (dim[2] + sp[1] - .5)/nazi;
101 flatdir(dn, r1, r2);
102 for (j = 0; j < 3; j++)
103 dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*fa->norm[j];
104 /* random location */
105 do {
106 multisamp(sp, 2, urand(h+4862+nmisses));
107 r1 = ur[0] + (ur[1]-ur[0]) * sp[0];
108 r2 = vr[0] + (vr[1]-vr[0]) * sp[1];
109 for (j = 0; j < 3; j++)
110 org[j] = r1*u[j] + r2*v[j]
111 + fa->offset*fa->norm[j];
112 } while (!inface(org, fa) && nmisses++ < MAXMISS);
113 if (nmisses > MAXMISS) {
114 objerror(ob, WARNING, "bad aspect");
115 rt->nrays = 0;
116 freeface(ob);
117 free((void *)distarr);
118 o_default(ob, il, rt, nm);
119 return;
120 }
121 for (j = 0; j < 3; j++)
122 org[j] += .001*fa->norm[j];
123 /* send sample */
124 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
125 }
126 rayflush(rt);
127 /* write out the face and its distribution */
128 if (average(il, distarr, nalt*nazi)) {
129 if (il->sampdens > 0)
130 flatout(il, distarr, nalt, nazi, u, v, fa->norm);
131 illumout(il, ob);
132 } else
133 printobj(il->altmat, ob);
134 /* clean up */
135 freeface(ob);
136 free((void *)distarr);
137 #undef MAXMISS
138 }
139
140
141 o_sphere(ob, il, rt, nm) /* make an illum sphere */
142 register OBJREC *ob;
143 struct illum_args *il;
144 struct rtproc *rt;
145 char *nm;
146 {
147 int dim[3];
148 int n, nalt, nazi;
149 float *distarr;
150 double sp[4], r1, r2, r3;
151 FVECT org, dir;
152 FVECT u, v;
153 register int i, j;
154 /* check arguments */
155 if (ob->oargs.nfargs != 4)
156 objerror(ob, USER, "bad # of arguments");
157 /* set up sampling */
158 if (il->sampdens <= 0)
159 nalt = nazi = 1;
160 else {
161 n = 4.*PI * il->sampdens;
162 nalt = sqrt(2./PI*n) + .5;
163 nazi = PI/2.*nalt + .5;
164 }
165 n = nalt*nazi;
166 distarr = (float *)calloc(n, 3*sizeof(float));
167 if (distarr == NULL)
168 error(SYSTEM, "out of memory in o_sphere");
169 dim[0] = random();
170 /* sample sphere */
171 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
172 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
173 for (i = 0; i < il->nsamps; i++) {
174 /* next sample point */
175 multisamp(sp, 4, urand(ilhash(dim,3)+i));
176 /* random direction */
177 r1 = (dim[1] + sp[0])/nalt;
178 r2 = (dim[2] + sp[1] - .5)/nazi;
179 rounddir(dir, r1, r2);
180 /* random location */
181 mkaxes(u, v, dir); /* yuck! */
182 r3 = sqrt(sp[2]);
183 r2 = 2.*PI*sp[3];
184 r1 = r3*ob->oargs.farg[3]*cos(r2);
185 r2 = r3*ob->oargs.farg[3]*sin(r2);
186 r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3);
187 for (j = 0; j < 3; j++) {
188 org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] +
189 r3*dir[j];
190 dir[j] = -dir[j];
191 }
192 /* send sample */
193 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
194 }
195 rayflush(rt);
196 /* write out the sphere and its distribution */
197 if (average(il, distarr, nalt*nazi)) {
198 if (il->sampdens > 0)
199 roundout(il, distarr, nalt, nazi);
200 else
201 objerror(ob, WARNING, "diffuse distribution");
202 illumout(il, ob);
203 } else
204 printobj(il->altmat, ob);
205 /* clean up */
206 free((void *)distarr);
207 }
208
209
210 o_ring(ob, il, rt, nm) /* make an illum ring */
211 OBJREC *ob;
212 struct illum_args *il;
213 struct rtproc *rt;
214 char *nm;
215 {
216 int dim[3];
217 int n, nalt, nazi;
218 float *distarr;
219 double sp[4], r1, r2, r3;
220 FVECT dn, org, dir;
221 FVECT u, v;
222 register CONE *co;
223 register int i, j;
224 /* get/check arguments */
225 co = getcone(ob, 0);
226 /* set up sampling */
227 if (il->sampdens <= 0)
228 nalt = nazi = 1;
229 else {
230 n = PI * il->sampdens;
231 nalt = sqrt(n/PI) + .5;
232 nazi = PI*nalt + .5;
233 }
234 n = nalt*nazi;
235 distarr = (float *)calloc(n, 3*sizeof(float));
236 if (distarr == NULL)
237 error(SYSTEM, "out of memory in o_ring");
238 mkaxes(u, v, co->ad);
239 dim[0] = random();
240 /* sample disk */
241 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
242 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
243 for (i = 0; i < il->nsamps; i++) {
244 /* next sample point */
245 multisamp(sp, 4, urand(ilhash(dim,3)+i));
246 /* random direction */
247 r1 = (dim[1] + sp[0])/nalt;
248 r2 = (dim[2] + sp[1] - .5)/nazi;
249 flatdir(dn, r1, r2);
250 for (j = 0; j < 3; j++)
251 dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j];
252 /* random location */
253 r3 = sqrt(CO_R0(co)*CO_R0(co) +
254 sp[2]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co)));
255 r2 = 2.*PI*sp[3];
256 r1 = r3*cos(r2);
257 r2 = r3*sin(r2);
258 for (j = 0; j < 3; j++)
259 org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j] +
260 .001*co->ad[j];
261
262 /* send sample */
263 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
264 }
265 rayflush(rt);
266 /* write out the ring and its distribution */
267 if (average(il, distarr, nalt*nazi)) {
268 if (il->sampdens > 0)
269 flatout(il, distarr, nalt, nazi, u, v, co->ad);
270 illumout(il, ob);
271 } else
272 printobj(il->altmat, ob);
273 /* clean up */
274 freecone(ob);
275 free((void *)distarr);
276 }
277
278
279 raysamp(res, org, dir, rt) /* compute a ray sample */
280 float res[3];
281 FVECT org, dir;
282 register struct rtproc *rt;
283 {
284 register float *fp;
285
286 if (rt->nrays == rt->bsiz)
287 rayflush(rt);
288 rt->dest[rt->nrays] = res;
289 fp = rt->buf + 6*rt->nrays++;
290 *fp++ = org[0]; *fp++ = org[1]; *fp++ = org[2];
291 *fp++ = dir[0]; *fp++ = dir[1]; *fp = dir[2];
292 }
293
294
295 rayflush(rt) /* flush buffered rays */
296 register struct rtproc *rt;
297 {
298 register int i;
299
300 if (rt->nrays <= 0)
301 return;
302 memset(rt->buf+6*rt->nrays, '\0', 6*sizeof(float));
303 errno = 0;
304 if ( process(&(rt->pd), (char *)rt->buf, (char *)rt->buf,
305 3*sizeof(float)*(rt->nrays+1),
306 6*sizeof(float)*(rt->nrays+1)) <
307 3*sizeof(float)*(rt->nrays+1) )
308 error(SYSTEM, "error reading from rtrace process");
309 i = rt->nrays;
310 while (i--) {
311 rt->dest[i][0] += rt->buf[3*i];
312 rt->dest[i][1] += rt->buf[3*i+1];
313 rt->dest[i][2] += rt->buf[3*i+2];
314 }
315 rt->nrays = 0;
316 }
317
318
319 mkaxes(u, v, n) /* compute u and v to go with n */
320 FVECT u, v, n;
321 {
322 register int i;
323
324 v[0] = v[1] = v[2] = 0.0;
325 for (i = 0; i < 3; i++)
326 if (n[i] < 0.6 && n[i] > -0.6)
327 break;
328 v[i] = 1.0;
329 fcross(u, v, n);
330 normalize(u);
331 fcross(v, n, u);
332 }
333
334
335 rounddir(dv, alt, azi) /* compute uniform spherical direction */
336 register FVECT dv;
337 double alt, azi;
338 {
339 double d1, d2;
340
341 dv[2] = 1. - 2.*alt;
342 d1 = sqrt(1. - dv[2]*dv[2]);
343 d2 = 2.*PI * azi;
344 dv[0] = d1*cos(d2);
345 dv[1] = d1*sin(d2);
346 }
347
348
349 flatdir(dv, alt, azi) /* compute uniform hemispherical direction */
350 register FVECT dv;
351 double alt, azi;
352 {
353 double d1, d2;
354
355 d1 = sqrt(alt);
356 d2 = 2.*PI * azi;
357 dv[0] = d1*cos(d2);
358 dv[1] = d1*sin(d2);
359 dv[2] = sqrt(1. - alt);
360 }