ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/mkillum2.c
Revision: 1.11
Committed: Thu Aug 22 12:12:23 1991 UTC (32 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.10: +39 -19 lines
Log Message:
interpret d=0 to mean diffuse source
changed peano() calls to multisamp()

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines to do the actual calculation for mkillum
9 */
10
11 #include "mkillum.h"
12
13 #include "face.h"
14
15 #include "cone.h"
16
17 #include "random.h"
18
19
20 o_default(ob, il, rt, nm) /* default illum action */
21 OBJREC *ob;
22 struct illum_args *il;
23 struct rtproc *rt;
24 char *nm;
25 {
26 sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"",
27 nm, ofun[ob->otype].funame, ob->oname);
28 error(WARNING, errmsg);
29 if (!(il->flags & IL_LIGHT))
30 printobj(il->altmat, ob);
31 }
32
33
34 o_face(ob, il, rt, nm) /* make an illum face */
35 OBJREC *ob;
36 struct illum_args *il;
37 struct rtproc *rt;
38 char *nm;
39 {
40 #define MAXMISS (5*n*il->nsamps)
41 int dim[3];
42 int n, nalt, nazi, h;
43 float *distarr;
44 double sp[2], r1, r2;
45 FVECT dn, org, dir;
46 FVECT u, v;
47 double ur[2], vr[2];
48 int nmisses;
49 register FACE *fa;
50 register int i, j;
51 /* get/check arguments */
52 fa = getface(ob);
53 if (fa->area == 0.0) {
54 freeface(ob);
55 o_default(ob, il, rt, nm);
56 return;
57 }
58 /* set up sampling */
59 if (il->sampdens <= 0)
60 nalt = nazi = 1;
61 else {
62 n = PI * il->sampdens;
63 nalt = sqrt(n/PI) + .5;
64 nazi = PI*nalt + .5;
65 }
66 n = nalt*nazi;
67 distarr = (float *)calloc(n, 3*sizeof(float));
68 if (distarr == NULL)
69 error(SYSTEM, "out of memory in o_face");
70 mkaxes(u, v, fa->norm);
71 ur[0] = vr[0] = FHUGE;
72 ur[1] = vr[1] = -FHUGE;
73 for (i = 0; i < fa->nv; i++) {
74 r1 = DOT(VERTEX(fa,i),u);
75 if (r1 < ur[0]) ur[0] = r1;
76 if (r1 > ur[1]) ur[1] = r1;
77 r2 = DOT(VERTEX(fa,i),v);
78 if (r2 < vr[0]) vr[0] = r2;
79 if (r2 > vr[1]) vr[1] = r2;
80 }
81 dim[0] = random();
82 /* sample polygon */
83 nmisses = 0;
84 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
85 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
86 for (i = 0; i < il->nsamps; i++) {
87 /* random direction */
88 h = ilhash(dim, 3) + i;
89 multisamp(sp, 2, urand(h));
90 r1 = (dim[1] + sp[0])/nalt;
91 r2 = (dim[2] + sp[1])/nazi;
92 flatdir(dn, r1, r2);
93 for (j = 0; j < 3; j++)
94 dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*fa->norm[j];
95 /* random location */
96 do {
97 multisamp(sp, 2, urand(h+4862+nmisses));
98 r1 = ur[0] + (ur[1]-ur[0]) * sp[0];
99 r2 = vr[0] + (vr[1]-vr[0]) * sp[1];
100 for (j = 0; j < 3; j++)
101 org[j] = r1*u[j] + r2*v[j]
102 + fa->offset*fa->norm[j];
103 } while (!inface(org, fa) && nmisses++ < MAXMISS);
104 if (nmisses > MAXMISS) {
105 objerror(ob, WARNING, "bad aspect");
106 rt->nrays = 0;
107 freeface(ob);
108 free((char *)distarr);
109 o_default(ob, il, rt, nm);
110 return;
111 }
112 for (j = 0; j < 3; j++)
113 org[j] += .001*fa->norm[j];
114 /* send sample */
115 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
116 }
117 rayflush(rt);
118 /* write out the face and its distribution */
119 average(il, distarr, nalt*nazi);
120 if (il->sampdens > 0)
121 flatout(il, distarr, nalt, nazi, u, v, fa->norm);
122 illumout(il, ob);
123 /* clean up */
124 freeface(ob);
125 free((char *)distarr);
126 #undef MAXMISS
127 }
128
129
130 o_sphere(ob, il, rt, nm) /* make an illum sphere */
131 register OBJREC *ob;
132 struct illum_args *il;
133 struct rtproc *rt;
134 char *nm;
135 {
136 int dim[3];
137 int n, nalt, nazi;
138 float *distarr;
139 double sp[4], r1, r2, r3;
140 FVECT org, dir;
141 FVECT u, v;
142 register int i, j;
143 /* check arguments */
144 if (ob->oargs.nfargs != 4)
145 objerror(ob, USER, "bad # of arguments");
146 /* set up sampling */
147 if (il->sampdens <= 0)
148 nalt = nazi = 1;
149 else {
150 n = 4.*PI * il->sampdens;
151 nalt = sqrt(n/PI) + .5;
152 nazi = PI*nalt + .5;
153 }
154 n = nalt*nazi;
155 distarr = (float *)calloc(n, 3*sizeof(float));
156 if (distarr == NULL)
157 error(SYSTEM, "out of memory in o_sphere");
158 dim[0] = random();
159 /* sample sphere */
160 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
161 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
162 for (i = 0; i < il->nsamps; i++) {
163 /* next sample point */
164 multisamp(sp, 4, urand(ilhash(dim,3)+i));
165 /* random direction */
166 r1 = (dim[1] + sp[0])/nalt;
167 r2 = (dim[2] + sp[1])/nazi;
168 rounddir(dir, r1, r2);
169 /* random location */
170 mkaxes(u, v, dir); /* yuck! */
171 r3 = sqrt(sp[2]);
172 r2 = 2.*PI*sp[3];
173 r1 = r3*ob->oargs.farg[3]*cos(r2);
174 r2 = r3*ob->oargs.farg[3]*sin(r2);
175 r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3);
176 for (j = 0; j < 3; j++) {
177 org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] +
178 r3*dir[j];
179 dir[j] = -dir[j];
180 }
181 /* send sample */
182 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
183 }
184 rayflush(rt);
185 /* write out the sphere and its distribution */
186 average(il, distarr, nalt*nazi);
187 if (il->sampdens > 0)
188 roundout(il, distarr, nalt, nazi);
189 else
190 objerror(ob, WARNING, "diffuse distribution");
191 illumout(il, ob);
192 /* clean up */
193 free((char *)distarr);
194 }
195
196
197 o_ring(ob, il, rt, nm) /* make an illum ring */
198 OBJREC *ob;
199 struct illum_args *il;
200 struct rtproc *rt;
201 char *nm;
202 {
203 int dim[3];
204 int n, nalt, nazi;
205 float *distarr;
206 double sp[4], r1, r2, r3;
207 FVECT dn, org, dir;
208 FVECT u, v;
209 register CONE *co;
210 register int i, j;
211 /* get/check arguments */
212 co = getcone(ob, 0);
213 /* set up sampling */
214 if (il->sampdens <= 0)
215 nalt = nazi = 1;
216 else {
217 n = PI * il->sampdens;
218 nalt = sqrt(n/PI) + .5;
219 nazi = PI*nalt + .5;
220 }
221 n = nalt*nazi;
222 distarr = (float *)calloc(n, 3*sizeof(float));
223 if (distarr == NULL)
224 error(SYSTEM, "out of memory in o_ring");
225 mkaxes(u, v, co->ad);
226 dim[0] = random();
227 /* sample disk */
228 for (dim[1] = 0; dim[1] < nalt; dim[1]++)
229 for (dim[2] = 0; dim[2] < nazi; dim[2]++)
230 for (i = 0; i < il->nsamps; i++) {
231 /* next sample point */
232 multisamp(sp, 4, urand(ilhash(dim,3)+i));
233 /* random direction */
234 r1 = (dim[1] + sp[0])/nalt;
235 r2 = (dim[2] + sp[1])/nalt;
236 flatdir(dn, r1, r2);
237 for (j = 0; j < 3; j++)
238 dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j];
239 /* random location */
240 r3 = sqrt(CO_R0(co)*CO_R0(co) +
241 sp[2]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co)));
242 r2 = 2.*PI*sp[3];
243 r1 = r3*cos(r2);
244 r2 = r3*sin(r2);
245 for (j = 0; j < 3; j++)
246 org[j] = CO_P0(co)[j] + r1*u[j] + r1*v[j] +
247 .001*co->ad[j];
248
249 /* send sample */
250 raysamp(distarr+3*(dim[1]*nazi+dim[2]), org, dir, rt);
251 }
252 rayflush(rt);
253 /* write out the ring and its distribution */
254 average(il, distarr, nalt*nazi);
255 if (il->sampdens > 0)
256 flatout(il, distarr, nalt, nazi, u, v, co->ad);
257 illumout(il, ob);
258 /* clean up */
259 freecone(ob);
260 free((char *)distarr);
261 }
262
263
264 raysamp(res, org, dir, rt) /* compute a ray sample */
265 float res[3];
266 FVECT org, dir;
267 register struct rtproc *rt;
268 {
269 register float *fp;
270
271 if (rt->nrays == rt->bsiz)
272 rayflush(rt);
273 rt->dest[rt->nrays] = res;
274 fp = rt->buf + 6*rt->nrays++;
275 *fp++ = org[0]; *fp++ = org[1]; *fp++ = org[2];
276 *fp++ = dir[0]; *fp++ = dir[1]; *fp = dir[2];
277 }
278
279
280 rayflush(rt) /* flush buffered rays */
281 register struct rtproc *rt;
282 {
283 register int i;
284
285 if (rt->nrays <= 0)
286 return;
287 bzero(rt->buf+6*rt->nrays, 6*sizeof(float));
288 if ( process(rt->pd, (char *)rt->buf, (char *)rt->buf,
289 3*sizeof(float)*rt->nrays,
290 6*sizeof(float)*(rt->nrays+1)) <
291 3*sizeof(float)*rt->nrays )
292 error(SYSTEM, "error reading from rtrace process");
293 i = rt->nrays;
294 while (i--) {
295 rt->dest[i][0] += rt->buf[3*i];
296 rt->dest[i][1] += rt->buf[3*i+1];
297 rt->dest[i][2] += rt->buf[3*i+2];
298 }
299 rt->nrays = 0;
300 }
301
302
303 mkaxes(u, v, n) /* compute u and v to go with n */
304 FVECT u, v, n;
305 {
306 register int i;
307
308 v[0] = v[1] = v[2] = 0.0;
309 for (i = 0; i < 3; i++)
310 if (n[i] < 0.6 && n[i] > -0.6)
311 break;
312 v[i] = 1.0;
313 fcross(u, v, n);
314 normalize(u);
315 fcross(v, n, u);
316 }
317
318
319 rounddir(dv, alt, azi) /* compute uniform spherical direction */
320 register FVECT dv;
321 double alt, azi;
322 {
323 double d1, d2;
324
325 dv[2] = 1. - 2.*alt;
326 d1 = sqrt(1. - dv[2]*dv[2]);
327 d2 = 2.*PI * azi;
328 dv[0] = d1*cos(d2);
329 dv[1] = d1*sin(d2);
330 }
331
332
333 flatdir(dv, alt, azi) /* compute uniform hemispherical direction */
334 register FVECT dv;
335 double alt, azi;
336 {
337 double d1, d2;
338
339 d1 = sqrt(alt);
340 d2 = 2.*PI * azi;
341 dv[0] = d1*cos(d2);
342 dv[1] = d1*sin(d2);
343 dv[2] = sqrt(1. - alt);
344 }