1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: mkillum2.c,v 2.18 2007/09/13 06:31:21 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Routines to do the actual calculation for mkillum |
6 |
*/ |
7 |
|
8 |
#include <string.h> |
9 |
|
10 |
#include "mkillum.h" |
11 |
#include "face.h" |
12 |
#include "cone.h" |
13 |
#include "random.h" |
14 |
|
15 |
|
16 |
static void mkaxes(FVECT u, FVECT v, FVECT n); |
17 |
static void rounddir(FVECT dv, double alt, double azi); |
18 |
static void flatdir(FVECT dv, double alt, double azi); |
19 |
|
20 |
|
21 |
static COLORV * distarr = NULL; /* distribution array */ |
22 |
static int distsiz = 0; |
23 |
|
24 |
|
25 |
static void |
26 |
newdist( /* allocate & clear distribution array */ |
27 |
int siz |
28 |
) |
29 |
{ |
30 |
if (siz == 0) { |
31 |
if (distsiz > 0) |
32 |
free((void *)distarr); |
33 |
distarr = NULL; |
34 |
distsiz = 0; |
35 |
return; |
36 |
} |
37 |
if (distsiz < siz) { |
38 |
free((void *)distarr); |
39 |
distarr = (COLORV *)malloc(sizeof(COLORV)*3*siz); |
40 |
if (distarr == NULL) |
41 |
error(SYSTEM, "Out of memory in newdist"); |
42 |
distsiz = siz; |
43 |
} |
44 |
memset(distarr, '\0', sizeof(COLORV)*3*siz); |
45 |
} |
46 |
|
47 |
|
48 |
static int |
49 |
process_ray(RAY *r, int rv) |
50 |
{ |
51 |
COLORV *colp; |
52 |
|
53 |
if (rv == 0) |
54 |
return(0); |
55 |
if (rv < 0) |
56 |
error(USER, "Ray tracing process died"); |
57 |
if (r->rno >= distsiz) |
58 |
error(INTERNAL, "Bad returned index in process_ray"); |
59 |
colp = &distarr[r->rno * 3]; |
60 |
addcolor(colp, r->rcol); |
61 |
return(1); |
62 |
} |
63 |
|
64 |
|
65 |
static void |
66 |
raysamp( /* queue a ray sample */ |
67 |
int ndx, |
68 |
FVECT org, |
69 |
FVECT dir |
70 |
) |
71 |
{ |
72 |
RAY myRay; |
73 |
int rv; |
74 |
|
75 |
if ((ndx < 0) | (ndx >= distsiz)) |
76 |
error(INTERNAL, "Bad index in raysamp"); |
77 |
VCOPY(myRay.rorg, org); |
78 |
VCOPY(myRay.rdir, dir); |
79 |
myRay.rmax = .0; |
80 |
rayorigin(&myRay, PRIMARY, NULL, NULL); |
81 |
myRay.rno = ndx; |
82 |
/* queue ray, check result */ |
83 |
process_ray(&myRay, ray_pqueue(&myRay)); |
84 |
} |
85 |
|
86 |
|
87 |
static void |
88 |
rayclean() /* finish all pending rays */ |
89 |
{ |
90 |
RAY myRay; |
91 |
|
92 |
while (process_ray(&myRay, ray_presult(&myRay, 0))) |
93 |
; |
94 |
} |
95 |
|
96 |
|
97 |
int |
98 |
my_default( /* default illum action */ |
99 |
OBJREC *ob, |
100 |
struct illum_args *il, |
101 |
char *nm |
102 |
) |
103 |
{ |
104 |
sprintf(errmsg, "(%s): cannot make illum for %s \"%s\"", |
105 |
nm, ofun[ob->otype].funame, ob->oname); |
106 |
error(WARNING, errmsg); |
107 |
printobj(il->altmat, ob); |
108 |
return(1); |
109 |
} |
110 |
|
111 |
|
112 |
int |
113 |
my_face( /* make an illum face */ |
114 |
OBJREC *ob, |
115 |
struct illum_args *il, |
116 |
char *nm |
117 |
) |
118 |
{ |
119 |
#define MAXMISS (5*n*il->nsamps) |
120 |
int dim[3]; |
121 |
int n, nalt, nazi, h; |
122 |
double sp[2], r1, r2; |
123 |
FVECT dn, org, dir; |
124 |
FVECT u, v; |
125 |
double ur[2], vr[2]; |
126 |
int nmisses; |
127 |
register FACE *fa; |
128 |
register int i, j; |
129 |
/* get/check arguments */ |
130 |
fa = getface(ob); |
131 |
if (fa->area == 0.0) { |
132 |
freeface(ob); |
133 |
return(my_default(ob, il, nm)); |
134 |
} |
135 |
/* set up sampling */ |
136 |
if (il->sampdens <= 0) |
137 |
nalt = nazi = 1; |
138 |
else { |
139 |
n = PI * il->sampdens; |
140 |
nalt = sqrt(n/PI) + .5; |
141 |
nazi = PI*nalt + .5; |
142 |
} |
143 |
n = nalt*nazi; |
144 |
newdist(n); |
145 |
/* take first edge longer than sqrt(area) */ |
146 |
for (j = fa->nv-1, i = 0; i < fa->nv; j = i++) { |
147 |
u[0] = VERTEX(fa,i)[0] - VERTEX(fa,j)[0]; |
148 |
u[1] = VERTEX(fa,i)[1] - VERTEX(fa,j)[1]; |
149 |
u[2] = VERTEX(fa,i)[2] - VERTEX(fa,j)[2]; |
150 |
if ((r1 = DOT(u,u)) >= fa->area-FTINY) |
151 |
break; |
152 |
} |
153 |
if (i < fa->nv) { /* got one! -- let's align our axes */ |
154 |
r2 = 1.0/sqrt(r1); |
155 |
u[0] *= r2; u[1] *= r2; u[2] *= r2; |
156 |
fcross(v, fa->norm, u); |
157 |
} else /* oh well, we'll just have to wing it */ |
158 |
mkaxes(u, v, fa->norm); |
159 |
/* now, find limits in (u,v) coordinates */ |
160 |
ur[0] = vr[0] = FHUGE; |
161 |
ur[1] = vr[1] = -FHUGE; |
162 |
for (i = 0; i < fa->nv; i++) { |
163 |
r1 = DOT(VERTEX(fa,i),u); |
164 |
if (r1 < ur[0]) ur[0] = r1; |
165 |
if (r1 > ur[1]) ur[1] = r1; |
166 |
r2 = DOT(VERTEX(fa,i),v); |
167 |
if (r2 < vr[0]) vr[0] = r2; |
168 |
if (r2 > vr[1]) vr[1] = r2; |
169 |
} |
170 |
dim[0] = random(); |
171 |
/* sample polygon */ |
172 |
nmisses = 0; |
173 |
for (dim[1] = 0; dim[1] < nalt; dim[1]++) |
174 |
for (dim[2] = 0; dim[2] < nazi; dim[2]++) |
175 |
for (i = 0; i < il->nsamps; i++) { |
176 |
/* random direction */ |
177 |
h = ilhash(dim, 3) + i; |
178 |
multisamp(sp, 2, urand(h)); |
179 |
r1 = (dim[1] + sp[0])/nalt; |
180 |
r2 = (dim[2] + sp[1] - .5)/nazi; |
181 |
flatdir(dn, r1, r2); |
182 |
for (j = 0; j < 3; j++) |
183 |
dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*fa->norm[j]; |
184 |
/* random location */ |
185 |
do { |
186 |
multisamp(sp, 2, urand(h+4862+nmisses)); |
187 |
r1 = ur[0] + (ur[1]-ur[0]) * sp[0]; |
188 |
r2 = vr[0] + (vr[1]-vr[0]) * sp[1]; |
189 |
for (j = 0; j < 3; j++) |
190 |
org[j] = r1*u[j] + r2*v[j] |
191 |
+ fa->offset*fa->norm[j]; |
192 |
} while (!inface(org, fa) && nmisses++ < MAXMISS); |
193 |
if (nmisses > MAXMISS) { |
194 |
objerror(ob, WARNING, "bad aspect"); |
195 |
rayclean(); |
196 |
freeface(ob); |
197 |
free((void *)distarr); |
198 |
return(my_default(ob, il, nm)); |
199 |
} |
200 |
for (j = 0; j < 3; j++) |
201 |
org[j] += .001*fa->norm[j]; |
202 |
/* send sample */ |
203 |
raysamp(dim[1]*nazi+dim[2], org, dir); |
204 |
} |
205 |
rayclean(); |
206 |
/* write out the face and its distribution */ |
207 |
if (average(il, distarr, nalt*nazi)) { |
208 |
if (il->sampdens > 0) |
209 |
flatout(il, distarr, nalt, nazi, u, v, fa->norm); |
210 |
illumout(il, ob); |
211 |
} else |
212 |
printobj(il->altmat, ob); |
213 |
/* clean up */ |
214 |
freeface(ob); |
215 |
return(0); |
216 |
#undef MAXMISS |
217 |
} |
218 |
|
219 |
|
220 |
int |
221 |
my_sphere( /* make an illum sphere */ |
222 |
register OBJREC *ob, |
223 |
struct illum_args *il, |
224 |
char *nm |
225 |
) |
226 |
{ |
227 |
int dim[3]; |
228 |
int n, nalt, nazi; |
229 |
double sp[4], r1, r2, r3; |
230 |
FVECT org, dir; |
231 |
FVECT u, v; |
232 |
register int i, j; |
233 |
/* check arguments */ |
234 |
if (ob->oargs.nfargs != 4) |
235 |
objerror(ob, USER, "bad # of arguments"); |
236 |
/* set up sampling */ |
237 |
if (il->sampdens <= 0) |
238 |
nalt = nazi = 1; |
239 |
else { |
240 |
n = 4.*PI * il->sampdens; |
241 |
nalt = sqrt(2./PI*n) + .5; |
242 |
nazi = PI/2.*nalt + .5; |
243 |
} |
244 |
n = nalt*nazi; |
245 |
newdist(n); |
246 |
dim[0] = random(); |
247 |
/* sample sphere */ |
248 |
for (dim[1] = 0; dim[1] < nalt; dim[1]++) |
249 |
for (dim[2] = 0; dim[2] < nazi; dim[2]++) |
250 |
for (i = 0; i < il->nsamps; i++) { |
251 |
/* next sample point */ |
252 |
multisamp(sp, 4, urand(ilhash(dim,3)+i)); |
253 |
/* random direction */ |
254 |
r1 = (dim[1] + sp[0])/nalt; |
255 |
r2 = (dim[2] + sp[1] - .5)/nazi; |
256 |
rounddir(dir, r1, r2); |
257 |
/* random location */ |
258 |
mkaxes(u, v, dir); /* yuck! */ |
259 |
r3 = sqrt(sp[2]); |
260 |
r2 = 2.*PI*sp[3]; |
261 |
r1 = r3*ob->oargs.farg[3]*cos(r2); |
262 |
r2 = r3*ob->oargs.farg[3]*sin(r2); |
263 |
r3 = ob->oargs.farg[3]*sqrt(1.01-r3*r3); |
264 |
for (j = 0; j < 3; j++) { |
265 |
org[j] = ob->oargs.farg[j] + r1*u[j] + r2*v[j] + |
266 |
r3*dir[j]; |
267 |
dir[j] = -dir[j]; |
268 |
} |
269 |
/* send sample */ |
270 |
raysamp(dim[1]*nazi+dim[2], org, dir); |
271 |
} |
272 |
rayclean(); |
273 |
/* write out the sphere and its distribution */ |
274 |
if (average(il, distarr, nalt*nazi)) { |
275 |
if (il->sampdens > 0) |
276 |
roundout(il, distarr, nalt, nazi); |
277 |
else |
278 |
objerror(ob, WARNING, "diffuse distribution"); |
279 |
illumout(il, ob); |
280 |
} else |
281 |
printobj(il->altmat, ob); |
282 |
/* clean up */ |
283 |
return(1); |
284 |
} |
285 |
|
286 |
|
287 |
int |
288 |
my_ring( /* make an illum ring */ |
289 |
OBJREC *ob, |
290 |
struct illum_args *il, |
291 |
char *nm |
292 |
) |
293 |
{ |
294 |
int dim[3]; |
295 |
int n, nalt, nazi; |
296 |
double sp[4], r1, r2, r3; |
297 |
FVECT dn, org, dir; |
298 |
FVECT u, v; |
299 |
register CONE *co; |
300 |
register int i, j; |
301 |
/* get/check arguments */ |
302 |
co = getcone(ob, 0); |
303 |
/* set up sampling */ |
304 |
if (il->sampdens <= 0) |
305 |
nalt = nazi = 1; |
306 |
else { |
307 |
n = PI * il->sampdens; |
308 |
nalt = sqrt(n/PI) + .5; |
309 |
nazi = PI*nalt + .5; |
310 |
} |
311 |
n = nalt*nazi; |
312 |
newdist(n); |
313 |
mkaxes(u, v, co->ad); |
314 |
dim[0] = random(); |
315 |
/* sample disk */ |
316 |
for (dim[1] = 0; dim[1] < nalt; dim[1]++) |
317 |
for (dim[2] = 0; dim[2] < nazi; dim[2]++) |
318 |
for (i = 0; i < il->nsamps; i++) { |
319 |
/* next sample point */ |
320 |
multisamp(sp, 4, urand(ilhash(dim,3)+i)); |
321 |
/* random direction */ |
322 |
r1 = (dim[1] + sp[0])/nalt; |
323 |
r2 = (dim[2] + sp[1] - .5)/nazi; |
324 |
flatdir(dn, r1, r2); |
325 |
for (j = 0; j < 3; j++) |
326 |
dir[j] = -dn[0]*u[j] - dn[1]*v[j] - dn[2]*co->ad[j]; |
327 |
/* random location */ |
328 |
r3 = sqrt(CO_R0(co)*CO_R0(co) + |
329 |
sp[2]*(CO_R1(co)*CO_R1(co) - CO_R0(co)*CO_R0(co))); |
330 |
r2 = 2.*PI*sp[3]; |
331 |
r1 = r3*cos(r2); |
332 |
r2 = r3*sin(r2); |
333 |
for (j = 0; j < 3; j++) |
334 |
org[j] = CO_P0(co)[j] + r1*u[j] + r2*v[j] + |
335 |
.001*co->ad[j]; |
336 |
|
337 |
/* send sample */ |
338 |
raysamp(dim[1]*nazi+dim[2], org, dir); |
339 |
} |
340 |
rayclean(); |
341 |
/* write out the ring and its distribution */ |
342 |
if (average(il, distarr, nalt*nazi)) { |
343 |
if (il->sampdens > 0) |
344 |
flatout(il, distarr, nalt, nazi, u, v, co->ad); |
345 |
illumout(il, ob); |
346 |
} else |
347 |
printobj(il->altmat, ob); |
348 |
/* clean up */ |
349 |
freecone(ob); |
350 |
return(1); |
351 |
} |
352 |
|
353 |
|
354 |
static void |
355 |
mkaxes( /* compute u and v to go with n */ |
356 |
FVECT u, |
357 |
FVECT v, |
358 |
FVECT n |
359 |
) |
360 |
{ |
361 |
register int i; |
362 |
|
363 |
v[0] = v[1] = v[2] = 0.0; |
364 |
for (i = 0; i < 3; i++) |
365 |
if (n[i] < 0.6 && n[i] > -0.6) |
366 |
break; |
367 |
v[i] = 1.0; |
368 |
fcross(u, v, n); |
369 |
normalize(u); |
370 |
fcross(v, n, u); |
371 |
} |
372 |
|
373 |
|
374 |
static void |
375 |
rounddir( /* compute uniform spherical direction */ |
376 |
register FVECT dv, |
377 |
double alt, |
378 |
double azi |
379 |
) |
380 |
{ |
381 |
double d1, d2; |
382 |
|
383 |
dv[2] = 1. - 2.*alt; |
384 |
d1 = sqrt(1. - dv[2]*dv[2]); |
385 |
d2 = 2.*PI * azi; |
386 |
dv[0] = d1*cos(d2); |
387 |
dv[1] = d1*sin(d2); |
388 |
} |
389 |
|
390 |
|
391 |
static void |
392 |
flatdir( /* compute uniform hemispherical direction */ |
393 |
register FVECT dv, |
394 |
double alt, |
395 |
double azi |
396 |
) |
397 |
{ |
398 |
double d1, d2; |
399 |
|
400 |
d1 = sqrt(alt); |
401 |
d2 = 2.*PI * azi; |
402 |
dv[0] = d1*cos(d2); |
403 |
dv[1] = d1*sin(d2); |
404 |
dv[2] = sqrt(1. - alt); |
405 |
} |