ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 2.6
Committed: Sat Feb 22 02:07:23 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.5: +66 -23 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * gensurf.c - program to generate functional surfaces
6 *
7 * Parametric functions x(s,t), y(s,t) and z(s,t)
8 * specify the surface, which is tesselated into an m by n
9 * array of paired triangles.
10 * The surface normal is defined by the right hand
11 * rule applied to (s,t).
12 *
13 * 4/3/87
14 *
15 * 4/16/02 Added conditional vertex output
16 */
17
18 #include "standard.h"
19
20 char XNAME[] = "X`SYS"; /* x function name */
21 char YNAME[] = "Y`SYS"; /* y function name */
22 char ZNAME[] = "Z`SYS"; /* z function name */
23
24 char VNAME[] = "valid"; /* valid vertex name */
25
26 #define ABS(x) ((x)>=0 ? (x) : -(x))
27
28 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
29
30 char vformat[] = "%15.9g %15.9g %15.9g\n";
31 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
32 char texname[] = "Phong";
33
34 int smooth = 0; /* apply smoothing? */
35
36 char *modname, *surfname;
37
38 /* recorded data flags */
39 #define HASBORDER 01
40 #define TRIPLETS 02
41 /* a data structure */
42 struct {
43 int flags; /* data type */
44 short m, n; /* number of s and t values */
45 FLOAT *data; /* the data itself, s major sort */
46 } datarec; /* our recorded data */
47
48 double l_hermite(), l_bezier(), l_bspline(), l_dataval();
49 extern double funvalue(), argument();
50
51 typedef struct {
52 int valid; /* point is valid */
53 FVECT p; /* vertex position */
54 FVECT n; /* average normal */
55 } POINT;
56
57
58 main(argc, argv)
59 int argc;
60 char *argv[];
61 {
62 extern long eclock;
63 POINT *row0, *row1, *row2, *rp;
64 int i, j, m, n;
65 char stmp[256];
66
67 varset("PI", ':', PI);
68 funset("hermite", 5, ':', l_hermite);
69 funset("bezier", 5, ':', l_bezier);
70 funset("bspline", 5, ':', l_bspline);
71
72 if (argc < 8)
73 goto userror;
74
75 for (i = 8; i < argc; i++)
76 if (!strcmp(argv[i], "-e"))
77 scompile(argv[++i], NULL, 0);
78 else if (!strcmp(argv[i], "-f"))
79 fcompile(argv[++i]);
80 else if (!strcmp(argv[i], "-s"))
81 smooth++;
82 else
83 goto userror;
84
85 modname = argv[1];
86 surfname = argv[2];
87 m = atoi(argv[6]);
88 n = atoi(argv[7]);
89 if (m <= 0 || n <= 0)
90 goto userror;
91 if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
92 funset(ZNAME, 2, ':', l_dataval);
93 if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
94 loaddata(argv[5], m, n, 3);
95 funset(XNAME, 2, ':', l_dataval);
96 funset(YNAME, 2, ':', l_dataval);
97 } else {
98 loaddata(argv[5], m, n, 1);
99 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
100 scompile(stmp, NULL, 0);
101 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
102 scompile(stmp, NULL, 0);
103 }
104 } else {
105 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
106 scompile(stmp, NULL, 0);
107 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
108 scompile(stmp, NULL, 0);
109 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
110 scompile(stmp, NULL, 0);
111 }
112 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
113 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
114 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
115 if (row0 == NULL || row1 == NULL || row2 == NULL) {
116 fprintf(stderr, "%s: out of memory\n", argv[0]);
117 quit(1);
118 }
119 row0++; row1++; row2++;
120 /* print header */
121 printhead(argc, argv);
122 eclock = 0;
123 /* initialize */
124 comprow(-1.0/m, row0, n);
125 comprow(0.0, row1, n);
126 comprow(1.0/m, row2, n);
127 compnorms(row0, row1, row2, n);
128 /* for each row */
129 for (i = 0; i < m; i++) {
130 /* compute next row */
131 rp = row0;
132 row0 = row1;
133 row1 = row2;
134 row2 = rp;
135 comprow((double)(i+2)/m, row2, n);
136 compnorms(row0, row1, row2, n);
137
138 for (j = 0; j < n; j++) {
139 int orient = (j & 1);
140 /* put polygons */
141 if (!(row0[j].valid & row1[j+1].valid))
142 orient = 1;
143 else if (!(row1[j].valid & row0[j+1].valid))
144 orient = 0;
145 if (orient)
146 putsquare(&row0[j], &row1[j],
147 &row0[j+1], &row1[j+1]);
148 else
149 putsquare(&row1[j], &row1[j+1],
150 &row0[j], &row0[j+1]);
151 }
152 }
153
154 quit(0);
155
156 userror:
157 fprintf(stderr, "Usage: %s material name ", argv[0]);
158 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
159 quit(1);
160 }
161
162
163 loaddata(file, m, n, pointsize) /* load point data from file */
164 char *file;
165 int m, n;
166 int pointsize;
167 {
168 FILE *fp;
169 char word[64];
170 register int size;
171 register FLOAT *dp;
172
173 datarec.flags = HASBORDER; /* assume border values */
174 datarec.m = m+1;
175 datarec.n = n+1;
176 size = datarec.m*datarec.n*pointsize;
177 if (pointsize == 3)
178 datarec.flags |= TRIPLETS;
179 dp = (FLOAT *)malloc(size*sizeof(FLOAT));
180 if ((datarec.data = dp) == NULL) {
181 fputs("Out of memory\n", stderr);
182 exit(1);
183 }
184 if (!strcmp(file, "-")) {
185 file = "<stdin>";
186 fp = stdin;
187 } else if ((fp = fopen(file, "r")) == NULL) {
188 fputs(file, stderr);
189 fputs(": cannot open\n", stderr);
190 exit(1);
191 }
192 while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
193 if (!isflt(word)) {
194 fprintf(stderr, "%s: garbled data value: %s\n",
195 file, word);
196 exit(1);
197 }
198 *dp++ = atof(word);
199 size--;
200 }
201 if (size == (m+n+1)*pointsize) { /* no border after all */
202 dp = (FLOAT *)realloc((char *)datarec.data,
203 m*n*pointsize*sizeof(FLOAT));
204 if (dp != NULL)
205 datarec.data = dp;
206 datarec.flags &= ~HASBORDER;
207 datarec.m = m;
208 datarec.n = n;
209 size = 0;
210 }
211 if (datarec.m < 2 || datarec.n < 2 || size != 0 ||
212 fgetword(word, sizeof(word), fp) != NULL) {
213 fputs(file, stderr);
214 fputs(": bad number of data points\n", stderr);
215 exit(1);
216 }
217 fclose(fp);
218 }
219
220
221 double
222 l_dataval(nam) /* return recorded data value */
223 char *nam;
224 {
225 double u, v;
226 register int i, j;
227 register FLOAT *dp;
228 double d00, d01, d10, d11;
229 /* compute coordinates */
230 u = argument(1); v = argument(2);
231 if (datarec.flags & HASBORDER) {
232 i = u *= datarec.m-1;
233 j = v *= datarec.n-1;
234 } else {
235 i = u = u*datarec.m - .5;
236 j = v = v*datarec.n - .5;
237 }
238 if (i < 0) i = 0;
239 else if (i > datarec.m-2) i = datarec.m-2;
240 if (j < 0) j = 0;
241 else if (j > datarec.n-2) j = datarec.n-2;
242 /* compute value */
243 if (datarec.flags & TRIPLETS) {
244 dp = datarec.data + 3*(j*datarec.m + i);
245 if (nam == ZNAME)
246 dp += 2;
247 else if (nam == YNAME)
248 dp++;
249 d00 = dp[0]; d01 = dp[3];
250 dp += 3*datarec.m;
251 d10 = dp[0]; d11 = dp[3];
252 } else {
253 dp = datarec.data + j*datarec.m + i;
254 d00 = dp[0]; d01 = dp[1];
255 dp += datarec.m;
256 d10 = dp[0]; d11 = dp[1];
257 }
258 /* bilinear interpolation */
259 return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
260 }
261
262
263 putsquare(p0, p1, p2, p3) /* put out a square */
264 POINT *p0, *p1, *p2, *p3;
265 {
266 static int nout = 0;
267 FVECT norm[4];
268 int axis;
269 FVECT v1, v2, vc1, vc2;
270 int ok1, ok2;
271 /* compute exact normals */
272 ok1 = (p0->valid & p1->valid & p2->valid);
273 if (ok1) {
274 fvsum(v1, p1->p, p0->p, -1.0);
275 fvsum(v2, p2->p, p0->p, -1.0);
276 fcross(vc1, v1, v2);
277 ok1 = (normalize(vc1) != 0.0);
278 }
279 ok2 = (p1->valid & p2->valid & p3->valid);
280 if (ok2) {
281 fvsum(v1, p2->p, p3->p, -1.0);
282 fvsum(v2, p1->p, p3->p, -1.0);
283 fcross(vc2, v1, v2);
284 ok2 = (normalize(vc2) != 0.0);
285 }
286 if (!(ok1 | ok2))
287 return;
288 /* compute normal interpolation */
289 axis = norminterp(norm, p0, p1, p2, p3);
290
291 /* put out quadrilateral? */
292 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
293 printf("\n%s ", modname);
294 if (axis != -1) {
295 printf("texfunc %s\n", texname);
296 printf(tsargs);
297 printf("0\n13\t%d\n", axis);
298 pvect(norm[0]);
299 pvect(norm[1]);
300 pvect(norm[2]);
301 fvsum(v1, norm[3], vc1, -0.5);
302 fvsum(v1, v1, vc2, -0.5);
303 pvect(v1);
304 printf("\n%s ", texname);
305 }
306 printf("polygon %s.%d\n", surfname, ++nout);
307 printf("0\n0\n12\n");
308 pvect(p0->p);
309 pvect(p1->p);
310 pvect(p3->p);
311 pvect(p2->p);
312 return;
313 }
314 /* put out triangles? */
315 if (ok1) {
316 printf("\n%s ", modname);
317 if (axis != -1) {
318 printf("texfunc %s\n", texname);
319 printf(tsargs);
320 printf("0\n13\t%d\n", axis);
321 pvect(norm[0]);
322 pvect(norm[1]);
323 pvect(norm[2]);
324 fvsum(v1, norm[3], vc1, -1.0);
325 pvect(v1);
326 printf("\n%s ", texname);
327 }
328 printf("polygon %s.%d\n", surfname, ++nout);
329 printf("0\n0\n9\n");
330 pvect(p0->p);
331 pvect(p1->p);
332 pvect(p2->p);
333 }
334 if (ok2) {
335 printf("\n%s ", modname);
336 if (axis != -1) {
337 printf("texfunc %s\n", texname);
338 printf(tsargs);
339 printf("0\n13\t%d\n", axis);
340 pvect(norm[0]);
341 pvect(norm[1]);
342 pvect(norm[2]);
343 fvsum(v2, norm[3], vc2, -1.0);
344 pvect(v2);
345 printf("\n%s ", texname);
346 }
347 printf("polygon %s.%d\n", surfname, ++nout);
348 printf("0\n0\n9\n");
349 pvect(p2->p);
350 pvect(p1->p);
351 pvect(p3->p);
352 }
353 }
354
355
356 comprow(s, row, siz) /* compute row of values */
357 double s;
358 register POINT *row;
359 int siz;
360 {
361 double st[2];
362 int end;
363 int checkvalid;
364 register int i;
365
366 if (smooth) {
367 i = -1; /* compute one past each end */
368 end = siz+1;
369 } else {
370 if (s < -FTINY || s > 1.0+FTINY)
371 return;
372 i = 0;
373 end = siz;
374 }
375 st[0] = s;
376 checkvalid = (fundefined(VNAME) == 2);
377 while (i <= end) {
378 st[1] = (double)i/siz;
379 if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) {
380 row[i].valid = 0;
381 row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0;
382 } else {
383 row[i].valid = 1;
384 row[i].p[0] = funvalue(XNAME, 2, st);
385 row[i].p[1] = funvalue(YNAME, 2, st);
386 row[i].p[2] = funvalue(ZNAME, 2, st);
387 }
388 i++;
389 }
390 }
391
392
393 compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
394 register POINT *r0, *r1, *r2;
395 int siz;
396 {
397 FVECT v1, v2;
398
399 if (!smooth) /* not needed if no smoothing */
400 return;
401 /* compute row 1 normals */
402 while (siz-- >= 0) {
403 if (!r1[0].valid)
404 continue;
405 if (!r0[0].valid) {
406 if (!r2[0].valid) {
407 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
408 continue;
409 }
410 fvsum(v1, r2[0].p, r1[0].p, -1.0);
411 } else if (!r2[0].valid)
412 fvsum(v1, r1[0].p, r0[0].p, -1.0);
413 else
414 fvsum(v1, r2[0].p, r0[0].p, -1.0);
415 if (!r1[-1].valid) {
416 if (!r1[1].valid) {
417 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
418 continue;
419 }
420 fvsum(v2, r1[1].p, r1[0].p, -1.0);
421 } else if (!r1[1].valid)
422 fvsum(v2, r1[0].p, r1[-1].p, -1.0);
423 else
424 fvsum(v2, r1[1].p, r1[-1].p, -1.0);
425 fcross(r1[0].n, v1, v2);
426 normalize(r1[0].n);
427 r0++; r1++; r2++;
428 }
429 }
430
431
432 int
433 norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
434 register FVECT resmat[4];
435 POINT *p0, *p1, *p2, *p3;
436 {
437 #define u ((ax+1)%3)
438 #define v ((ax+2)%3)
439
440 register int ax;
441 MAT4 eqnmat;
442 FVECT v1;
443 register int i, j;
444
445 if (!smooth) /* no interpolation if no smoothing */
446 return(-1);
447 /* find dominant axis */
448 VCOPY(v1, p0->n);
449 fvsum(v1, v1, p1->n, 1.0);
450 fvsum(v1, v1, p2->n, 1.0);
451 fvsum(v1, v1, p3->n, 1.0);
452 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
453 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
454 /* assign equation matrix */
455 eqnmat[0][0] = p0->p[u]*p0->p[v];
456 eqnmat[0][1] = p0->p[u];
457 eqnmat[0][2] = p0->p[v];
458 eqnmat[0][3] = 1.0;
459 eqnmat[1][0] = p1->p[u]*p1->p[v];
460 eqnmat[1][1] = p1->p[u];
461 eqnmat[1][2] = p1->p[v];
462 eqnmat[1][3] = 1.0;
463 eqnmat[2][0] = p2->p[u]*p2->p[v];
464 eqnmat[2][1] = p2->p[u];
465 eqnmat[2][2] = p2->p[v];
466 eqnmat[2][3] = 1.0;
467 eqnmat[3][0] = p3->p[u]*p3->p[v];
468 eqnmat[3][1] = p3->p[u];
469 eqnmat[3][2] = p3->p[v];
470 eqnmat[3][3] = 1.0;
471 /* invert matrix (solve system) */
472 if (!invmat4(eqnmat, eqnmat))
473 return(-1); /* no solution */
474 /* compute result matrix */
475 for (j = 0; j < 4; j++)
476 for (i = 0; i < 3; i++)
477 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
478 eqnmat[j][1]*p1->n[i] +
479 eqnmat[j][2]*p2->n[i] +
480 eqnmat[j][3]*p3->n[i];
481 return(ax);
482
483 #undef u
484 #undef v
485 }
486
487
488 void
489 eputs(msg)
490 char *msg;
491 {
492 fputs(msg, stderr);
493 }
494
495
496 void
497 wputs(msg)
498 char *msg;
499 {
500 eputs(msg);
501 }
502
503
504 void
505 quit(code)
506 int code;
507 {
508 exit(code);
509 }
510
511
512 printhead(ac, av) /* print command header */
513 register int ac;
514 register char **av;
515 {
516 putchar('#');
517 while (ac--) {
518 putchar(' ');
519 fputs(*av++, stdout);
520 }
521 putchar('\n');
522 }
523
524
525 double
526 l_hermite()
527 {
528 double t;
529
530 t = argument(5);
531 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
532 argument(2)*(-2.0*t+3.0)*t*t +
533 argument(3)*((t-2.0)*t+1.0)*t +
534 argument(4)*(t-1.0)*t*t );
535 }
536
537
538 double
539 l_bezier()
540 {
541 double t;
542
543 t = argument(5);
544 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
545 argument(2) * 3.*t*(1.+t*(-2.+t)) +
546 argument(3) * 3.*t*t*(1.-t) +
547 argument(4) * t*t*t );
548 }
549
550
551 double
552 l_bspline()
553 {
554 double t;
555
556 t = argument(5);
557 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
558 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
559 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
560 argument(4) * (1./6.*t*t*t) );
561 }