ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 2.29
Committed: Thu Apr 1 14:52:55 2021 UTC (3 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.28: +13 -7 lines
Log Message:
perf(gensurf): .OBJ output now re-uses identical subsequent normal IDs

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gensurf.c,v 2.28 2020/11/14 00:29:51 greg Exp $";
3 #endif
4 /*
5 * gensurf.c - program to generate functional surfaces
6 *
7 * Parametric functions x(s,t), y(s,t) and z(s,t)
8 * specify the surface, which is tesselated into an m by n
9 * array of paired triangles.
10 * The surface normal is defined by the right hand
11 * rule applied to (s,t).
12 *
13 * 4/3/87
14 *
15 * 4/16/02 Added conditional vertex output
16 */
17
18 #include "standard.h"
19
20 #include "paths.h"
21 #include "resolu.h"
22 #include "rterror.h"
23 #include "calcomp.h"
24
25 char XNAME[] = "X`SYS"; /* x function name */
26 char YNAME[] = "Y`SYS"; /* y function name */
27 char ZNAME[] = "Z`SYS"; /* z function name */
28
29 char VNAME[] = "valid"; /* valid vertex name */
30
31 #define ABS(x) ((x)>=0 ? (x) : -(x))
32
33 #define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY)
34
35 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
36
37 char vformat[] = "%18.12g %18.12g %18.12g\n";
38 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal";
39 char texname[] = "Phong";
40
41 int smooth = 0; /* apply smoothing? */
42 int objout = 0; /* output .OBJ format? */
43
44 char *modname, *surfname;
45
46 /* recorded data flags */
47 #define HASBORDER 01
48 #define TRIPLETS 02
49 /* a data structure */
50 struct {
51 int flags; /* data type */
52 short m, n; /* number of s and t values */
53 RREAL *data; /* the data itself, s major sort */
54 } datarec; /* our recorded data */
55
56 /* XXX this is redundant with rt/noise3.c, should go to a library */
57 double l_hermite(), l_bezier(), l_bspline(), l_dataval();
58
59 typedef struct {
60 int valid; /* point is valid (vertex number) */
61 int nvalid; /* normal is valid (normal number) */
62 FVECT p; /* vertex position */
63 FVECT n; /* average normal */
64 RREAL uv[2]; /* (u,v) position */
65 } POINT;
66
67 int nverts = 0; /* vertex output count */
68 int nnorms = 0; /* normal output count */
69
70 void loaddata(char *file, int m, int n, int pointsize);
71 double l_dataval(char *nam);
72 void putobjrow(POINT *rp, int n);
73 void putobjvert(POINT *p);
74 void putsquare(POINT *p0, POINT *p1, POINT *p2, POINT *p3);
75 void comprow(double s, POINT *row, int siz);
76 void compnorms(POINT *r0, POINT *r1, POINT *r2, int siz);
77 int norminterp(FVECT resmat[4], POINT *p0, POINT *p1, POINT *p2, POINT *p3);
78
79
80 int
81 main(int argc, char *argv[])
82 {
83 POINT *row0, *row1, *row2, *rp;
84 int i, j, m, n;
85 char stmp[256];
86
87 esupport |= E_VARIABLE|E_FUNCTION|E_RCONST;
88 esupport &= ~(E_OUTCHAN|E_INCHAN);
89 varset("PI", ':', PI);
90 funset("hermite", 5, ':', l_hermite);
91 funset("bezier", 5, ':', l_bezier);
92 funset("bspline", 5, ':', l_bspline);
93
94 if (argc < 8)
95 goto userror;
96
97 for (i = 8; i < argc; i++)
98 if (!strcmp(argv[i], "-e"))
99 scompile(argv[++i], NULL, 0);
100 else if (!strcmp(argv[i], "-f")) {
101 char *fpath = getpath(argv[++i], getrlibpath(), 0);
102 if (fpath == NULL) {
103 fprintf(stderr, "%s: cannot find file '%s'\n",
104 argv[0], argv[i]);
105 quit(1);
106 }
107 fcompile(fpath);
108 } else if (!strcmp(argv[i], "-s"))
109 smooth++;
110 else if (!strcmp(argv[i], "-o"))
111 objout++;
112 else
113 goto userror;
114
115 modname = argv[1];
116 surfname = argv[2];
117 m = eval(argv[6]) + .5;
118 n = eval(argv[7]) + .5;
119 if (m <= 0 || n <= 0)
120 goto userror;
121 if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
122 funset(ZNAME, 2, ':', l_dataval);
123 if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
124 loaddata(argv[5], m, n, 3);
125 funset(XNAME, 2, ':', l_dataval);
126 funset(YNAME, 2, ':', l_dataval);
127 } else {
128 loaddata(argv[5], m, n, 1);
129 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
130 scompile(stmp, NULL, 0);
131 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
132 scompile(stmp, NULL, 0);
133 }
134 } else {
135 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
136 scompile(stmp, NULL, 0);
137 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
138 scompile(stmp, NULL, 0);
139 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
140 scompile(stmp, NULL, 0);
141 }
142 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
143 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
144 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
145 if (row0 == NULL || row1 == NULL || row2 == NULL) {
146 fprintf(stderr, "%s: out of memory\n", argv[0]);
147 quit(1);
148 }
149 row0++; row1++; row2++;
150 /* print header */
151 fputs("# ", stdout);
152 printargs(argc, argv, stdout);
153 eclock = 0;
154 /* initialize */
155 comprow(-1.0/m, row0, n);
156 comprow(0.0, row1, n);
157 comprow(1.0/m, row2, n);
158 compnorms(row0, row1, row2, n);
159 if (objout) {
160 printf("\nusemtl %s\n\n", modname);
161 printf("o %s\n\n", surfname);
162 putobjrow(row1, n);
163 }
164 /* for each row */
165 for (i = 0; i < m; i++) {
166 /* compute next row */
167 rp = row0;
168 row0 = row1;
169 row1 = row2;
170 row2 = rp;
171 comprow((double)(i+2)/m, row2, n);
172 compnorms(row0, row1, row2, n);
173 if (objout)
174 putobjrow(row1, n);
175
176 for (j = 0; j < n; j++) {
177 int orient = (j & 1);
178 /* put polygons */
179 if (!(row0[j].valid && row1[j+1].valid))
180 orient = 1;
181 else if (!(row1[j].valid && row0[j+1].valid))
182 orient = 0;
183 if (orient)
184 putsquare(&row0[j], &row1[j],
185 &row0[j+1], &row1[j+1]);
186 else
187 putsquare(&row1[j], &row1[j+1],
188 &row0[j], &row0[j+1]);
189 }
190 }
191
192 return 0;
193
194 userror:
195 fprintf(stderr, "Usage: %s material name ", argv[0]);
196 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-o][-e expr][-f file]\n");
197 return 1;
198 }
199
200
201 void
202 loaddata( /* load point data from file */
203 char *file,
204 int m,
205 int n,
206 int pointsize
207 )
208 {
209 FILE *fp;
210 char word[64];
211 int size;
212 RREAL *dp;
213
214 datarec.flags = HASBORDER; /* assume border values */
215 datarec.m = m+1;
216 datarec.n = n+1;
217 size = datarec.m*datarec.n*pointsize;
218 if (pointsize == 3)
219 datarec.flags |= TRIPLETS;
220 dp = (RREAL *)malloc(size*sizeof(RREAL));
221 if ((datarec.data = dp) == NULL) {
222 fputs("Out of memory\n", stderr);
223 exit(1);
224 }
225 if (!strcmp(file, "-")) {
226 file = "<stdin>";
227 fp = stdin;
228 } else if ((fp = fopen(file, "r")) == NULL) {
229 fputs(file, stderr);
230 fputs(": cannot open\n", stderr);
231 exit(1);
232 }
233 while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
234 if (!isflt(word)) {
235 fprintf(stderr, "%s: garbled data value: %s\n",
236 file, word);
237 exit(1);
238 }
239 *dp++ = atof(word);
240 size--;
241 }
242 if (size == (m+n+1)*pointsize) { /* no border after all */
243 dp = (RREAL *)realloc(datarec.data,
244 m*n*pointsize*sizeof(RREAL));
245 if (dp != NULL)
246 datarec.data = dp;
247 datarec.flags &= ~HASBORDER;
248 datarec.m = m;
249 datarec.n = n;
250 size = 0;
251 }
252 if (datarec.m < 2 || datarec.n < 2 || size != 0 ||
253 fgetword(word, sizeof(word), fp) != NULL) {
254 fputs(file, stderr);
255 fputs(": bad number of data points\n", stderr);
256 exit(1);
257 }
258 fclose(fp);
259 }
260
261
262 double
263 l_dataval( /* return recorded data value */
264 char *nam
265 )
266 {
267 double u, v;
268 int i, j;
269 RREAL *dp;
270 double d00, d01, d10, d11;
271 /* compute coordinates */
272 u = argument(1); v = argument(2);
273 if (datarec.flags & HASBORDER) {
274 i = u *= datarec.m-1;
275 j = v *= datarec.n-1;
276 } else {
277 i = u = u*datarec.m - .5;
278 j = v = v*datarec.n - .5;
279 }
280 if (i < 0) i = 0;
281 else if (i > datarec.m-2) i = datarec.m-2;
282 if (j < 0) j = 0;
283 else if (j > datarec.n-2) j = datarec.n-2;
284 /* compute value */
285 if (datarec.flags & TRIPLETS) {
286 dp = datarec.data + 3*(j*datarec.m + i);
287 if (nam == ZNAME)
288 dp += 2;
289 else if (nam == YNAME)
290 dp++;
291 d00 = dp[0]; d01 = dp[3];
292 dp += 3*datarec.m;
293 d10 = dp[0]; d11 = dp[3];
294 } else {
295 dp = datarec.data + j*datarec.m + i;
296 d00 = dp[0]; d01 = dp[1];
297 dp += datarec.m;
298 d10 = dp[0]; d11 = dp[1];
299 }
300 /* bilinear interpolation */
301 return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
302 }
303
304
305 void
306 putobjrow( /* output vertex row to .OBJ */
307 POINT *rp,
308 int n
309 )
310 {
311 static FVECT prevNorm;
312
313 for ( ; n-- >= 0; rp++) {
314 if (!rp->valid)
315 continue;
316 fputs("v ", stdout);
317 pvect(rp->p);
318 rp->valid = ++nverts;
319 printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]);
320 if (!smooth || ZEROVECT(rp->n))
321 rp->nvalid = 0;
322 else if (VABSEQ(rp->n, prevNorm))
323 rp->nvalid = nnorms;
324 else {
325 printf("\tvn %.9g %.9g %.9g\n",
326 rp->n[0], rp->n[1], rp->n[2]);
327 rp->nvalid = ++nnorms;
328 VCOPY(prevNorm, rp->n);
329 }
330 }
331 }
332
333
334 void
335 putobjvert( /* put out OBJ vertex index triplet */
336 POINT *p
337 )
338 {
339 int pti = p->valid ? p->valid-nverts-1 : 0;
340 int ni = p->nvalid ? p->nvalid-nnorms-1 : 0;
341
342 printf(" %d/%d/%d", pti, pti, ni);
343 }
344
345
346 void
347 putsquare( /* put out a square */
348 POINT *p0,
349 POINT *p1,
350 POINT *p2,
351 POINT *p3
352 )
353 {
354 static int nout = 0;
355 FVECT norm[4];
356 int axis;
357 FVECT v1, v2, vc1, vc2;
358 int ok1, ok2;
359 /* compute exact normals */
360 ok1 = (p0->valid && p1->valid && p2->valid);
361 if (ok1) {
362 VSUB(v1, p1->p, p0->p);
363 VSUB(v2, p2->p, p0->p);
364 fcross(vc1, v1, v2);
365 ok1 = (normalize(vc1) != 0.0);
366 }
367 ok2 = (p1->valid && p2->valid && p3->valid);
368 if (ok2) {
369 VSUB(v1, p2->p, p3->p);
370 VSUB(v2, p1->p, p3->p);
371 fcross(vc2, v1, v2);
372 ok2 = (normalize(vc2) != 0.0);
373 }
374 if (!(ok1 | ok2))
375 return;
376 if (objout) { /* output .OBJ faces */
377 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
378 putc('f', stdout);
379 putobjvert(p0); putobjvert(p1);
380 putobjvert(p3); putobjvert(p2);
381 putc('\n', stdout);
382 return;
383 }
384 if (ok1) {
385 putc('f', stdout);
386 putobjvert(p0); putobjvert(p1); putobjvert(p2);
387 putc('\n', stdout);
388 }
389 if (ok2) {
390 putc('f', stdout);
391 putobjvert(p2); putobjvert(p1); putobjvert(p3);
392 putc('\n', stdout);
393 }
394 return;
395 }
396 /* compute normal interpolation */
397 axis = norminterp(norm, p0, p1, p2, p3);
398
399 /* put out quadrilateral? */
400 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
401 printf("\n%s ", modname);
402 if (axis != -1) {
403 printf("texfunc %s\n%s\n", texname, tsargs);
404 printf("0\n13\t%d\n", axis);
405 pvect(norm[0]);
406 pvect(norm[1]);
407 pvect(norm[2]);
408 fvsum(v1, norm[3], vc1, -0.5);
409 fvsum(v1, v1, vc2, -0.5);
410 pvect(v1);
411 printf("\n%s ", texname);
412 }
413 printf("polygon %s.%d\n", surfname, ++nout);
414 printf("0\n0\n12\n");
415 pvect(p0->p);
416 pvect(p1->p);
417 pvect(p3->p);
418 pvect(p2->p);
419 return;
420 }
421 /* put out triangles? */
422 if (ok1) {
423 printf("\n%s ", modname);
424 if (axis != -1) {
425 printf("texfunc %s\n%s\n", texname, tsargs);
426 printf("0\n13\t%d\n", axis);
427 pvect(norm[0]);
428 pvect(norm[1]);
429 pvect(norm[2]);
430 fvsum(v1, norm[3], vc1, -1.0);
431 pvect(v1);
432 printf("\n%s ", texname);
433 }
434 printf("polygon %s.%d\n", surfname, ++nout);
435 printf("0\n0\n9\n");
436 pvect(p0->p);
437 pvect(p1->p);
438 pvect(p2->p);
439 }
440 if (ok2) {
441 printf("\n%s ", modname);
442 if (axis != -1) {
443 printf("texfunc %s\n%s\n", texname, tsargs);
444 printf("0\n13\t%d\n", axis);
445 pvect(norm[0]);
446 pvect(norm[1]);
447 pvect(norm[2]);
448 fvsum(v2, norm[3], vc2, -1.0);
449 pvect(v2);
450 printf("\n%s ", texname);
451 }
452 printf("polygon %s.%d\n", surfname, ++nout);
453 printf("0\n0\n9\n");
454 pvect(p2->p);
455 pvect(p1->p);
456 pvect(p3->p);
457 }
458 }
459
460
461 void
462 comprow( /* compute row of values */
463 double s,
464 POINT *row,
465 int siz
466 )
467 {
468 double st[2];
469 int end;
470 int checkvalid;
471 int i;
472
473 if (smooth) {
474 i = -1; /* compute one past each end */
475 end = siz+1;
476 } else {
477 if (s < -FTINY || s > 1.0+FTINY)
478 return;
479 i = 0;
480 end = siz;
481 }
482 st[0] = s;
483 checkvalid = (fundefined(VNAME) == 2);
484 while (i <= end) {
485 st[1] = (double)i/siz;
486 if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) {
487 row[i].valid = 0;
488 row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0;
489 row[i].uv[0] = row[i].uv[1] = 0.0;
490 } else {
491 row[i].valid = 1;
492 row[i].p[0] = funvalue(XNAME, 2, st);
493 row[i].p[1] = funvalue(YNAME, 2, st);
494 row[i].p[2] = funvalue(ZNAME, 2, st);
495 row[i].uv[0] = st[0];
496 row[i].uv[1] = st[1];
497 }
498 i++;
499 }
500 }
501
502
503 void
504 compnorms( /* compute row of averaged normals */
505 POINT *r0,
506 POINT *r1,
507 POINT *r2,
508 int siz
509 )
510 {
511 FVECT v1, v2;
512
513 if (!smooth) /* not needed if no smoothing */
514 return;
515 /* compute row 1 normals */
516 while (siz-- >= 0) {
517 if (!r1[0].valid)
518 goto skip;
519 if (!r0[0].valid) {
520 if (!r2[0].valid) {
521 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
522 goto skip;
523 }
524 fvsum(v1, r2[0].p, r1[0].p, -1.0);
525 } else if (!r2[0].valid)
526 fvsum(v1, r1[0].p, r0[0].p, -1.0);
527 else
528 fvsum(v1, r2[0].p, r0[0].p, -1.0);
529 if (!r1[-1].valid) {
530 if (!r1[1].valid) {
531 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
532 goto skip;
533 }
534 fvsum(v2, r1[1].p, r1[0].p, -1.0);
535 } else if (!r1[1].valid)
536 fvsum(v2, r1[0].p, r1[-1].p, -1.0);
537 else
538 fvsum(v2, r1[1].p, r1[-1].p, -1.0);
539 fcross(r1[0].n, v1, v2);
540 normalize(r1[0].n);
541 skip:
542 r0++; r1++; r2++;
543 }
544 }
545
546
547 int
548 norminterp( /* compute normal interpolation */
549 FVECT resmat[4],
550 POINT *p0,
551 POINT *p1,
552 POINT *p2,
553 POINT *p3
554 )
555 {
556 #define u ((ax+1)%3)
557 #define v ((ax+2)%3)
558
559 int ax;
560 MAT4 eqnmat;
561 FVECT v1;
562 int i, j;
563
564 if (!smooth) /* no interpolation if no smoothing */
565 return(-1);
566 /* find dominant axis */
567 VCOPY(v1, p0->n);
568 fvsum(v1, v1, p1->n, 1.0);
569 fvsum(v1, v1, p2->n, 1.0);
570 fvsum(v1, v1, p3->n, 1.0);
571 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
572 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
573 /* assign equation matrix */
574 eqnmat[0][0] = p0->p[u]*p0->p[v];
575 eqnmat[0][1] = p0->p[u];
576 eqnmat[0][2] = p0->p[v];
577 eqnmat[0][3] = 1.0;
578 eqnmat[1][0] = p1->p[u]*p1->p[v];
579 eqnmat[1][1] = p1->p[u];
580 eqnmat[1][2] = p1->p[v];
581 eqnmat[1][3] = 1.0;
582 eqnmat[2][0] = p2->p[u]*p2->p[v];
583 eqnmat[2][1] = p2->p[u];
584 eqnmat[2][2] = p2->p[v];
585 eqnmat[2][3] = 1.0;
586 eqnmat[3][0] = p3->p[u]*p3->p[v];
587 eqnmat[3][1] = p3->p[u];
588 eqnmat[3][2] = p3->p[v];
589 eqnmat[3][3] = 1.0;
590 /* invert matrix (solve system) */
591 if (!invmat4(eqnmat, eqnmat))
592 return(-1); /* no solution */
593 /* compute result matrix */
594 for (j = 0; j < 4; j++)
595 for (i = 0; i < 3; i++)
596 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
597 eqnmat[j][1]*p1->n[i] +
598 eqnmat[j][2]*p2->n[i] +
599 eqnmat[j][3]*p3->n[i];
600 return(ax);
601
602 #undef u
603 #undef v
604 }
605
606
607 double
608 l_hermite(char *nm)
609 {
610 double t;
611
612 t = argument(5);
613 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
614 argument(2)*(-2.0*t+3.0)*t*t +
615 argument(3)*((t-2.0)*t+1.0)*t +
616 argument(4)*(t-1.0)*t*t );
617 }
618
619
620 double
621 l_bezier(char *nm)
622 {
623 double t;
624
625 t = argument(5);
626 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
627 argument(2) * 3.*t*(1.+t*(-2.+t)) +
628 argument(3) * 3.*t*t*(1.-t) +
629 argument(4) * t*t*t );
630 }
631
632
633 double
634 l_bspline(char *nm)
635 {
636 double t;
637
638 t = argument(5);
639 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
640 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
641 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
642 argument(4) * (1./6.*t*t*t) );
643 }