ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 2.25
Committed: Fri May 4 23:56:49 2018 UTC (6 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2
Changes since 2.24: +10 -4 lines
Log Message:
Added search to -f for genrev, gensurf, genworm, bsdf2klems, bsdf2ttree, & pcomb

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gensurf.c,v 2.24 2018/01/12 00:50:17 greg Exp $";
3 #endif
4 /*
5 * gensurf.c - program to generate functional surfaces
6 *
7 * Parametric functions x(s,t), y(s,t) and z(s,t)
8 * specify the surface, which is tesselated into an m by n
9 * array of paired triangles.
10 * The surface normal is defined by the right hand
11 * rule applied to (s,t).
12 *
13 * 4/3/87
14 *
15 * 4/16/02 Added conditional vertex output
16 */
17
18 #include "standard.h"
19
20 #include "paths.h"
21 #include "resolu.h"
22 #include "rterror.h"
23 #include "calcomp.h"
24
25 char XNAME[] = "X`SYS"; /* x function name */
26 char YNAME[] = "Y`SYS"; /* y function name */
27 char ZNAME[] = "Z`SYS"; /* z function name */
28
29 char VNAME[] = "valid"; /* valid vertex name */
30
31 #define ABS(x) ((x)>=0 ? (x) : -(x))
32
33 #define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY)
34
35 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
36
37 char vformat[] = "%18.12g %18.12g %18.12g\n";
38 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal";
39 char texname[] = "Phong";
40
41 int smooth = 0; /* apply smoothing? */
42 int objout = 0; /* output .OBJ format? */
43
44 char *modname, *surfname;
45
46 /* recorded data flags */
47 #define HASBORDER 01
48 #define TRIPLETS 02
49 /* a data structure */
50 struct {
51 int flags; /* data type */
52 short m, n; /* number of s and t values */
53 RREAL *data; /* the data itself, s major sort */
54 } datarec; /* our recorded data */
55
56 /* XXX this is redundant with rt/noise3.c, should go to a library */
57 double l_hermite(), l_bezier(), l_bspline(), l_dataval();
58
59 typedef struct {
60 int valid; /* point is valid (vertex number) */
61 int nvalid; /* normal is valid */
62 FVECT p; /* vertex position */
63 FVECT n; /* average normal */
64 RREAL uv[2]; /* (u,v) position */
65 } POINT;
66
67 int nverts = 0; /* vertex output count */
68 int nnorms = 0; /* normal output count */
69
70 void loaddata(char *file, int m, int n, int pointsize);
71 double l_dataval(char *nam);
72 void putobjrow(POINT *rp, int n);
73 void putobjvert(POINT *p);
74 void putsquare(POINT *p0, POINT *p1, POINT *p2, POINT *p3);
75 void comprow(double s, POINT *row, int siz);
76 void compnorms(POINT *r0, POINT *r1, POINT *r2, int siz);
77 int norminterp(FVECT resmat[4], POINT *p0, POINT *p1, POINT *p2, POINT *p3);
78
79
80 int
81 main(argc, argv)
82 int argc;
83 char *argv[];
84 {
85 POINT *row0, *row1, *row2, *rp;
86 int i, j, m, n;
87 char stmp[256];
88
89 esupport |= E_VARIABLE|E_FUNCTION|E_RCONST;
90 esupport &= ~(E_OUTCHAN|E_INCHAN);
91 varset("PI", ':', PI);
92 funset("hermite", 5, ':', l_hermite);
93 funset("bezier", 5, ':', l_bezier);
94 funset("bspline", 5, ':', l_bspline);
95
96 if (argc < 8)
97 goto userror;
98
99 for (i = 8; i < argc; i++)
100 if (!strcmp(argv[i], "-e"))
101 scompile(argv[++i], NULL, 0);
102 else if (!strcmp(argv[i], "-f")) {
103 char *fpath = getpath(argv[++i], getrlibpath(), 0);
104 if (fpath == NULL) {
105 fprintf(stderr, "%s: cannot find file '%s'\n",
106 argv[0], argv[i]);
107 quit(1);
108 }
109 fcompile(fpath);
110 } else if (!strcmp(argv[i], "-s"))
111 smooth++;
112 else if (!strcmp(argv[i], "-o"))
113 objout++;
114 else
115 goto userror;
116
117 modname = argv[1];
118 surfname = argv[2];
119 m = atoi(argv[6]);
120 n = atoi(argv[7]);
121 if (m <= 0 || n <= 0)
122 goto userror;
123 if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
124 funset(ZNAME, 2, ':', l_dataval);
125 if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
126 loaddata(argv[5], m, n, 3);
127 funset(XNAME, 2, ':', l_dataval);
128 funset(YNAME, 2, ':', l_dataval);
129 } else {
130 loaddata(argv[5], m, n, 1);
131 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
132 scompile(stmp, NULL, 0);
133 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
134 scompile(stmp, NULL, 0);
135 }
136 } else {
137 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
138 scompile(stmp, NULL, 0);
139 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
140 scompile(stmp, NULL, 0);
141 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
142 scompile(stmp, NULL, 0);
143 }
144 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
145 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
146 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
147 if (row0 == NULL || row1 == NULL || row2 == NULL) {
148 fprintf(stderr, "%s: out of memory\n", argv[0]);
149 quit(1);
150 }
151 row0++; row1++; row2++;
152 /* print header */
153 fputs("# ", stdout);
154 printargs(argc, argv, stdout);
155 eclock = 0;
156 /* initialize */
157 comprow(-1.0/m, row0, n);
158 comprow(0.0, row1, n);
159 comprow(1.0/m, row2, n);
160 compnorms(row0, row1, row2, n);
161 if (objout) {
162 printf("\nusemtl %s\n\n", modname);
163 putobjrow(row1, n);
164 }
165 /* for each row */
166 for (i = 0; i < m; i++) {
167 /* compute next row */
168 rp = row0;
169 row0 = row1;
170 row1 = row2;
171 row2 = rp;
172 comprow((double)(i+2)/m, row2, n);
173 compnorms(row0, row1, row2, n);
174 if (objout)
175 putobjrow(row1, n);
176
177 for (j = 0; j < n; j++) {
178 int orient = (j & 1);
179 /* put polygons */
180 if (!(row0[j].valid && row1[j+1].valid))
181 orient = 1;
182 else if (!(row1[j].valid && row0[j+1].valid))
183 orient = 0;
184 if (orient)
185 putsquare(&row0[j], &row1[j],
186 &row0[j+1], &row1[j+1]);
187 else
188 putsquare(&row1[j], &row1[j+1],
189 &row0[j], &row0[j+1]);
190 }
191 }
192
193 return 0;
194
195 userror:
196 fprintf(stderr, "Usage: %s material name ", argv[0]);
197 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-o][-e expr][-f file]\n");
198 return 1;
199 }
200
201
202 void
203 loaddata( /* load point data from file */
204 char *file,
205 int m,
206 int n,
207 int pointsize
208 )
209 {
210 FILE *fp;
211 char word[64];
212 int size;
213 RREAL *dp;
214
215 datarec.flags = HASBORDER; /* assume border values */
216 datarec.m = m+1;
217 datarec.n = n+1;
218 size = datarec.m*datarec.n*pointsize;
219 if (pointsize == 3)
220 datarec.flags |= TRIPLETS;
221 dp = (RREAL *)malloc(size*sizeof(RREAL));
222 if ((datarec.data = dp) == NULL) {
223 fputs("Out of memory\n", stderr);
224 exit(1);
225 }
226 if (!strcmp(file, "-")) {
227 file = "<stdin>";
228 fp = stdin;
229 } else if ((fp = fopen(file, "r")) == NULL) {
230 fputs(file, stderr);
231 fputs(": cannot open\n", stderr);
232 exit(1);
233 }
234 while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
235 if (!isflt(word)) {
236 fprintf(stderr, "%s: garbled data value: %s\n",
237 file, word);
238 exit(1);
239 }
240 *dp++ = atof(word);
241 size--;
242 }
243 if (size == (m+n+1)*pointsize) { /* no border after all */
244 dp = (RREAL *)realloc(datarec.data,
245 m*n*pointsize*sizeof(RREAL));
246 if (dp != NULL)
247 datarec.data = dp;
248 datarec.flags &= ~HASBORDER;
249 datarec.m = m;
250 datarec.n = n;
251 size = 0;
252 }
253 if (datarec.m < 2 || datarec.n < 2 || size != 0 ||
254 fgetword(word, sizeof(word), fp) != NULL) {
255 fputs(file, stderr);
256 fputs(": bad number of data points\n", stderr);
257 exit(1);
258 }
259 fclose(fp);
260 }
261
262
263 double
264 l_dataval( /* return recorded data value */
265 char *nam
266 )
267 {
268 double u, v;
269 int i, j;
270 RREAL *dp;
271 double d00, d01, d10, d11;
272 /* compute coordinates */
273 u = argument(1); v = argument(2);
274 if (datarec.flags & HASBORDER) {
275 i = u *= datarec.m-1;
276 j = v *= datarec.n-1;
277 } else {
278 i = u = u*datarec.m - .5;
279 j = v = v*datarec.n - .5;
280 }
281 if (i < 0) i = 0;
282 else if (i > datarec.m-2) i = datarec.m-2;
283 if (j < 0) j = 0;
284 else if (j > datarec.n-2) j = datarec.n-2;
285 /* compute value */
286 if (datarec.flags & TRIPLETS) {
287 dp = datarec.data + 3*(j*datarec.m + i);
288 if (nam == ZNAME)
289 dp += 2;
290 else if (nam == YNAME)
291 dp++;
292 d00 = dp[0]; d01 = dp[3];
293 dp += 3*datarec.m;
294 d10 = dp[0]; d11 = dp[3];
295 } else {
296 dp = datarec.data + j*datarec.m + i;
297 d00 = dp[0]; d01 = dp[1];
298 dp += datarec.m;
299 d10 = dp[0]; d11 = dp[1];
300 }
301 /* bilinear interpolation */
302 return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
303 }
304
305
306 void
307 putobjrow( /* output vertex row to .OBJ */
308 POINT *rp,
309 int n
310 )
311 {
312 for ( ; n-- >= 0; rp++) {
313 if (!rp->valid)
314 continue;
315 fputs("v ", stdout);
316 pvect(rp->p);
317 if (smooth && !ZEROVECT(rp->n)) {
318 printf("\tvn %.9g %.9g %.9g\n",
319 rp->n[0], rp->n[1], rp->n[2]);
320 rp->nvalid = ++nnorms;
321 } else
322 rp->nvalid = 0;
323 printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]);
324 rp->valid = ++nverts;
325 }
326 }
327
328
329 void
330 putobjvert( /* put out OBJ vertex index triplet */
331 POINT *p
332 )
333 {
334 int pti = p->valid ? p->valid-nverts-1 : 0;
335 int ni = p->nvalid ? p->nvalid-nnorms-1 : 0;
336
337 printf(" %d/%d/%d", pti, pti, ni);
338 }
339
340
341 void
342 putsquare( /* put out a square */
343 POINT *p0,
344 POINT *p1,
345 POINT *p2,
346 POINT *p3
347 )
348 {
349 static int nout = 0;
350 FVECT norm[4];
351 int axis;
352 FVECT v1, v2, vc1, vc2;
353 int ok1, ok2;
354 /* compute exact normals */
355 ok1 = (p0->valid && p1->valid && p2->valid);
356 if (ok1) {
357 VSUB(v1, p1->p, p0->p);
358 VSUB(v2, p2->p, p0->p);
359 fcross(vc1, v1, v2);
360 ok1 = (normalize(vc1) != 0.0);
361 }
362 ok2 = (p1->valid && p2->valid && p3->valid);
363 if (ok2) {
364 VSUB(v1, p2->p, p3->p);
365 VSUB(v2, p1->p, p3->p);
366 fcross(vc2, v1, v2);
367 ok2 = (normalize(vc2) != 0.0);
368 }
369 if (!(ok1 | ok2))
370 return;
371 if (objout) { /* output .OBJ faces */
372 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
373 putc('f', stdout);
374 putobjvert(p0); putobjvert(p1);
375 putobjvert(p3); putobjvert(p2);
376 putc('\n', stdout);
377 return;
378 }
379 if (ok1) {
380 putc('f', stdout);
381 putobjvert(p0); putobjvert(p1); putobjvert(p2);
382 putc('\n', stdout);
383 }
384 if (ok2) {
385 putc('f', stdout);
386 putobjvert(p2); putobjvert(p1); putobjvert(p3);
387 putc('\n', stdout);
388 }
389 return;
390 }
391 /* compute normal interpolation */
392 axis = norminterp(norm, p0, p1, p2, p3);
393
394 /* put out quadrilateral? */
395 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
396 printf("\n%s ", modname);
397 if (axis != -1) {
398 printf("texfunc %s\n%s\n", texname, tsargs);
399 printf("0\n13\t%d\n", axis);
400 pvect(norm[0]);
401 pvect(norm[1]);
402 pvect(norm[2]);
403 fvsum(v1, norm[3], vc1, -0.5);
404 fvsum(v1, v1, vc2, -0.5);
405 pvect(v1);
406 printf("\n%s ", texname);
407 }
408 printf("polygon %s.%d\n", surfname, ++nout);
409 printf("0\n0\n12\n");
410 pvect(p0->p);
411 pvect(p1->p);
412 pvect(p3->p);
413 pvect(p2->p);
414 return;
415 }
416 /* put out triangles? */
417 if (ok1) {
418 printf("\n%s ", modname);
419 if (axis != -1) {
420 printf("texfunc %s\n%s\n", texname, tsargs);
421 printf("0\n13\t%d\n", axis);
422 pvect(norm[0]);
423 pvect(norm[1]);
424 pvect(norm[2]);
425 fvsum(v1, norm[3], vc1, -1.0);
426 pvect(v1);
427 printf("\n%s ", texname);
428 }
429 printf("polygon %s.%d\n", surfname, ++nout);
430 printf("0\n0\n9\n");
431 pvect(p0->p);
432 pvect(p1->p);
433 pvect(p2->p);
434 }
435 if (ok2) {
436 printf("\n%s ", modname);
437 if (axis != -1) {
438 printf("texfunc %s\n%s\n", texname, tsargs);
439 printf("0\n13\t%d\n", axis);
440 pvect(norm[0]);
441 pvect(norm[1]);
442 pvect(norm[2]);
443 fvsum(v2, norm[3], vc2, -1.0);
444 pvect(v2);
445 printf("\n%s ", texname);
446 }
447 printf("polygon %s.%d\n", surfname, ++nout);
448 printf("0\n0\n9\n");
449 pvect(p2->p);
450 pvect(p1->p);
451 pvect(p3->p);
452 }
453 }
454
455
456 void
457 comprow( /* compute row of values */
458 double s,
459 POINT *row,
460 int siz
461 )
462 {
463 double st[2];
464 int end;
465 int checkvalid;
466 int i;
467
468 if (smooth) {
469 i = -1; /* compute one past each end */
470 end = siz+1;
471 } else {
472 if (s < -FTINY || s > 1.0+FTINY)
473 return;
474 i = 0;
475 end = siz;
476 }
477 st[0] = s;
478 checkvalid = (fundefined(VNAME) == 2);
479 while (i <= end) {
480 st[1] = (double)i/siz;
481 if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) {
482 row[i].valid = 0;
483 row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0;
484 row[i].uv[0] = row[i].uv[1] = 0.0;
485 } else {
486 row[i].valid = 1;
487 row[i].p[0] = funvalue(XNAME, 2, st);
488 row[i].p[1] = funvalue(YNAME, 2, st);
489 row[i].p[2] = funvalue(ZNAME, 2, st);
490 row[i].uv[0] = st[0];
491 row[i].uv[1] = st[1];
492 }
493 i++;
494 }
495 }
496
497
498 void
499 compnorms( /* compute row of averaged normals */
500 POINT *r0,
501 POINT *r1,
502 POINT *r2,
503 int siz
504 )
505 {
506 FVECT v1, v2;
507
508 if (!smooth) /* not needed if no smoothing */
509 return;
510 /* compute row 1 normals */
511 while (siz-- >= 0) {
512 if (!r1[0].valid)
513 continue;
514 if (!r0[0].valid) {
515 if (!r2[0].valid) {
516 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
517 continue;
518 }
519 fvsum(v1, r2[0].p, r1[0].p, -1.0);
520 } else if (!r2[0].valid)
521 fvsum(v1, r1[0].p, r0[0].p, -1.0);
522 else
523 fvsum(v1, r2[0].p, r0[0].p, -1.0);
524 if (!r1[-1].valid) {
525 if (!r1[1].valid) {
526 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
527 continue;
528 }
529 fvsum(v2, r1[1].p, r1[0].p, -1.0);
530 } else if (!r1[1].valid)
531 fvsum(v2, r1[0].p, r1[-1].p, -1.0);
532 else
533 fvsum(v2, r1[1].p, r1[-1].p, -1.0);
534 fcross(r1[0].n, v1, v2);
535 normalize(r1[0].n);
536 r0++; r1++; r2++;
537 }
538 }
539
540
541 int
542 norminterp( /* compute normal interpolation */
543 FVECT resmat[4],
544 POINT *p0,
545 POINT *p1,
546 POINT *p2,
547 POINT *p3
548 )
549 {
550 #define u ((ax+1)%3)
551 #define v ((ax+2)%3)
552
553 int ax;
554 MAT4 eqnmat;
555 FVECT v1;
556 int i, j;
557
558 if (!smooth) /* no interpolation if no smoothing */
559 return(-1);
560 /* find dominant axis */
561 VCOPY(v1, p0->n);
562 fvsum(v1, v1, p1->n, 1.0);
563 fvsum(v1, v1, p2->n, 1.0);
564 fvsum(v1, v1, p3->n, 1.0);
565 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
566 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
567 /* assign equation matrix */
568 eqnmat[0][0] = p0->p[u]*p0->p[v];
569 eqnmat[0][1] = p0->p[u];
570 eqnmat[0][2] = p0->p[v];
571 eqnmat[0][3] = 1.0;
572 eqnmat[1][0] = p1->p[u]*p1->p[v];
573 eqnmat[1][1] = p1->p[u];
574 eqnmat[1][2] = p1->p[v];
575 eqnmat[1][3] = 1.0;
576 eqnmat[2][0] = p2->p[u]*p2->p[v];
577 eqnmat[2][1] = p2->p[u];
578 eqnmat[2][2] = p2->p[v];
579 eqnmat[2][3] = 1.0;
580 eqnmat[3][0] = p3->p[u]*p3->p[v];
581 eqnmat[3][1] = p3->p[u];
582 eqnmat[3][2] = p3->p[v];
583 eqnmat[3][3] = 1.0;
584 /* invert matrix (solve system) */
585 if (!invmat4(eqnmat, eqnmat))
586 return(-1); /* no solution */
587 /* compute result matrix */
588 for (j = 0; j < 4; j++)
589 for (i = 0; i < 3; i++)
590 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
591 eqnmat[j][1]*p1->n[i] +
592 eqnmat[j][2]*p2->n[i] +
593 eqnmat[j][3]*p3->n[i];
594 return(ax);
595
596 #undef u
597 #undef v
598 }
599
600
601 double
602 l_hermite(char *nm)
603 {
604 double t;
605
606 t = argument(5);
607 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
608 argument(2)*(-2.0*t+3.0)*t*t +
609 argument(3)*((t-2.0)*t+1.0)*t +
610 argument(4)*(t-1.0)*t*t );
611 }
612
613
614 double
615 l_bezier(char *nm)
616 {
617 double t;
618
619 t = argument(5);
620 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
621 argument(2) * 3.*t*(1.+t*(-2.+t)) +
622 argument(3) * 3.*t*t*(1.-t) +
623 argument(4) * t*t*t );
624 }
625
626
627 double
628 l_bspline(char *nm)
629 {
630 double t;
631
632 t = argument(5);
633 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
634 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
635 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
636 argument(4) * (1./6.*t*t*t) );
637 }