ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 2.24
Committed: Fri Jan 12 00:50:17 2018 UTC (6 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.23: +3 -1 lines
Log Message:
Added missing esupport settings for constant expression reduction

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gensurf.c,v 2.23 2017/01/28 23:09:24 greg Exp $";
3 #endif
4 /*
5 * gensurf.c - program to generate functional surfaces
6 *
7 * Parametric functions x(s,t), y(s,t) and z(s,t)
8 * specify the surface, which is tesselated into an m by n
9 * array of paired triangles.
10 * The surface normal is defined by the right hand
11 * rule applied to (s,t).
12 *
13 * 4/3/87
14 *
15 * 4/16/02 Added conditional vertex output
16 */
17
18 #include "standard.h"
19
20 #include "paths.h"
21 #include "resolu.h"
22 #include "rterror.h"
23 #include "calcomp.h"
24
25 char XNAME[] = "X`SYS"; /* x function name */
26 char YNAME[] = "Y`SYS"; /* y function name */
27 char ZNAME[] = "Z`SYS"; /* z function name */
28
29 char VNAME[] = "valid"; /* valid vertex name */
30
31 #define ABS(x) ((x)>=0 ? (x) : -(x))
32
33 #define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY)
34
35 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
36
37 char vformat[] = "%18.12g %18.12g %18.12g\n";
38 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal";
39 char texname[] = "Phong";
40
41 int smooth = 0; /* apply smoothing? */
42 int objout = 0; /* output .OBJ format? */
43
44 char *modname, *surfname;
45
46 /* recorded data flags */
47 #define HASBORDER 01
48 #define TRIPLETS 02
49 /* a data structure */
50 struct {
51 int flags; /* data type */
52 short m, n; /* number of s and t values */
53 RREAL *data; /* the data itself, s major sort */
54 } datarec; /* our recorded data */
55
56 /* XXX this is redundant with rt/noise3.c, should go to a library */
57 double l_hermite(), l_bezier(), l_bspline(), l_dataval();
58
59 typedef struct {
60 int valid; /* point is valid (vertex number) */
61 int nvalid; /* normal is valid */
62 FVECT p; /* vertex position */
63 FVECT n; /* average normal */
64 RREAL uv[2]; /* (u,v) position */
65 } POINT;
66
67 int nverts = 0; /* vertex output count */
68 int nnorms = 0; /* normal output count */
69
70 void loaddata(char *file, int m, int n, int pointsize);
71 double l_dataval(char *nam);
72 void putobjrow(POINT *rp, int n);
73 void putobjvert(POINT *p);
74 void putsquare(POINT *p0, POINT *p1, POINT *p2, POINT *p3);
75 void comprow(double s, POINT *row, int siz);
76 void compnorms(POINT *r0, POINT *r1, POINT *r2, int siz);
77 int norminterp(FVECT resmat[4], POINT *p0, POINT *p1, POINT *p2, POINT *p3);
78
79
80 int
81 main(argc, argv)
82 int argc;
83 char *argv[];
84 {
85 POINT *row0, *row1, *row2, *rp;
86 int i, j, m, n;
87 char stmp[256];
88
89 esupport |= E_VARIABLE|E_FUNCTION|E_RCONST;
90 esupport &= ~(E_OUTCHAN|E_INCHAN);
91 varset("PI", ':', PI);
92 funset("hermite", 5, ':', l_hermite);
93 funset("bezier", 5, ':', l_bezier);
94 funset("bspline", 5, ':', l_bspline);
95
96 if (argc < 8)
97 goto userror;
98
99 for (i = 8; i < argc; i++)
100 if (!strcmp(argv[i], "-e"))
101 scompile(argv[++i], NULL, 0);
102 else if (!strcmp(argv[i], "-f"))
103 fcompile(argv[++i]);
104 else if (!strcmp(argv[i], "-s"))
105 smooth++;
106 else if (!strcmp(argv[i], "-o"))
107 objout++;
108 else
109 goto userror;
110
111 modname = argv[1];
112 surfname = argv[2];
113 m = atoi(argv[6]);
114 n = atoi(argv[7]);
115 if (m <= 0 || n <= 0)
116 goto userror;
117 if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
118 funset(ZNAME, 2, ':', l_dataval);
119 if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
120 loaddata(argv[5], m, n, 3);
121 funset(XNAME, 2, ':', l_dataval);
122 funset(YNAME, 2, ':', l_dataval);
123 } else {
124 loaddata(argv[5], m, n, 1);
125 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
126 scompile(stmp, NULL, 0);
127 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
128 scompile(stmp, NULL, 0);
129 }
130 } else {
131 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
132 scompile(stmp, NULL, 0);
133 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
134 scompile(stmp, NULL, 0);
135 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
136 scompile(stmp, NULL, 0);
137 }
138 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
139 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
140 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
141 if (row0 == NULL || row1 == NULL || row2 == NULL) {
142 fprintf(stderr, "%s: out of memory\n", argv[0]);
143 quit(1);
144 }
145 row0++; row1++; row2++;
146 /* print header */
147 fputs("# ", stdout);
148 printargs(argc, argv, stdout);
149 eclock = 0;
150 /* initialize */
151 comprow(-1.0/m, row0, n);
152 comprow(0.0, row1, n);
153 comprow(1.0/m, row2, n);
154 compnorms(row0, row1, row2, n);
155 if (objout) {
156 printf("\nusemtl %s\n\n", modname);
157 putobjrow(row1, n);
158 }
159 /* for each row */
160 for (i = 0; i < m; i++) {
161 /* compute next row */
162 rp = row0;
163 row0 = row1;
164 row1 = row2;
165 row2 = rp;
166 comprow((double)(i+2)/m, row2, n);
167 compnorms(row0, row1, row2, n);
168 if (objout)
169 putobjrow(row1, n);
170
171 for (j = 0; j < n; j++) {
172 int orient = (j & 1);
173 /* put polygons */
174 if (!(row0[j].valid && row1[j+1].valid))
175 orient = 1;
176 else if (!(row1[j].valid && row0[j+1].valid))
177 orient = 0;
178 if (orient)
179 putsquare(&row0[j], &row1[j],
180 &row0[j+1], &row1[j+1]);
181 else
182 putsquare(&row1[j], &row1[j+1],
183 &row0[j], &row0[j+1]);
184 }
185 }
186
187 return 0;
188
189 userror:
190 fprintf(stderr, "Usage: %s material name ", argv[0]);
191 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-o][-e expr][-f file]\n");
192 return 1;
193 }
194
195
196 void
197 loaddata( /* load point data from file */
198 char *file,
199 int m,
200 int n,
201 int pointsize
202 )
203 {
204 FILE *fp;
205 char word[64];
206 int size;
207 RREAL *dp;
208
209 datarec.flags = HASBORDER; /* assume border values */
210 datarec.m = m+1;
211 datarec.n = n+1;
212 size = datarec.m*datarec.n*pointsize;
213 if (pointsize == 3)
214 datarec.flags |= TRIPLETS;
215 dp = (RREAL *)malloc(size*sizeof(RREAL));
216 if ((datarec.data = dp) == NULL) {
217 fputs("Out of memory\n", stderr);
218 exit(1);
219 }
220 if (!strcmp(file, "-")) {
221 file = "<stdin>";
222 fp = stdin;
223 } else if ((fp = fopen(file, "r")) == NULL) {
224 fputs(file, stderr);
225 fputs(": cannot open\n", stderr);
226 exit(1);
227 }
228 while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
229 if (!isflt(word)) {
230 fprintf(stderr, "%s: garbled data value: %s\n",
231 file, word);
232 exit(1);
233 }
234 *dp++ = atof(word);
235 size--;
236 }
237 if (size == (m+n+1)*pointsize) { /* no border after all */
238 dp = (RREAL *)realloc(datarec.data,
239 m*n*pointsize*sizeof(RREAL));
240 if (dp != NULL)
241 datarec.data = dp;
242 datarec.flags &= ~HASBORDER;
243 datarec.m = m;
244 datarec.n = n;
245 size = 0;
246 }
247 if (datarec.m < 2 || datarec.n < 2 || size != 0 ||
248 fgetword(word, sizeof(word), fp) != NULL) {
249 fputs(file, stderr);
250 fputs(": bad number of data points\n", stderr);
251 exit(1);
252 }
253 fclose(fp);
254 }
255
256
257 double
258 l_dataval( /* return recorded data value */
259 char *nam
260 )
261 {
262 double u, v;
263 int i, j;
264 RREAL *dp;
265 double d00, d01, d10, d11;
266 /* compute coordinates */
267 u = argument(1); v = argument(2);
268 if (datarec.flags & HASBORDER) {
269 i = u *= datarec.m-1;
270 j = v *= datarec.n-1;
271 } else {
272 i = u = u*datarec.m - .5;
273 j = v = v*datarec.n - .5;
274 }
275 if (i < 0) i = 0;
276 else if (i > datarec.m-2) i = datarec.m-2;
277 if (j < 0) j = 0;
278 else if (j > datarec.n-2) j = datarec.n-2;
279 /* compute value */
280 if (datarec.flags & TRIPLETS) {
281 dp = datarec.data + 3*(j*datarec.m + i);
282 if (nam == ZNAME)
283 dp += 2;
284 else if (nam == YNAME)
285 dp++;
286 d00 = dp[0]; d01 = dp[3];
287 dp += 3*datarec.m;
288 d10 = dp[0]; d11 = dp[3];
289 } else {
290 dp = datarec.data + j*datarec.m + i;
291 d00 = dp[0]; d01 = dp[1];
292 dp += datarec.m;
293 d10 = dp[0]; d11 = dp[1];
294 }
295 /* bilinear interpolation */
296 return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
297 }
298
299
300 void
301 putobjrow( /* output vertex row to .OBJ */
302 POINT *rp,
303 int n
304 )
305 {
306 for ( ; n-- >= 0; rp++) {
307 if (!rp->valid)
308 continue;
309 fputs("v ", stdout);
310 pvect(rp->p);
311 if (smooth && !ZEROVECT(rp->n)) {
312 printf("\tvn %.9g %.9g %.9g\n",
313 rp->n[0], rp->n[1], rp->n[2]);
314 rp->nvalid = ++nnorms;
315 } else
316 rp->nvalid = 0;
317 printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]);
318 rp->valid = ++nverts;
319 }
320 }
321
322
323 void
324 putobjvert( /* put out OBJ vertex index triplet */
325 POINT *p
326 )
327 {
328 int pti = p->valid ? p->valid-nverts-1 : 0;
329 int ni = p->nvalid ? p->nvalid-nnorms-1 : 0;
330
331 printf(" %d/%d/%d", pti, pti, ni);
332 }
333
334
335 void
336 putsquare( /* put out a square */
337 POINT *p0,
338 POINT *p1,
339 POINT *p2,
340 POINT *p3
341 )
342 {
343 static int nout = 0;
344 FVECT norm[4];
345 int axis;
346 FVECT v1, v2, vc1, vc2;
347 int ok1, ok2;
348 /* compute exact normals */
349 ok1 = (p0->valid && p1->valid && p2->valid);
350 if (ok1) {
351 VSUB(v1, p1->p, p0->p);
352 VSUB(v2, p2->p, p0->p);
353 fcross(vc1, v1, v2);
354 ok1 = (normalize(vc1) != 0.0);
355 }
356 ok2 = (p1->valid && p2->valid && p3->valid);
357 if (ok2) {
358 VSUB(v1, p2->p, p3->p);
359 VSUB(v2, p1->p, p3->p);
360 fcross(vc2, v1, v2);
361 ok2 = (normalize(vc2) != 0.0);
362 }
363 if (!(ok1 | ok2))
364 return;
365 if (objout) { /* output .OBJ faces */
366 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
367 putc('f', stdout);
368 putobjvert(p0); putobjvert(p1);
369 putobjvert(p3); putobjvert(p2);
370 putc('\n', stdout);
371 return;
372 }
373 if (ok1) {
374 putc('f', stdout);
375 putobjvert(p0); putobjvert(p1); putobjvert(p2);
376 putc('\n', stdout);
377 }
378 if (ok2) {
379 putc('f', stdout);
380 putobjvert(p2); putobjvert(p1); putobjvert(p3);
381 putc('\n', stdout);
382 }
383 return;
384 }
385 /* compute normal interpolation */
386 axis = norminterp(norm, p0, p1, p2, p3);
387
388 /* put out quadrilateral? */
389 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
390 printf("\n%s ", modname);
391 if (axis != -1) {
392 printf("texfunc %s\n%s\n", texname, tsargs);
393 printf("0\n13\t%d\n", axis);
394 pvect(norm[0]);
395 pvect(norm[1]);
396 pvect(norm[2]);
397 fvsum(v1, norm[3], vc1, -0.5);
398 fvsum(v1, v1, vc2, -0.5);
399 pvect(v1);
400 printf("\n%s ", texname);
401 }
402 printf("polygon %s.%d\n", surfname, ++nout);
403 printf("0\n0\n12\n");
404 pvect(p0->p);
405 pvect(p1->p);
406 pvect(p3->p);
407 pvect(p2->p);
408 return;
409 }
410 /* put out triangles? */
411 if (ok1) {
412 printf("\n%s ", modname);
413 if (axis != -1) {
414 printf("texfunc %s\n%s\n", texname, tsargs);
415 printf("0\n13\t%d\n", axis);
416 pvect(norm[0]);
417 pvect(norm[1]);
418 pvect(norm[2]);
419 fvsum(v1, norm[3], vc1, -1.0);
420 pvect(v1);
421 printf("\n%s ", texname);
422 }
423 printf("polygon %s.%d\n", surfname, ++nout);
424 printf("0\n0\n9\n");
425 pvect(p0->p);
426 pvect(p1->p);
427 pvect(p2->p);
428 }
429 if (ok2) {
430 printf("\n%s ", modname);
431 if (axis != -1) {
432 printf("texfunc %s\n%s\n", texname, tsargs);
433 printf("0\n13\t%d\n", axis);
434 pvect(norm[0]);
435 pvect(norm[1]);
436 pvect(norm[2]);
437 fvsum(v2, norm[3], vc2, -1.0);
438 pvect(v2);
439 printf("\n%s ", texname);
440 }
441 printf("polygon %s.%d\n", surfname, ++nout);
442 printf("0\n0\n9\n");
443 pvect(p2->p);
444 pvect(p1->p);
445 pvect(p3->p);
446 }
447 }
448
449
450 void
451 comprow( /* compute row of values */
452 double s,
453 POINT *row,
454 int siz
455 )
456 {
457 double st[2];
458 int end;
459 int checkvalid;
460 int i;
461
462 if (smooth) {
463 i = -1; /* compute one past each end */
464 end = siz+1;
465 } else {
466 if (s < -FTINY || s > 1.0+FTINY)
467 return;
468 i = 0;
469 end = siz;
470 }
471 st[0] = s;
472 checkvalid = (fundefined(VNAME) == 2);
473 while (i <= end) {
474 st[1] = (double)i/siz;
475 if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) {
476 row[i].valid = 0;
477 row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0;
478 row[i].uv[0] = row[i].uv[1] = 0.0;
479 } else {
480 row[i].valid = 1;
481 row[i].p[0] = funvalue(XNAME, 2, st);
482 row[i].p[1] = funvalue(YNAME, 2, st);
483 row[i].p[2] = funvalue(ZNAME, 2, st);
484 row[i].uv[0] = st[0];
485 row[i].uv[1] = st[1];
486 }
487 i++;
488 }
489 }
490
491
492 void
493 compnorms( /* compute row of averaged normals */
494 POINT *r0,
495 POINT *r1,
496 POINT *r2,
497 int siz
498 )
499 {
500 FVECT v1, v2;
501
502 if (!smooth) /* not needed if no smoothing */
503 return;
504 /* compute row 1 normals */
505 while (siz-- >= 0) {
506 if (!r1[0].valid)
507 continue;
508 if (!r0[0].valid) {
509 if (!r2[0].valid) {
510 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
511 continue;
512 }
513 fvsum(v1, r2[0].p, r1[0].p, -1.0);
514 } else if (!r2[0].valid)
515 fvsum(v1, r1[0].p, r0[0].p, -1.0);
516 else
517 fvsum(v1, r2[0].p, r0[0].p, -1.0);
518 if (!r1[-1].valid) {
519 if (!r1[1].valid) {
520 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
521 continue;
522 }
523 fvsum(v2, r1[1].p, r1[0].p, -1.0);
524 } else if (!r1[1].valid)
525 fvsum(v2, r1[0].p, r1[-1].p, -1.0);
526 else
527 fvsum(v2, r1[1].p, r1[-1].p, -1.0);
528 fcross(r1[0].n, v1, v2);
529 normalize(r1[0].n);
530 r0++; r1++; r2++;
531 }
532 }
533
534
535 int
536 norminterp( /* compute normal interpolation */
537 FVECT resmat[4],
538 POINT *p0,
539 POINT *p1,
540 POINT *p2,
541 POINT *p3
542 )
543 {
544 #define u ((ax+1)%3)
545 #define v ((ax+2)%3)
546
547 int ax;
548 MAT4 eqnmat;
549 FVECT v1;
550 int i, j;
551
552 if (!smooth) /* no interpolation if no smoothing */
553 return(-1);
554 /* find dominant axis */
555 VCOPY(v1, p0->n);
556 fvsum(v1, v1, p1->n, 1.0);
557 fvsum(v1, v1, p2->n, 1.0);
558 fvsum(v1, v1, p3->n, 1.0);
559 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
560 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
561 /* assign equation matrix */
562 eqnmat[0][0] = p0->p[u]*p0->p[v];
563 eqnmat[0][1] = p0->p[u];
564 eqnmat[0][2] = p0->p[v];
565 eqnmat[0][3] = 1.0;
566 eqnmat[1][0] = p1->p[u]*p1->p[v];
567 eqnmat[1][1] = p1->p[u];
568 eqnmat[1][2] = p1->p[v];
569 eqnmat[1][3] = 1.0;
570 eqnmat[2][0] = p2->p[u]*p2->p[v];
571 eqnmat[2][1] = p2->p[u];
572 eqnmat[2][2] = p2->p[v];
573 eqnmat[2][3] = 1.0;
574 eqnmat[3][0] = p3->p[u]*p3->p[v];
575 eqnmat[3][1] = p3->p[u];
576 eqnmat[3][2] = p3->p[v];
577 eqnmat[3][3] = 1.0;
578 /* invert matrix (solve system) */
579 if (!invmat4(eqnmat, eqnmat))
580 return(-1); /* no solution */
581 /* compute result matrix */
582 for (j = 0; j < 4; j++)
583 for (i = 0; i < 3; i++)
584 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
585 eqnmat[j][1]*p1->n[i] +
586 eqnmat[j][2]*p2->n[i] +
587 eqnmat[j][3]*p3->n[i];
588 return(ax);
589
590 #undef u
591 #undef v
592 }
593
594
595 double
596 l_hermite(char *nm)
597 {
598 double t;
599
600 t = argument(5);
601 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
602 argument(2)*(-2.0*t+3.0)*t*t +
603 argument(3)*((t-2.0)*t+1.0)*t +
604 argument(4)*(t-1.0)*t*t );
605 }
606
607
608 double
609 l_bezier(char *nm)
610 {
611 double t;
612
613 t = argument(5);
614 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
615 argument(2) * 3.*t*(1.+t*(-2.+t)) +
616 argument(3) * 3.*t*t*(1.-t) +
617 argument(4) * t*t*t );
618 }
619
620
621 double
622 l_bspline(char *nm)
623 {
624 double t;
625
626 t = argument(5);
627 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
628 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
629 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
630 argument(4) * (1./6.*t*t*t) );
631 }