| 1 | #ifndef lint | 
| 2 | static const char RCSid[] = "$Id: gensurf.c,v 2.23 2017/01/28 23:09:24 greg Exp $"; | 
| 3 | #endif | 
| 4 | /* | 
| 5 | *  gensurf.c - program to generate functional surfaces | 
| 6 | * | 
| 7 | *      Parametric functions x(s,t), y(s,t) and z(s,t) | 
| 8 | *  specify the surface, which is tesselated into an m by n | 
| 9 | *  array of paired triangles. | 
| 10 | *      The surface normal is defined by the right hand | 
| 11 | *  rule applied to (s,t). | 
| 12 | * | 
| 13 | *      4/3/87 | 
| 14 | * | 
| 15 | *      4/16/02 Added conditional vertex output | 
| 16 | */ | 
| 17 |  | 
| 18 | #include  "standard.h" | 
| 19 |  | 
| 20 | #include  "paths.h" | 
| 21 | #include  "resolu.h" | 
| 22 | #include  "rterror.h" | 
| 23 | #include  "calcomp.h" | 
| 24 |  | 
| 25 | char  XNAME[] =         "X`SYS";                /* x function name */ | 
| 26 | char  YNAME[] =         "Y`SYS";                /* y function name */ | 
| 27 | char  ZNAME[] =         "Z`SYS";                /* z function name */ | 
| 28 |  | 
| 29 | char  VNAME[] =         "valid";                /* valid vertex name */ | 
| 30 |  | 
| 31 | #define  ABS(x)         ((x)>=0 ? (x) : -(x)) | 
| 32 |  | 
| 33 | #define  ZEROVECT(v)    (DOT(v,v) <= FTINY*FTINY) | 
| 34 |  | 
| 35 | #define  pvect(p)       printf(vformat, (p)[0], (p)[1], (p)[2]) | 
| 36 |  | 
| 37 | char  vformat[] = "%18.12g %18.12g %18.12g\n"; | 
| 38 | char  tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal"; | 
| 39 | char  texname[] = "Phong"; | 
| 40 |  | 
| 41 | int  smooth = 0;                /* apply smoothing? */ | 
| 42 | int  objout = 0;                /* output .OBJ format? */ | 
| 43 |  | 
| 44 | char  *modname, *surfname; | 
| 45 |  | 
| 46 | /* recorded data flags */ | 
| 47 | #define  HASBORDER      01 | 
| 48 | #define  TRIPLETS       02 | 
| 49 | /* a data structure */ | 
| 50 | struct { | 
| 51 | int     flags;                  /* data type */ | 
| 52 | short   m, n;                   /* number of s and t values */ | 
| 53 | RREAL   *data;                  /* the data itself, s major sort */ | 
| 54 | } datarec;                      /* our recorded data */ | 
| 55 |  | 
| 56 | /* XXX this is redundant with rt/noise3.c, should go to a library */ | 
| 57 | double  l_hermite(), l_bezier(), l_bspline(), l_dataval(); | 
| 58 |  | 
| 59 | typedef struct { | 
| 60 | int  valid;     /* point is valid (vertex number) */ | 
| 61 | int  nvalid;    /* normal is valid */ | 
| 62 | FVECT  p;       /* vertex position */ | 
| 63 | FVECT  n;       /* average normal */ | 
| 64 | RREAL  uv[2];   /* (u,v) position */ | 
| 65 | } POINT; | 
| 66 |  | 
| 67 | int  nverts = 0;                /* vertex output count */ | 
| 68 | int  nnorms = 0;                /* normal output count */ | 
| 69 |  | 
| 70 | void loaddata(char *file, int m, int n, int pointsize); | 
| 71 | double l_dataval(char *nam); | 
| 72 | void putobjrow(POINT *rp, int n); | 
| 73 | void putobjvert(POINT *p); | 
| 74 | void putsquare(POINT *p0, POINT *p1, POINT *p2, POINT *p3); | 
| 75 | void comprow(double s, POINT *row, int siz); | 
| 76 | void compnorms(POINT *r0, POINT *r1, POINT *r2, int siz); | 
| 77 | int norminterp(FVECT resmat[4], POINT *p0, POINT *p1, POINT *p2, POINT *p3); | 
| 78 |  | 
| 79 |  | 
| 80 | int | 
| 81 | main(argc, argv) | 
| 82 | int  argc; | 
| 83 | char  *argv[]; | 
| 84 | { | 
| 85 | POINT  *row0, *row1, *row2, *rp; | 
| 86 | int  i, j, m, n; | 
| 87 | char  stmp[256]; | 
| 88 |  | 
| 89 | esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; | 
| 90 | esupport &= ~(E_OUTCHAN|E_INCHAN); | 
| 91 | varset("PI", ':', PI); | 
| 92 | funset("hermite", 5, ':', l_hermite); | 
| 93 | funset("bezier", 5, ':', l_bezier); | 
| 94 | funset("bspline", 5, ':', l_bspline); | 
| 95 |  | 
| 96 | if (argc < 8) | 
| 97 | goto userror; | 
| 98 |  | 
| 99 | for (i = 8; i < argc; i++) | 
| 100 | if (!strcmp(argv[i], "-e")) | 
| 101 | scompile(argv[++i], NULL, 0); | 
| 102 | else if (!strcmp(argv[i], "-f")) | 
| 103 | fcompile(argv[++i]); | 
| 104 | else if (!strcmp(argv[i], "-s")) | 
| 105 | smooth++; | 
| 106 | else if (!strcmp(argv[i], "-o")) | 
| 107 | objout++; | 
| 108 | else | 
| 109 | goto userror; | 
| 110 |  | 
| 111 | modname = argv[1]; | 
| 112 | surfname = argv[2]; | 
| 113 | m = atoi(argv[6]); | 
| 114 | n = atoi(argv[7]); | 
| 115 | if (m <= 0 || n <= 0) | 
| 116 | goto userror; | 
| 117 | if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */ | 
| 118 | funset(ZNAME, 2, ':', l_dataval); | 
| 119 | if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) { | 
| 120 | loaddata(argv[5], m, n, 3); | 
| 121 | funset(XNAME, 2, ':', l_dataval); | 
| 122 | funset(YNAME, 2, ':', l_dataval); | 
| 123 | } else { | 
| 124 | loaddata(argv[5], m, n, 1); | 
| 125 | sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); | 
| 126 | scompile(stmp, NULL, 0); | 
| 127 | sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); | 
| 128 | scompile(stmp, NULL, 0); | 
| 129 | } | 
| 130 | } else { | 
| 131 | sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); | 
| 132 | scompile(stmp, NULL, 0); | 
| 133 | sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); | 
| 134 | scompile(stmp, NULL, 0); | 
| 135 | sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]); | 
| 136 | scompile(stmp, NULL, 0); | 
| 137 | } | 
| 138 | row0 = (POINT *)malloc((n+3)*sizeof(POINT)); | 
| 139 | row1 = (POINT *)malloc((n+3)*sizeof(POINT)); | 
| 140 | row2 = (POINT *)malloc((n+3)*sizeof(POINT)); | 
| 141 | if (row0 == NULL || row1 == NULL || row2 == NULL) { | 
| 142 | fprintf(stderr, "%s: out of memory\n", argv[0]); | 
| 143 | quit(1); | 
| 144 | } | 
| 145 | row0++; row1++; row2++; | 
| 146 | /* print header */ | 
| 147 | fputs("# ", stdout); | 
| 148 | printargs(argc, argv, stdout); | 
| 149 | eclock = 0; | 
| 150 | /* initialize */ | 
| 151 | comprow(-1.0/m, row0, n); | 
| 152 | comprow(0.0, row1, n); | 
| 153 | comprow(1.0/m, row2, n); | 
| 154 | compnorms(row0, row1, row2, n); | 
| 155 | if (objout) { | 
| 156 | printf("\nusemtl %s\n\n", modname); | 
| 157 | putobjrow(row1, n); | 
| 158 | } | 
| 159 | /* for each row */ | 
| 160 | for (i = 0; i < m; i++) { | 
| 161 | /* compute next row */ | 
| 162 | rp = row0; | 
| 163 | row0 = row1; | 
| 164 | row1 = row2; | 
| 165 | row2 = rp; | 
| 166 | comprow((double)(i+2)/m, row2, n); | 
| 167 | compnorms(row0, row1, row2, n); | 
| 168 | if (objout) | 
| 169 | putobjrow(row1, n); | 
| 170 |  | 
| 171 | for (j = 0; j < n; j++) { | 
| 172 | int  orient = (j & 1); | 
| 173 | /* put polygons */ | 
| 174 | if (!(row0[j].valid && row1[j+1].valid)) | 
| 175 | orient = 1; | 
| 176 | else if (!(row1[j].valid && row0[j+1].valid)) | 
| 177 | orient = 0; | 
| 178 | if (orient) | 
| 179 | putsquare(&row0[j], &row1[j], | 
| 180 | &row0[j+1], &row1[j+1]); | 
| 181 | else | 
| 182 | putsquare(&row1[j], &row1[j+1], | 
| 183 | &row0[j], &row0[j+1]); | 
| 184 | } | 
| 185 | } | 
| 186 |  | 
| 187 | return 0; | 
| 188 |  | 
| 189 | userror: | 
| 190 | fprintf(stderr, "Usage: %s material name ", argv[0]); | 
| 191 | fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-o][-e expr][-f file]\n"); | 
| 192 | return 1; | 
| 193 | } | 
| 194 |  | 
| 195 |  | 
| 196 | void | 
| 197 | loaddata(               /* load point data from file */ | 
| 198 | char  *file, | 
| 199 | int  m, | 
| 200 | int  n, | 
| 201 | int  pointsize | 
| 202 | ) | 
| 203 | { | 
| 204 | FILE  *fp; | 
| 205 | char  word[64]; | 
| 206 | int  size; | 
| 207 | RREAL  *dp; | 
| 208 |  | 
| 209 | datarec.flags = HASBORDER;              /* assume border values */ | 
| 210 | datarec.m = m+1; | 
| 211 | datarec.n = n+1; | 
| 212 | size = datarec.m*datarec.n*pointsize; | 
| 213 | if (pointsize == 3) | 
| 214 | datarec.flags |= TRIPLETS; | 
| 215 | dp = (RREAL *)malloc(size*sizeof(RREAL)); | 
| 216 | if ((datarec.data = dp) == NULL) { | 
| 217 | fputs("Out of memory\n", stderr); | 
| 218 | exit(1); | 
| 219 | } | 
| 220 | if (!strcmp(file, "-")) { | 
| 221 | file = "<stdin>"; | 
| 222 | fp = stdin; | 
| 223 | } else if ((fp = fopen(file, "r")) == NULL) { | 
| 224 | fputs(file, stderr); | 
| 225 | fputs(": cannot open\n", stderr); | 
| 226 | exit(1); | 
| 227 | } | 
| 228 | while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) { | 
| 229 | if (!isflt(word)) { | 
| 230 | fprintf(stderr, "%s: garbled data value: %s\n", | 
| 231 | file, word); | 
| 232 | exit(1); | 
| 233 | } | 
| 234 | *dp++ = atof(word); | 
| 235 | size--; | 
| 236 | } | 
| 237 | if (size == (m+n+1)*pointsize) {        /* no border after all */ | 
| 238 | dp = (RREAL *)realloc(datarec.data, | 
| 239 | m*n*pointsize*sizeof(RREAL)); | 
| 240 | if (dp != NULL) | 
| 241 | datarec.data = dp; | 
| 242 | datarec.flags &= ~HASBORDER; | 
| 243 | datarec.m = m; | 
| 244 | datarec.n = n; | 
| 245 | size = 0; | 
| 246 | } | 
| 247 | if (datarec.m < 2 || datarec.n < 2 || size != 0 || | 
| 248 | fgetword(word, sizeof(word), fp) != NULL) { | 
| 249 | fputs(file, stderr); | 
| 250 | fputs(": bad number of data points\n", stderr); | 
| 251 | exit(1); | 
| 252 | } | 
| 253 | fclose(fp); | 
| 254 | } | 
| 255 |  | 
| 256 |  | 
| 257 | double | 
| 258 | l_dataval(                              /* return recorded data value */ | 
| 259 | char  *nam | 
| 260 | ) | 
| 261 | { | 
| 262 | double  u, v; | 
| 263 | int  i, j; | 
| 264 | RREAL  *dp; | 
| 265 | double  d00, d01, d10, d11; | 
| 266 | /* compute coordinates */ | 
| 267 | u = argument(1); v = argument(2); | 
| 268 | if (datarec.flags & HASBORDER) { | 
| 269 | i = u *= datarec.m-1; | 
| 270 | j = v *= datarec.n-1; | 
| 271 | } else { | 
| 272 | i = u = u*datarec.m - .5; | 
| 273 | j = v = v*datarec.n - .5; | 
| 274 | } | 
| 275 | if (i < 0) i = 0; | 
| 276 | else if (i > datarec.m-2) i = datarec.m-2; | 
| 277 | if (j < 0) j = 0; | 
| 278 | else if (j > datarec.n-2) j = datarec.n-2; | 
| 279 | /* compute value */ | 
| 280 | if (datarec.flags & TRIPLETS) { | 
| 281 | dp = datarec.data + 3*(j*datarec.m + i); | 
| 282 | if (nam == ZNAME) | 
| 283 | dp += 2; | 
| 284 | else if (nam == YNAME) | 
| 285 | dp++; | 
| 286 | d00 = dp[0]; d01 = dp[3]; | 
| 287 | dp += 3*datarec.m; | 
| 288 | d10 = dp[0]; d11 = dp[3]; | 
| 289 | } else { | 
| 290 | dp = datarec.data + j*datarec.m + i; | 
| 291 | d00 = dp[0]; d01 = dp[1]; | 
| 292 | dp += datarec.m; | 
| 293 | d10 = dp[0]; d11 = dp[1]; | 
| 294 | } | 
| 295 | /* bilinear interpolation */ | 
| 296 | return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11)); | 
| 297 | } | 
| 298 |  | 
| 299 |  | 
| 300 | void | 
| 301 | putobjrow(                      /* output vertex row to .OBJ */ | 
| 302 | POINT  *rp, | 
| 303 | int  n | 
| 304 | ) | 
| 305 | { | 
| 306 | for ( ; n-- >= 0; rp++) { | 
| 307 | if (!rp->valid) | 
| 308 | continue; | 
| 309 | fputs("v ", stdout); | 
| 310 | pvect(rp->p); | 
| 311 | if (smooth && !ZEROVECT(rp->n)) { | 
| 312 | printf("\tvn %.9g %.9g %.9g\n", | 
| 313 | rp->n[0], rp->n[1], rp->n[2]); | 
| 314 | rp->nvalid = ++nnorms; | 
| 315 | } else | 
| 316 | rp->nvalid = 0; | 
| 317 | printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]); | 
| 318 | rp->valid = ++nverts; | 
| 319 | } | 
| 320 | } | 
| 321 |  | 
| 322 |  | 
| 323 | void | 
| 324 | putobjvert(             /* put out OBJ vertex index triplet */ | 
| 325 | POINT *p | 
| 326 | ) | 
| 327 | { | 
| 328 | int     pti = p->valid ? p->valid-nverts-1 : 0; | 
| 329 | int     ni = p->nvalid ? p->nvalid-nnorms-1 : 0; | 
| 330 |  | 
| 331 | printf(" %d/%d/%d", pti, pti, ni); | 
| 332 | } | 
| 333 |  | 
| 334 |  | 
| 335 | void | 
| 336 | putsquare(              /* put out a square */ | 
| 337 | POINT *p0, | 
| 338 | POINT *p1, | 
| 339 | POINT *p2, | 
| 340 | POINT *p3 | 
| 341 | ) | 
| 342 | { | 
| 343 | static int  nout = 0; | 
| 344 | FVECT  norm[4]; | 
| 345 | int  axis; | 
| 346 | FVECT  v1, v2, vc1, vc2; | 
| 347 | int  ok1, ok2; | 
| 348 | /* compute exact normals */ | 
| 349 | ok1 = (p0->valid && p1->valid && p2->valid); | 
| 350 | if (ok1) { | 
| 351 | VSUB(v1, p1->p, p0->p); | 
| 352 | VSUB(v2, p2->p, p0->p); | 
| 353 | fcross(vc1, v1, v2); | 
| 354 | ok1 = (normalize(vc1) != 0.0); | 
| 355 | } | 
| 356 | ok2 = (p1->valid && p2->valid && p3->valid); | 
| 357 | if (ok2) { | 
| 358 | VSUB(v1, p2->p, p3->p); | 
| 359 | VSUB(v2, p1->p, p3->p); | 
| 360 | fcross(vc2, v1, v2); | 
| 361 | ok2 = (normalize(vc2) != 0.0); | 
| 362 | } | 
| 363 | if (!(ok1 | ok2)) | 
| 364 | return; | 
| 365 | if (objout) {                   /* output .OBJ faces */ | 
| 366 | if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { | 
| 367 | putc('f', stdout); | 
| 368 | putobjvert(p0); putobjvert(p1); | 
| 369 | putobjvert(p3); putobjvert(p2); | 
| 370 | putc('\n', stdout); | 
| 371 | return; | 
| 372 | } | 
| 373 | if (ok1) { | 
| 374 | putc('f', stdout); | 
| 375 | putobjvert(p0); putobjvert(p1); putobjvert(p2); | 
| 376 | putc('\n', stdout); | 
| 377 | } | 
| 378 | if (ok2) { | 
| 379 | putc('f', stdout); | 
| 380 | putobjvert(p2); putobjvert(p1); putobjvert(p3); | 
| 381 | putc('\n', stdout); | 
| 382 | } | 
| 383 | return; | 
| 384 | } | 
| 385 | /* compute normal interpolation */ | 
| 386 | axis = norminterp(norm, p0, p1, p2, p3); | 
| 387 |  | 
| 388 | /* put out quadrilateral? */ | 
| 389 | if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { | 
| 390 | printf("\n%s ", modname); | 
| 391 | if (axis != -1) { | 
| 392 | printf("texfunc %s\n%s\n", texname, tsargs); | 
| 393 | printf("0\n13\t%d\n", axis); | 
| 394 | pvect(norm[0]); | 
| 395 | pvect(norm[1]); | 
| 396 | pvect(norm[2]); | 
| 397 | fvsum(v1, norm[3], vc1, -0.5); | 
| 398 | fvsum(v1, v1, vc2, -0.5); | 
| 399 | pvect(v1); | 
| 400 | printf("\n%s ", texname); | 
| 401 | } | 
| 402 | printf("polygon %s.%d\n", surfname, ++nout); | 
| 403 | printf("0\n0\n12\n"); | 
| 404 | pvect(p0->p); | 
| 405 | pvect(p1->p); | 
| 406 | pvect(p3->p); | 
| 407 | pvect(p2->p); | 
| 408 | return; | 
| 409 | } | 
| 410 | /* put out triangles? */ | 
| 411 | if (ok1) { | 
| 412 | printf("\n%s ", modname); | 
| 413 | if (axis != -1) { | 
| 414 | printf("texfunc %s\n%s\n", texname, tsargs); | 
| 415 | printf("0\n13\t%d\n", axis); | 
| 416 | pvect(norm[0]); | 
| 417 | pvect(norm[1]); | 
| 418 | pvect(norm[2]); | 
| 419 | fvsum(v1, norm[3], vc1, -1.0); | 
| 420 | pvect(v1); | 
| 421 | printf("\n%s ", texname); | 
| 422 | } | 
| 423 | printf("polygon %s.%d\n", surfname, ++nout); | 
| 424 | printf("0\n0\n9\n"); | 
| 425 | pvect(p0->p); | 
| 426 | pvect(p1->p); | 
| 427 | pvect(p2->p); | 
| 428 | } | 
| 429 | if (ok2) { | 
| 430 | printf("\n%s ", modname); | 
| 431 | if (axis != -1) { | 
| 432 | printf("texfunc %s\n%s\n", texname, tsargs); | 
| 433 | printf("0\n13\t%d\n", axis); | 
| 434 | pvect(norm[0]); | 
| 435 | pvect(norm[1]); | 
| 436 | pvect(norm[2]); | 
| 437 | fvsum(v2, norm[3], vc2, -1.0); | 
| 438 | pvect(v2); | 
| 439 | printf("\n%s ", texname); | 
| 440 | } | 
| 441 | printf("polygon %s.%d\n", surfname, ++nout); | 
| 442 | printf("0\n0\n9\n"); | 
| 443 | pvect(p2->p); | 
| 444 | pvect(p1->p); | 
| 445 | pvect(p3->p); | 
| 446 | } | 
| 447 | } | 
| 448 |  | 
| 449 |  | 
| 450 | void | 
| 451 | comprow(                        /* compute row of values */ | 
| 452 | double  s, | 
| 453 | POINT  *row, | 
| 454 | int  siz | 
| 455 | ) | 
| 456 | { | 
| 457 | double  st[2]; | 
| 458 | int  end; | 
| 459 | int  checkvalid; | 
| 460 | int  i; | 
| 461 |  | 
| 462 | if (smooth) { | 
| 463 | i = -1;                 /* compute one past each end */ | 
| 464 | end = siz+1; | 
| 465 | } else { | 
| 466 | if (s < -FTINY || s > 1.0+FTINY) | 
| 467 | return; | 
| 468 | i = 0; | 
| 469 | end = siz; | 
| 470 | } | 
| 471 | st[0] = s; | 
| 472 | checkvalid = (fundefined(VNAME) == 2); | 
| 473 | while (i <= end) { | 
| 474 | st[1] = (double)i/siz; | 
| 475 | if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) { | 
| 476 | row[i].valid = 0; | 
| 477 | row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0; | 
| 478 | row[i].uv[0] = row[i].uv[1] = 0.0; | 
| 479 | } else { | 
| 480 | row[i].valid = 1; | 
| 481 | row[i].p[0] = funvalue(XNAME, 2, st); | 
| 482 | row[i].p[1] = funvalue(YNAME, 2, st); | 
| 483 | row[i].p[2] = funvalue(ZNAME, 2, st); | 
| 484 | row[i].uv[0] = st[0]; | 
| 485 | row[i].uv[1] = st[1]; | 
| 486 | } | 
| 487 | i++; | 
| 488 | } | 
| 489 | } | 
| 490 |  | 
| 491 |  | 
| 492 | void | 
| 493 | compnorms(              /* compute row of averaged normals */ | 
| 494 | POINT  *r0, | 
| 495 | POINT  *r1, | 
| 496 | POINT  *r2, | 
| 497 | int  siz | 
| 498 | ) | 
| 499 | { | 
| 500 | FVECT  v1, v2; | 
| 501 |  | 
| 502 | if (!smooth)                    /* not needed if no smoothing */ | 
| 503 | return; | 
| 504 | /* compute row 1 normals */ | 
| 505 | while (siz-- >= 0) { | 
| 506 | if (!r1[0].valid) | 
| 507 | continue; | 
| 508 | if (!r0[0].valid) { | 
| 509 | if (!r2[0].valid) { | 
| 510 | r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; | 
| 511 | continue; | 
| 512 | } | 
| 513 | fvsum(v1, r2[0].p, r1[0].p, -1.0); | 
| 514 | } else if (!r2[0].valid) | 
| 515 | fvsum(v1, r1[0].p, r0[0].p, -1.0); | 
| 516 | else | 
| 517 | fvsum(v1, r2[0].p, r0[0].p, -1.0); | 
| 518 | if (!r1[-1].valid) { | 
| 519 | if (!r1[1].valid) { | 
| 520 | r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; | 
| 521 | continue; | 
| 522 | } | 
| 523 | fvsum(v2, r1[1].p, r1[0].p, -1.0); | 
| 524 | } else if (!r1[1].valid) | 
| 525 | fvsum(v2, r1[0].p, r1[-1].p, -1.0); | 
| 526 | else | 
| 527 | fvsum(v2, r1[1].p, r1[-1].p, -1.0); | 
| 528 | fcross(r1[0].n, v1, v2); | 
| 529 | normalize(r1[0].n); | 
| 530 | r0++; r1++; r2++; | 
| 531 | } | 
| 532 | } | 
| 533 |  | 
| 534 |  | 
| 535 | int | 
| 536 | norminterp(     /* compute normal interpolation */ | 
| 537 | FVECT  resmat[4], | 
| 538 | POINT  *p0, | 
| 539 | POINT  *p1, | 
| 540 | POINT  *p2, | 
| 541 | POINT  *p3 | 
| 542 | ) | 
| 543 | { | 
| 544 | #define u  ((ax+1)%3) | 
| 545 | #define v  ((ax+2)%3) | 
| 546 |  | 
| 547 | int  ax; | 
| 548 | MAT4  eqnmat; | 
| 549 | FVECT  v1; | 
| 550 | int  i, j; | 
| 551 |  | 
| 552 | if (!smooth)                    /* no interpolation if no smoothing */ | 
| 553 | return(-1); | 
| 554 | /* find dominant axis */ | 
| 555 | VCOPY(v1, p0->n); | 
| 556 | fvsum(v1, v1, p1->n, 1.0); | 
| 557 | fvsum(v1, v1, p2->n, 1.0); | 
| 558 | fvsum(v1, v1, p3->n, 1.0); | 
| 559 | ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1; | 
| 560 | ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2; | 
| 561 | /* assign equation matrix */ | 
| 562 | eqnmat[0][0] = p0->p[u]*p0->p[v]; | 
| 563 | eqnmat[0][1] = p0->p[u]; | 
| 564 | eqnmat[0][2] = p0->p[v]; | 
| 565 | eqnmat[0][3] = 1.0; | 
| 566 | eqnmat[1][0] = p1->p[u]*p1->p[v]; | 
| 567 | eqnmat[1][1] = p1->p[u]; | 
| 568 | eqnmat[1][2] = p1->p[v]; | 
| 569 | eqnmat[1][3] = 1.0; | 
| 570 | eqnmat[2][0] = p2->p[u]*p2->p[v]; | 
| 571 | eqnmat[2][1] = p2->p[u]; | 
| 572 | eqnmat[2][2] = p2->p[v]; | 
| 573 | eqnmat[2][3] = 1.0; | 
| 574 | eqnmat[3][0] = p3->p[u]*p3->p[v]; | 
| 575 | eqnmat[3][1] = p3->p[u]; | 
| 576 | eqnmat[3][2] = p3->p[v]; | 
| 577 | eqnmat[3][3] = 1.0; | 
| 578 | /* invert matrix (solve system) */ | 
| 579 | if (!invmat4(eqnmat, eqnmat)) | 
| 580 | return(-1);                     /* no solution */ | 
| 581 | /* compute result matrix */ | 
| 582 | for (j = 0; j < 4; j++) | 
| 583 | for (i = 0; i < 3; i++) | 
| 584 | resmat[j][i] =  eqnmat[j][0]*p0->n[i] + | 
| 585 | eqnmat[j][1]*p1->n[i] + | 
| 586 | eqnmat[j][2]*p2->n[i] + | 
| 587 | eqnmat[j][3]*p3->n[i]; | 
| 588 | return(ax); | 
| 589 |  | 
| 590 | #undef u | 
| 591 | #undef v | 
| 592 | } | 
| 593 |  | 
| 594 |  | 
| 595 | double | 
| 596 | l_hermite(char *nm) | 
| 597 | { | 
| 598 | double  t; | 
| 599 |  | 
| 600 | t = argument(5); | 
| 601 | return( argument(1)*((2.0*t-3.0)*t*t+1.0) + | 
| 602 | argument(2)*(-2.0*t+3.0)*t*t + | 
| 603 | argument(3)*((t-2.0)*t+1.0)*t + | 
| 604 | argument(4)*(t-1.0)*t*t ); | 
| 605 | } | 
| 606 |  | 
| 607 |  | 
| 608 | double | 
| 609 | l_bezier(char *nm) | 
| 610 | { | 
| 611 | double  t; | 
| 612 |  | 
| 613 | t = argument(5); | 
| 614 | return( argument(1) * (1.+t*(-3.+t*(3.-t))) + | 
| 615 | argument(2) * 3.*t*(1.+t*(-2.+t)) + | 
| 616 | argument(3) * 3.*t*t*(1.-t) + | 
| 617 | argument(4) * t*t*t ); | 
| 618 | } | 
| 619 |  | 
| 620 |  | 
| 621 | double | 
| 622 | l_bspline(char *nm) | 
| 623 | { | 
| 624 | double  t; | 
| 625 |  | 
| 626 | t = argument(5); | 
| 627 | return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) + | 
| 628 | argument(2) * (2./3.+t*t*(-1.+1./2.*t)) + | 
| 629 | argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) + | 
| 630 | argument(4) * (1./6.*t*t*t) ); | 
| 631 | } |