ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 2.23
Committed: Sat Jan 28 23:09:24 2017 UTC (7 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.22: +30 -19 lines
Log Message:
Changed to relative vertex indexing, so we can concatenate OBJ output

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gensurf.c,v 2.22 2013/12/09 22:08:13 greg Exp $";
3 #endif
4 /*
5 * gensurf.c - program to generate functional surfaces
6 *
7 * Parametric functions x(s,t), y(s,t) and z(s,t)
8 * specify the surface, which is tesselated into an m by n
9 * array of paired triangles.
10 * The surface normal is defined by the right hand
11 * rule applied to (s,t).
12 *
13 * 4/3/87
14 *
15 * 4/16/02 Added conditional vertex output
16 */
17
18 #include "standard.h"
19
20 #include "paths.h"
21 #include "resolu.h"
22 #include "rterror.h"
23 #include "calcomp.h"
24
25 char XNAME[] = "X`SYS"; /* x function name */
26 char YNAME[] = "Y`SYS"; /* y function name */
27 char ZNAME[] = "Z`SYS"; /* z function name */
28
29 char VNAME[] = "valid"; /* valid vertex name */
30
31 #define ABS(x) ((x)>=0 ? (x) : -(x))
32
33 #define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY)
34
35 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
36
37 char vformat[] = "%18.12g %18.12g %18.12g\n";
38 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal";
39 char texname[] = "Phong";
40
41 int smooth = 0; /* apply smoothing? */
42 int objout = 0; /* output .OBJ format? */
43
44 char *modname, *surfname;
45
46 /* recorded data flags */
47 #define HASBORDER 01
48 #define TRIPLETS 02
49 /* a data structure */
50 struct {
51 int flags; /* data type */
52 short m, n; /* number of s and t values */
53 RREAL *data; /* the data itself, s major sort */
54 } datarec; /* our recorded data */
55
56 /* XXX this is redundant with rt/noise3.c, should go to a library */
57 double l_hermite(), l_bezier(), l_bspline(), l_dataval();
58
59 typedef struct {
60 int valid; /* point is valid (vertex number) */
61 int nvalid; /* normal is valid */
62 FVECT p; /* vertex position */
63 FVECT n; /* average normal */
64 RREAL uv[2]; /* (u,v) position */
65 } POINT;
66
67 int nverts = 0; /* vertex output count */
68 int nnorms = 0; /* normal output count */
69
70 void loaddata(char *file, int m, int n, int pointsize);
71 double l_dataval(char *nam);
72 void putobjrow(POINT *rp, int n);
73 void putobjvert(POINT *p);
74 void putsquare(POINT *p0, POINT *p1, POINT *p2, POINT *p3);
75 void comprow(double s, POINT *row, int siz);
76 void compnorms(POINT *r0, POINT *r1, POINT *r2, int siz);
77 int norminterp(FVECT resmat[4], POINT *p0, POINT *p1, POINT *p2, POINT *p3);
78
79
80 int
81 main(argc, argv)
82 int argc;
83 char *argv[];
84 {
85 POINT *row0, *row1, *row2, *rp;
86 int i, j, m, n;
87 char stmp[256];
88
89 varset("PI", ':', PI);
90 funset("hermite", 5, ':', l_hermite);
91 funset("bezier", 5, ':', l_bezier);
92 funset("bspline", 5, ':', l_bspline);
93
94 if (argc < 8)
95 goto userror;
96
97 for (i = 8; i < argc; i++)
98 if (!strcmp(argv[i], "-e"))
99 scompile(argv[++i], NULL, 0);
100 else if (!strcmp(argv[i], "-f"))
101 fcompile(argv[++i]);
102 else if (!strcmp(argv[i], "-s"))
103 smooth++;
104 else if (!strcmp(argv[i], "-o"))
105 objout++;
106 else
107 goto userror;
108
109 modname = argv[1];
110 surfname = argv[2];
111 m = atoi(argv[6]);
112 n = atoi(argv[7]);
113 if (m <= 0 || n <= 0)
114 goto userror;
115 if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
116 funset(ZNAME, 2, ':', l_dataval);
117 if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
118 loaddata(argv[5], m, n, 3);
119 funset(XNAME, 2, ':', l_dataval);
120 funset(YNAME, 2, ':', l_dataval);
121 } else {
122 loaddata(argv[5], m, n, 1);
123 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
124 scompile(stmp, NULL, 0);
125 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
126 scompile(stmp, NULL, 0);
127 }
128 } else {
129 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
130 scompile(stmp, NULL, 0);
131 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
132 scompile(stmp, NULL, 0);
133 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
134 scompile(stmp, NULL, 0);
135 }
136 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
137 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
138 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
139 if (row0 == NULL || row1 == NULL || row2 == NULL) {
140 fprintf(stderr, "%s: out of memory\n", argv[0]);
141 quit(1);
142 }
143 row0++; row1++; row2++;
144 /* print header */
145 fputs("# ", stdout);
146 printargs(argc, argv, stdout);
147 eclock = 0;
148 /* initialize */
149 comprow(-1.0/m, row0, n);
150 comprow(0.0, row1, n);
151 comprow(1.0/m, row2, n);
152 compnorms(row0, row1, row2, n);
153 if (objout) {
154 printf("\nusemtl %s\n\n", modname);
155 putobjrow(row1, n);
156 }
157 /* for each row */
158 for (i = 0; i < m; i++) {
159 /* compute next row */
160 rp = row0;
161 row0 = row1;
162 row1 = row2;
163 row2 = rp;
164 comprow((double)(i+2)/m, row2, n);
165 compnorms(row0, row1, row2, n);
166 if (objout)
167 putobjrow(row1, n);
168
169 for (j = 0; j < n; j++) {
170 int orient = (j & 1);
171 /* put polygons */
172 if (!(row0[j].valid && row1[j+1].valid))
173 orient = 1;
174 else if (!(row1[j].valid && row0[j+1].valid))
175 orient = 0;
176 if (orient)
177 putsquare(&row0[j], &row1[j],
178 &row0[j+1], &row1[j+1]);
179 else
180 putsquare(&row1[j], &row1[j+1],
181 &row0[j], &row0[j+1]);
182 }
183 }
184
185 return 0;
186
187 userror:
188 fprintf(stderr, "Usage: %s material name ", argv[0]);
189 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-o][-e expr][-f file]\n");
190 return 1;
191 }
192
193
194 void
195 loaddata( /* load point data from file */
196 char *file,
197 int m,
198 int n,
199 int pointsize
200 )
201 {
202 FILE *fp;
203 char word[64];
204 int size;
205 RREAL *dp;
206
207 datarec.flags = HASBORDER; /* assume border values */
208 datarec.m = m+1;
209 datarec.n = n+1;
210 size = datarec.m*datarec.n*pointsize;
211 if (pointsize == 3)
212 datarec.flags |= TRIPLETS;
213 dp = (RREAL *)malloc(size*sizeof(RREAL));
214 if ((datarec.data = dp) == NULL) {
215 fputs("Out of memory\n", stderr);
216 exit(1);
217 }
218 if (!strcmp(file, "-")) {
219 file = "<stdin>";
220 fp = stdin;
221 } else if ((fp = fopen(file, "r")) == NULL) {
222 fputs(file, stderr);
223 fputs(": cannot open\n", stderr);
224 exit(1);
225 }
226 while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
227 if (!isflt(word)) {
228 fprintf(stderr, "%s: garbled data value: %s\n",
229 file, word);
230 exit(1);
231 }
232 *dp++ = atof(word);
233 size--;
234 }
235 if (size == (m+n+1)*pointsize) { /* no border after all */
236 dp = (RREAL *)realloc(datarec.data,
237 m*n*pointsize*sizeof(RREAL));
238 if (dp != NULL)
239 datarec.data = dp;
240 datarec.flags &= ~HASBORDER;
241 datarec.m = m;
242 datarec.n = n;
243 size = 0;
244 }
245 if (datarec.m < 2 || datarec.n < 2 || size != 0 ||
246 fgetword(word, sizeof(word), fp) != NULL) {
247 fputs(file, stderr);
248 fputs(": bad number of data points\n", stderr);
249 exit(1);
250 }
251 fclose(fp);
252 }
253
254
255 double
256 l_dataval( /* return recorded data value */
257 char *nam
258 )
259 {
260 double u, v;
261 int i, j;
262 RREAL *dp;
263 double d00, d01, d10, d11;
264 /* compute coordinates */
265 u = argument(1); v = argument(2);
266 if (datarec.flags & HASBORDER) {
267 i = u *= datarec.m-1;
268 j = v *= datarec.n-1;
269 } else {
270 i = u = u*datarec.m - .5;
271 j = v = v*datarec.n - .5;
272 }
273 if (i < 0) i = 0;
274 else if (i > datarec.m-2) i = datarec.m-2;
275 if (j < 0) j = 0;
276 else if (j > datarec.n-2) j = datarec.n-2;
277 /* compute value */
278 if (datarec.flags & TRIPLETS) {
279 dp = datarec.data + 3*(j*datarec.m + i);
280 if (nam == ZNAME)
281 dp += 2;
282 else if (nam == YNAME)
283 dp++;
284 d00 = dp[0]; d01 = dp[3];
285 dp += 3*datarec.m;
286 d10 = dp[0]; d11 = dp[3];
287 } else {
288 dp = datarec.data + j*datarec.m + i;
289 d00 = dp[0]; d01 = dp[1];
290 dp += datarec.m;
291 d10 = dp[0]; d11 = dp[1];
292 }
293 /* bilinear interpolation */
294 return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
295 }
296
297
298 void
299 putobjrow( /* output vertex row to .OBJ */
300 POINT *rp,
301 int n
302 )
303 {
304 for ( ; n-- >= 0; rp++) {
305 if (!rp->valid)
306 continue;
307 fputs("v ", stdout);
308 pvect(rp->p);
309 if (smooth && !ZEROVECT(rp->n)) {
310 printf("\tvn %.9g %.9g %.9g\n",
311 rp->n[0], rp->n[1], rp->n[2]);
312 rp->nvalid = ++nnorms;
313 } else
314 rp->nvalid = 0;
315 printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]);
316 rp->valid = ++nverts;
317 }
318 }
319
320
321 void
322 putobjvert( /* put out OBJ vertex index triplet */
323 POINT *p
324 )
325 {
326 int pti = p->valid ? p->valid-nverts-1 : 0;
327 int ni = p->nvalid ? p->nvalid-nnorms-1 : 0;
328
329 printf(" %d/%d/%d", pti, pti, ni);
330 }
331
332
333 void
334 putsquare( /* put out a square */
335 POINT *p0,
336 POINT *p1,
337 POINT *p2,
338 POINT *p3
339 )
340 {
341 static int nout = 0;
342 FVECT norm[4];
343 int axis;
344 FVECT v1, v2, vc1, vc2;
345 int ok1, ok2;
346 /* compute exact normals */
347 ok1 = (p0->valid && p1->valid && p2->valid);
348 if (ok1) {
349 VSUB(v1, p1->p, p0->p);
350 VSUB(v2, p2->p, p0->p);
351 fcross(vc1, v1, v2);
352 ok1 = (normalize(vc1) != 0.0);
353 }
354 ok2 = (p1->valid && p2->valid && p3->valid);
355 if (ok2) {
356 VSUB(v1, p2->p, p3->p);
357 VSUB(v2, p1->p, p3->p);
358 fcross(vc2, v1, v2);
359 ok2 = (normalize(vc2) != 0.0);
360 }
361 if (!(ok1 | ok2))
362 return;
363 if (objout) { /* output .OBJ faces */
364 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
365 putc('f', stdout);
366 putobjvert(p0); putobjvert(p1);
367 putobjvert(p3); putobjvert(p2);
368 putc('\n', stdout);
369 return;
370 }
371 if (ok1) {
372 putc('f', stdout);
373 putobjvert(p0); putobjvert(p1); putobjvert(p2);
374 putc('\n', stdout);
375 }
376 if (ok2) {
377 putc('f', stdout);
378 putobjvert(p2); putobjvert(p1); putobjvert(p3);
379 putc('\n', stdout);
380 }
381 return;
382 }
383 /* compute normal interpolation */
384 axis = norminterp(norm, p0, p1, p2, p3);
385
386 /* put out quadrilateral? */
387 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
388 printf("\n%s ", modname);
389 if (axis != -1) {
390 printf("texfunc %s\n%s\n", texname, tsargs);
391 printf("0\n13\t%d\n", axis);
392 pvect(norm[0]);
393 pvect(norm[1]);
394 pvect(norm[2]);
395 fvsum(v1, norm[3], vc1, -0.5);
396 fvsum(v1, v1, vc2, -0.5);
397 pvect(v1);
398 printf("\n%s ", texname);
399 }
400 printf("polygon %s.%d\n", surfname, ++nout);
401 printf("0\n0\n12\n");
402 pvect(p0->p);
403 pvect(p1->p);
404 pvect(p3->p);
405 pvect(p2->p);
406 return;
407 }
408 /* put out triangles? */
409 if (ok1) {
410 printf("\n%s ", modname);
411 if (axis != -1) {
412 printf("texfunc %s\n%s\n", texname, tsargs);
413 printf("0\n13\t%d\n", axis);
414 pvect(norm[0]);
415 pvect(norm[1]);
416 pvect(norm[2]);
417 fvsum(v1, norm[3], vc1, -1.0);
418 pvect(v1);
419 printf("\n%s ", texname);
420 }
421 printf("polygon %s.%d\n", surfname, ++nout);
422 printf("0\n0\n9\n");
423 pvect(p0->p);
424 pvect(p1->p);
425 pvect(p2->p);
426 }
427 if (ok2) {
428 printf("\n%s ", modname);
429 if (axis != -1) {
430 printf("texfunc %s\n%s\n", texname, tsargs);
431 printf("0\n13\t%d\n", axis);
432 pvect(norm[0]);
433 pvect(norm[1]);
434 pvect(norm[2]);
435 fvsum(v2, norm[3], vc2, -1.0);
436 pvect(v2);
437 printf("\n%s ", texname);
438 }
439 printf("polygon %s.%d\n", surfname, ++nout);
440 printf("0\n0\n9\n");
441 pvect(p2->p);
442 pvect(p1->p);
443 pvect(p3->p);
444 }
445 }
446
447
448 void
449 comprow( /* compute row of values */
450 double s,
451 POINT *row,
452 int siz
453 )
454 {
455 double st[2];
456 int end;
457 int checkvalid;
458 int i;
459
460 if (smooth) {
461 i = -1; /* compute one past each end */
462 end = siz+1;
463 } else {
464 if (s < -FTINY || s > 1.0+FTINY)
465 return;
466 i = 0;
467 end = siz;
468 }
469 st[0] = s;
470 checkvalid = (fundefined(VNAME) == 2);
471 while (i <= end) {
472 st[1] = (double)i/siz;
473 if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) {
474 row[i].valid = 0;
475 row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0;
476 row[i].uv[0] = row[i].uv[1] = 0.0;
477 } else {
478 row[i].valid = 1;
479 row[i].p[0] = funvalue(XNAME, 2, st);
480 row[i].p[1] = funvalue(YNAME, 2, st);
481 row[i].p[2] = funvalue(ZNAME, 2, st);
482 row[i].uv[0] = st[0];
483 row[i].uv[1] = st[1];
484 }
485 i++;
486 }
487 }
488
489
490 void
491 compnorms( /* compute row of averaged normals */
492 POINT *r0,
493 POINT *r1,
494 POINT *r2,
495 int siz
496 )
497 {
498 FVECT v1, v2;
499
500 if (!smooth) /* not needed if no smoothing */
501 return;
502 /* compute row 1 normals */
503 while (siz-- >= 0) {
504 if (!r1[0].valid)
505 continue;
506 if (!r0[0].valid) {
507 if (!r2[0].valid) {
508 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
509 continue;
510 }
511 fvsum(v1, r2[0].p, r1[0].p, -1.0);
512 } else if (!r2[0].valid)
513 fvsum(v1, r1[0].p, r0[0].p, -1.0);
514 else
515 fvsum(v1, r2[0].p, r0[0].p, -1.0);
516 if (!r1[-1].valid) {
517 if (!r1[1].valid) {
518 r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0;
519 continue;
520 }
521 fvsum(v2, r1[1].p, r1[0].p, -1.0);
522 } else if (!r1[1].valid)
523 fvsum(v2, r1[0].p, r1[-1].p, -1.0);
524 else
525 fvsum(v2, r1[1].p, r1[-1].p, -1.0);
526 fcross(r1[0].n, v1, v2);
527 normalize(r1[0].n);
528 r0++; r1++; r2++;
529 }
530 }
531
532
533 int
534 norminterp( /* compute normal interpolation */
535 FVECT resmat[4],
536 POINT *p0,
537 POINT *p1,
538 POINT *p2,
539 POINT *p3
540 )
541 {
542 #define u ((ax+1)%3)
543 #define v ((ax+2)%3)
544
545 int ax;
546 MAT4 eqnmat;
547 FVECT v1;
548 int i, j;
549
550 if (!smooth) /* no interpolation if no smoothing */
551 return(-1);
552 /* find dominant axis */
553 VCOPY(v1, p0->n);
554 fvsum(v1, v1, p1->n, 1.0);
555 fvsum(v1, v1, p2->n, 1.0);
556 fvsum(v1, v1, p3->n, 1.0);
557 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
558 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
559 /* assign equation matrix */
560 eqnmat[0][0] = p0->p[u]*p0->p[v];
561 eqnmat[0][1] = p0->p[u];
562 eqnmat[0][2] = p0->p[v];
563 eqnmat[0][3] = 1.0;
564 eqnmat[1][0] = p1->p[u]*p1->p[v];
565 eqnmat[1][1] = p1->p[u];
566 eqnmat[1][2] = p1->p[v];
567 eqnmat[1][3] = 1.0;
568 eqnmat[2][0] = p2->p[u]*p2->p[v];
569 eqnmat[2][1] = p2->p[u];
570 eqnmat[2][2] = p2->p[v];
571 eqnmat[2][3] = 1.0;
572 eqnmat[3][0] = p3->p[u]*p3->p[v];
573 eqnmat[3][1] = p3->p[u];
574 eqnmat[3][2] = p3->p[v];
575 eqnmat[3][3] = 1.0;
576 /* invert matrix (solve system) */
577 if (!invmat4(eqnmat, eqnmat))
578 return(-1); /* no solution */
579 /* compute result matrix */
580 for (j = 0; j < 4; j++)
581 for (i = 0; i < 3; i++)
582 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
583 eqnmat[j][1]*p1->n[i] +
584 eqnmat[j][2]*p2->n[i] +
585 eqnmat[j][3]*p3->n[i];
586 return(ax);
587
588 #undef u
589 #undef v
590 }
591
592
593 double
594 l_hermite(char *nm)
595 {
596 double t;
597
598 t = argument(5);
599 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
600 argument(2)*(-2.0*t+3.0)*t*t +
601 argument(3)*((t-2.0)*t+1.0)*t +
602 argument(4)*(t-1.0)*t*t );
603 }
604
605
606 double
607 l_bezier(char *nm)
608 {
609 double t;
610
611 t = argument(5);
612 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
613 argument(2) * 3.*t*(1.+t*(-2.+t)) +
614 argument(3) * 3.*t*t*(1.-t) +
615 argument(4) * t*t*t );
616 }
617
618
619 double
620 l_bspline(char *nm)
621 {
622 double t;
623
624 t = argument(5);
625 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
626 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
627 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
628 argument(4) * (1./6.*t*t*t) );
629 }