ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 2.2
Committed: Thu Jan 30 14:11:39 1992 UTC (32 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +132 -11 lines
Log Message:
added ability to get point values from a file

File Contents

# Content
1 #ifndef lint
2 static char SCCSid[] = "$SunId$ LBL";
3 #endif
4
5 /* Copyright (c) 1989 Regents of the University of California */
6
7 /*
8 * gensurf.c - program to generate functional surfaces
9 *
10 * Parametric functions x(s,t), y(s,t) and z(s,t)
11 * specify the surface, which is tesselated into an m by n
12 * array of paired triangles.
13 * The surface normal is defined by the right hand
14 * rule applied to (s,t).
15 *
16 * 4/3/87
17 */
18
19 #include "standard.h"
20
21 char XNAME[] = "X`SYS`"; /* x function name */
22 char YNAME[] = "Y`SYS`"; /* y function name */
23 char ZNAME[] = "Z`SYS`"; /* z function name */
24
25 #define ABS(x) ((x)>=0 ? (x) : -(x))
26
27 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
28
29 char vformat[] = "%15.9g %15.9g %15.9g\n";
30 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
31 char texname[] = "Phong";
32
33 int smooth = 0; /* apply smoothing? */
34
35 char *modname, *surfname;
36
37 /* recorded data flags */
38 #define HASBORDER 01
39 #define TRIPLETS 02
40 /* a data structure */
41 struct {
42 int flags; /* data type */
43 short m, n; /* number of s and t values */
44 FLOAT *data; /* the data itself, s major sort */
45 } datarec; /* our recorded data */
46
47 double l_hermite(), l_bezier(), l_bspline(), l_dataval();
48 extern double funvalue(), argument();
49
50 typedef struct {
51 FVECT p; /* vertex position */
52 FVECT n; /* average normal */
53 } POINT;
54
55
56 main(argc, argv)
57 int argc;
58 char *argv[];
59 {
60 extern long eclock;
61 POINT *row0, *row1, *row2, *rp;
62 int i, j, m, n;
63 char stmp[256];
64
65 varset("PI", ':', PI);
66 funset("hermite", 5, ':', l_hermite);
67 funset("bezier", 5, ':', l_bezier);
68 funset("bspline", 5, ':', l_bspline);
69
70 if (argc < 8)
71 goto userror;
72
73 for (i = 8; i < argc; i++)
74 if (!strcmp(argv[i], "-e"))
75 scompile(argv[++i], NULL, 0);
76 else if (!strcmp(argv[i], "-f"))
77 fcompile(argv[++i]);
78 else if (!strcmp(argv[i], "-s"))
79 smooth++;
80 else
81 goto userror;
82
83 modname = argv[1];
84 surfname = argv[2];
85 m = atoi(argv[6]);
86 n = atoi(argv[7]);
87 if (m <= 0 || n <= 0)
88 goto userror;
89 if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
90 funset(ZNAME, 2, ':', l_dataval);
91 if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
92 loaddata(argv[5], m, n, 3);
93 funset(XNAME, 2, ':', l_dataval);
94 funset(YNAME, 2, ':', l_dataval);
95 } else {
96 loaddata(argv[5], m, n, 1);
97 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
98 scompile(stmp, NULL, 0);
99 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
100 scompile(stmp, NULL, 0);
101 }
102 } else {
103 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
104 scompile(stmp, NULL, 0);
105 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
106 scompile(stmp, NULL, 0);
107 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
108 scompile(stmp, NULL, 0);
109 }
110 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
111 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
112 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
113 if (row0 == NULL || row1 == NULL || row2 == NULL) {
114 fprintf(stderr, "%s: out of memory\n", argv[0]);
115 quit(1);
116 }
117 row0++; row1++; row2++;
118 /* print header */
119 printhead(argc, argv);
120 eclock = 0;
121 /* initialize */
122 comprow(-1.0/m, row0, n);
123 comprow(0.0, row1, n);
124 comprow(1.0/m, row2, n);
125 compnorms(row0, row1, row2, n);
126 /* for each row */
127 for (i = 0; i < m; i++) {
128 /* compute next row */
129 rp = row0;
130 row0 = row1;
131 row1 = row2;
132 row2 = rp;
133 comprow((double)(i+2)/m, row2, n);
134 compnorms(row0, row1, row2, n);
135
136 for (j = 0; j < n; j++) {
137 /* put polygons */
138 if ((i+j) & 1)
139 putsquare(&row0[j], &row1[j],
140 &row0[j+1], &row1[j+1]);
141 else
142 putsquare(&row1[j], &row1[j+1],
143 &row0[j], &row0[j+1]);
144 }
145 }
146
147 quit(0);
148
149 userror:
150 fprintf(stderr, "Usage: %s material name ", argv[0]);
151 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
152 quit(1);
153 }
154
155
156 loaddata(file, m, n, pointsize) /* load point data from file */
157 char *file;
158 int m, n;
159 int pointsize;
160 {
161 extern char *fgetword();
162 FILE *fp;
163 char word[64];
164 register int size;
165 register FLOAT *dp;
166
167 datarec.flags = HASBORDER; /* assume border values */
168 size = (m+1)*(n+1)*pointsize;
169 if (pointsize == 3)
170 datarec.flags |= TRIPLETS;
171 dp = (FLOAT *)malloc(size*sizeof(FLOAT));
172 if ((datarec.data = dp) == NULL) {
173 fputs("Out of memory\n", stderr);
174 exit(1);
175 }
176 if (!strcmp(file, "-")) {
177 file = "<stdin>";
178 fp = stdin;
179 } else if ((fp = fopen(file, "r")) == NULL) {
180 fputs(file, stderr);
181 fputs(": cannot open\n", stderr);
182 exit(1);
183 }
184 while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
185 if (!isflt(word)) {
186 fprintf(stderr, "%s: garbled data value: %s\n",
187 file, word);
188 exit(1);
189 }
190 *dp++ = atof(word);
191 size--;
192 }
193 if (size == (m+n+1)*pointsize) { /* no border after all */
194 dp = (FLOAT *)realloc((char *)datarec.data,
195 m*n*pointsize*sizeof(FLOAT));
196 if (dp != NULL)
197 datarec.data = dp;
198 datarec.flags &= ~HASBORDER;
199 size = 0;
200 }
201 if (size || fgetword(word, sizeof(word), fp) != NULL) {
202 fputs(file, stderr);
203 fputs(": bad number of data points\n", stderr);
204 exit(1);
205 }
206 fclose(fp);
207 }
208
209
210 double
211 l_dataval(nam) /* return recorded data value */
212 char *nam;
213 {
214 double u, v;
215 register int i, j;
216 register FLOAT *dp;
217 double d00, d01, d10, d11;
218 /* compute coordinates */
219 u = argument(1); v = argument(2);
220 if (datarec.flags & HASBORDER) {
221 i = u *= datarec.m;
222 j = v *= datarec.n;
223 } else {
224 i = u = u*(datarec.m+1) - .5;
225 j = v = v*(datarec.n+1) - .5;
226 }
227 if (i < 0) i = 0;
228 else if (i > datarec.m-2) i = datarec.m-2;
229 if (j < 0) j = 0;
230 else if (j > datarec.n-2) j = datarec.n-2;
231 /* compute value */
232 if (datarec.flags & TRIPLETS) {
233 dp = datarec.data + 3*(j*datarec.n + i);
234 if (nam == YNAME)
235 dp++;
236 else if (nam == ZNAME)
237 dp += 2;
238 d00 = dp[0]; d01 = dp[3];
239 dp += 3*datarec.n;
240 d10 = dp[0]; d11 = dp[3];
241 } else {
242 dp = datarec.data + j*datarec.n + i;
243 d00 = dp[0]; d01 = dp[1];
244 dp += datarec.n;
245 d10 = dp[0]; d11 = dp[1];
246 }
247 /* bilinear interpolation */
248 return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
249 }
250
251
252 putsquare(p0, p1, p2, p3) /* put out a square */
253 POINT *p0, *p1, *p2, *p3;
254 {
255 static int nout = 0;
256 FVECT norm[4];
257 int axis;
258 FVECT v1, v2, vc1, vc2;
259 int ok1, ok2;
260 /* compute exact normals */
261 fvsum(v1, p1->p, p0->p, -1.0);
262 fvsum(v2, p2->p, p0->p, -1.0);
263 fcross(vc1, v1, v2);
264 ok1 = normalize(vc1) != 0.0;
265 fvsum(v1, p2->p, p3->p, -1.0);
266 fvsum(v2, p1->p, p3->p, -1.0);
267 fcross(vc2, v1, v2);
268 ok2 = normalize(vc2) != 0.0;
269 if (!(ok1 | ok2))
270 return;
271 /* compute normal interpolation */
272 axis = norminterp(norm, p0, p1, p2, p3);
273
274 /* put out quadrilateral? */
275 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
276 printf("\n%s ", modname);
277 if (axis != -1) {
278 printf("texfunc %s\n", texname);
279 printf(tsargs);
280 printf("0\n13\t%d\n", axis);
281 pvect(norm[0]);
282 pvect(norm[1]);
283 pvect(norm[2]);
284 fvsum(v1, norm[3], vc1, -0.5);
285 fvsum(v1, v1, vc2, -0.5);
286 pvect(v1);
287 printf("\n%s ", texname);
288 }
289 printf("polygon %s.%d\n", surfname, ++nout);
290 printf("0\n0\n12\n");
291 pvect(p0->p);
292 pvect(p1->p);
293 pvect(p3->p);
294 pvect(p2->p);
295 return;
296 }
297 /* put out triangles? */
298 if (ok1) {
299 printf("\n%s ", modname);
300 if (axis != -1) {
301 printf("texfunc %s\n", texname);
302 printf(tsargs);
303 printf("0\n13\t%d\n", axis);
304 pvect(norm[0]);
305 pvect(norm[1]);
306 pvect(norm[2]);
307 fvsum(v1, norm[3], vc1, -1.0);
308 pvect(v1);
309 printf("\n%s ", texname);
310 }
311 printf("polygon %s.%d\n", surfname, ++nout);
312 printf("0\n0\n9\n");
313 pvect(p0->p);
314 pvect(p1->p);
315 pvect(p2->p);
316 }
317 if (ok2) {
318 printf("\n%s ", modname);
319 if (axis != -1) {
320 printf("texfunc %s\n", texname);
321 printf(tsargs);
322 printf("0\n13\t%d\n", axis);
323 pvect(norm[0]);
324 pvect(norm[1]);
325 pvect(norm[2]);
326 fvsum(v2, norm[3], vc2, -1.0);
327 pvect(v2);
328 printf("\n%s ", texname);
329 }
330 printf("polygon %s.%d\n", surfname, ++nout);
331 printf("0\n0\n9\n");
332 pvect(p2->p);
333 pvect(p1->p);
334 pvect(p3->p);
335 }
336 }
337
338
339 comprow(s, row, siz) /* compute row of values */
340 double s;
341 register POINT *row;
342 int siz;
343 {
344 double st[2];
345 int end;
346 register int i;
347
348 if (smooth) {
349 i = -1; /* compute one past each end */
350 end = siz+1;
351 } else {
352 if (s < -FTINY || s > 1.0+FTINY)
353 return;
354 i = 0;
355 end = siz;
356 }
357 st[0] = s;
358 while (i <= end) {
359 st[1] = (double)i/siz;
360 row[i].p[0] = funvalue(XNAME, 2, st);
361 row[i].p[1] = funvalue(YNAME, 2, st);
362 row[i].p[2] = funvalue(ZNAME, 2, st);
363 i++;
364 }
365 }
366
367
368 compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
369 register POINT *r0, *r1, *r2;
370 int siz;
371 {
372 FVECT v1, v2;
373 register int i;
374
375 if (!smooth) /* not needed if no smoothing */
376 return;
377 /* compute middle points */
378 while (siz-- >= 0) {
379 fvsum(v1, r2[0].p, r0[0].p, -1.0);
380 fvsum(v2, r1[1].p, r1[-1].p, -1.0);
381 fcross(r1[0].n, v1, v2);
382 normalize(r1[0].n);
383 r0++; r1++; r2++;
384 }
385 }
386
387
388 int
389 norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
390 register FVECT resmat[4];
391 POINT *p0, *p1, *p2, *p3;
392 {
393 #define u ((ax+1)%3)
394 #define v ((ax+2)%3)
395
396 register int ax;
397 MAT4 eqnmat;
398 FVECT v1;
399 register int i, j;
400
401 if (!smooth) /* no interpolation if no smoothing */
402 return(-1);
403 /* find dominant axis */
404 VCOPY(v1, p0->n);
405 fvsum(v1, v1, p1->n, 1.0);
406 fvsum(v1, v1, p2->n, 1.0);
407 fvsum(v1, v1, p3->n, 1.0);
408 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
409 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
410 /* assign equation matrix */
411 eqnmat[0][0] = p0->p[u]*p0->p[v];
412 eqnmat[0][1] = p0->p[u];
413 eqnmat[0][2] = p0->p[v];
414 eqnmat[0][3] = 1.0;
415 eqnmat[1][0] = p1->p[u]*p1->p[v];
416 eqnmat[1][1] = p1->p[u];
417 eqnmat[1][2] = p1->p[v];
418 eqnmat[1][3] = 1.0;
419 eqnmat[2][0] = p2->p[u]*p2->p[v];
420 eqnmat[2][1] = p2->p[u];
421 eqnmat[2][2] = p2->p[v];
422 eqnmat[2][3] = 1.0;
423 eqnmat[3][0] = p3->p[u]*p3->p[v];
424 eqnmat[3][1] = p3->p[u];
425 eqnmat[3][2] = p3->p[v];
426 eqnmat[3][3] = 1.0;
427 /* invert matrix (solve system) */
428 if (!invmat(eqnmat, eqnmat))
429 return(-1); /* no solution */
430 /* compute result matrix */
431 for (j = 0; j < 4; j++)
432 for (i = 0; i < 3; i++)
433 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
434 eqnmat[j][1]*p1->n[i] +
435 eqnmat[j][2]*p2->n[i] +
436 eqnmat[j][3]*p3->n[i];
437 return(ax);
438
439 #undef u
440 #undef v
441 }
442
443
444 /*
445 * invmat - computes the inverse of mat into inverse. Returns 1
446 * if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
447 * method.
448 */
449
450 invmat(inverse,mat)
451 MAT4 inverse, mat;
452 {
453 #define SWAP(a,b,t) (t=a,a=b,b=t)
454
455 MAT4 m4tmp;
456 register int i,j,k;
457 register double temp;
458
459 copymat4(m4tmp, mat);
460 /* set inverse to identity */
461 for (i = 0; i < 4; i++)
462 for (j = 0; j < 4; j++)
463 inverse[i][j] = i==j ? 1.0 : 0.0;
464
465 for(i = 0; i < 4; i++) {
466 /* Look for row with largest pivot and swap rows */
467 temp = FTINY; j = -1;
468 for(k = i; k < 4; k++)
469 if(ABS(m4tmp[k][i]) > temp) {
470 temp = ABS(m4tmp[k][i]);
471 j = k;
472 }
473 if(j == -1) /* No replacing row -> no inverse */
474 return(0);
475 if (j != i)
476 for(k = 0; k < 4; k++) {
477 SWAP(m4tmp[i][k],m4tmp[j][k],temp);
478 SWAP(inverse[i][k],inverse[j][k],temp);
479 }
480
481 temp = m4tmp[i][i];
482 for(k = 0; k < 4; k++) {
483 m4tmp[i][k] /= temp;
484 inverse[i][k] /= temp;
485 }
486 for(j = 0; j < 4; j++) {
487 if(j != i) {
488 temp = m4tmp[j][i];
489 for(k = 0; k < 4; k++) {
490 m4tmp[j][k] -= m4tmp[i][k]*temp;
491 inverse[j][k] -= inverse[i][k]*temp;
492 }
493 }
494 }
495 }
496 return(1);
497
498 #undef SWAP
499 }
500
501
502 eputs(msg)
503 char *msg;
504 {
505 fputs(msg, stderr);
506 }
507
508
509 wputs(msg)
510 char *msg;
511 {
512 eputs(msg);
513 }
514
515
516 quit(code)
517 {
518 exit(code);
519 }
520
521
522 printhead(ac, av) /* print command header */
523 register int ac;
524 register char **av;
525 {
526 putchar('#');
527 while (ac--) {
528 putchar(' ');
529 fputs(*av++, stdout);
530 }
531 putchar('\n');
532 }
533
534
535 double
536 l_hermite()
537 {
538 double t;
539
540 t = argument(5);
541 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
542 argument(2)*(-2.0*t+3.0)*t*t +
543 argument(3)*((t-2.0)*t+1.0)*t +
544 argument(4)*(t-1.0)*t*t );
545 }
546
547
548 double
549 l_bezier()
550 {
551 double t;
552
553 t = argument(5);
554 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
555 argument(2) * 3.*t*(1.+t*(-2.+t)) +
556 argument(3) * 3.*t*t*(1.-t) +
557 argument(4) * t*t*t );
558 }
559
560
561 double
562 l_bspline()
563 {
564 double t;
565
566 t = argument(5);
567 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
568 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
569 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
570 argument(4) * (1./6.*t*t*t) );
571 }