ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 1.7
Committed: Wed Mar 7 11:14:36 1990 UTC (34 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.6: +17 -3 lines
Log Message:
added bezier and bspline functions

File Contents

# Content
1 #ifndef lint
2 static char SCCSid[] = "$SunId$ LBL";
3 #endif
4
5 /* Copyright (c) 1989 Regents of the University of California */
6
7 /*
8 * gensurf.c - program to generate functional surfaces
9 *
10 * Parametric functions x(s,t), y(s,t) and z(s,t)
11 * specify the surface, which is tesselated into an m by n
12 * array of paired triangles.
13 * The surface normal is defined by the right hand
14 * rule applied to (s,t).
15 *
16 * 4/3/87
17 */
18
19 #include "standard.h"
20
21 #define XNAME "X_" /* x function name */
22 #define YNAME "Y_" /* y function name */
23 #define ZNAME "Z_" /* z function name */
24
25 #define ABS(x) ((x)>=0 ? (x) : -(x))
26
27 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
28
29 char vformat[] = "%15.9g %15.9g %15.9g\n";
30 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
31 char texname[] = "Phong";
32
33 int smooth = 0; /* apply smoothing? */
34
35 char *modname, *surfname;
36
37 double funvalue(), l_hermite(), l_bezier(), l_bspline(), argument();
38
39 typedef struct {
40 FVECT p; /* vertex position */
41 FVECT n; /* average normal */
42 } POINT;
43
44
45 main(argc, argv)
46 int argc;
47 char *argv[];
48 {
49 POINT *row0, *row1, *row2, *rp;
50 int i, j, m, n;
51 char stmp[256];
52
53 varset("PI", PI);
54 funset("hermite", 5, l_hermite);
55 funset("bezier", 5, l_bezier);
56 funset("bspline", 5, l_bspline);
57
58 if (argc < 8)
59 goto userror;
60
61 for (i = 8; i < argc; i++)
62 if (!strcmp(argv[i], "-e"))
63 scompile(NULL, argv[++i]);
64 else if (!strcmp(argv[i], "-f"))
65 fcompile(argv[++i]);
66 else if (!strcmp(argv[i], "-s"))
67 smooth++;
68 else
69 goto userror;
70
71 modname = argv[1];
72 surfname = argv[2];
73 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
74 scompile(NULL, stmp);
75 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
76 scompile(NULL, stmp);
77 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
78 scompile(NULL, stmp);
79 m = atoi(argv[6]);
80 n = atoi(argv[7]);
81 if (m <= 0 || n <= 0)
82 goto userror;
83
84 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
85 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
86 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
87 if (row0 == NULL || row1 == NULL || row2 == NULL) {
88 fprintf(stderr, "%s: out of memory\n", argv[0]);
89 quit(1);
90 }
91 row0++; row1++; row2++;
92 /* print header */
93 printhead(argc, argv);
94 /* initialize */
95 comprow(-1.0/m, row0, n);
96 comprow(0.0, row1, n);
97 comprow(1.0/m, row2, n);
98 compnorms(row0, row1, row2, n);
99 /* for each row */
100 for (i = 0; i < m; i++) {
101 /* compute next row */
102 rp = row0;
103 row0 = row1;
104 row1 = row2;
105 row2 = rp;
106 comprow((double)(i+2)/m, row2, n);
107 compnorms(row0, row1, row2, n);
108
109 for (j = 0; j < n; j++) {
110 /* put polygons */
111 if ((i+j) & 1)
112 putsquare(&row0[j], &row1[j],
113 &row0[j+1], &row1[j+1]);
114 else
115 putsquare(&row1[j], &row1[j+1],
116 &row0[j], &row0[j+1]);
117 }
118 }
119
120 quit(0);
121
122 userror:
123 fprintf(stderr, "Usage: %s material name ", argv[0]);
124 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
125 quit(1);
126 }
127
128
129 putsquare(p0, p1, p2, p3) /* put out a square */
130 POINT *p0, *p1, *p2, *p3;
131 {
132 static int nout = 0;
133 FVECT norm[4];
134 int axis;
135 FVECT v1, v2, vc1, vc2;
136 int ok1, ok2;
137 /* compute exact normals */
138 fvsum(v1, p1->p, p0->p, -1.0);
139 fvsum(v2, p2->p, p0->p, -1.0);
140 fcross(vc1, v1, v2);
141 ok1 = normalize(vc1) != 0.0;
142 fvsum(v1, p2->p, p3->p, -1.0);
143 fvsum(v2, p1->p, p3->p, -1.0);
144 fcross(vc2, v1, v2);
145 ok2 = normalize(vc2) != 0.0;
146 if (!(ok1 | ok2))
147 return;
148 /* compute normal interpolation */
149 axis = norminterp(norm, p0, p1, p2, p3);
150
151 /* put out quadrilateral? */
152 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
153 printf("\n%s ", modname);
154 if (axis != -1) {
155 printf("texfunc %s\n", texname);
156 printf(tsargs);
157 printf("0\n13\t%d\n", axis);
158 pvect(norm[0]);
159 pvect(norm[1]);
160 pvect(norm[2]);
161 fvsum(v1, norm[3], vc1, -0.5);
162 fvsum(v1, v1, vc2, -0.5);
163 pvect(v1);
164 printf("\n%s ", texname);
165 }
166 printf("polygon %s.%d\n", surfname, ++nout);
167 printf("0\n0\n12\n");
168 pvect(p0->p);
169 pvect(p1->p);
170 pvect(p3->p);
171 pvect(p2->p);
172 return;
173 }
174 /* put out triangles? */
175 if (ok1) {
176 printf("\n%s ", modname);
177 if (axis != -1) {
178 printf("texfunc %s\n", texname);
179 printf(tsargs);
180 printf("0\n13\t%d\n", axis);
181 pvect(norm[0]);
182 pvect(norm[1]);
183 pvect(norm[2]);
184 fvsum(v1, norm[3], vc1, -1.0);
185 pvect(v1);
186 printf("\n%s ", texname);
187 }
188 printf("polygon %s.%d\n", surfname, ++nout);
189 printf("0\n0\n9\n");
190 pvect(p0->p);
191 pvect(p1->p);
192 pvect(p2->p);
193 }
194 if (ok2) {
195 printf("\n%s ", modname);
196 if (axis != -1) {
197 printf("texfunc %s\n", texname);
198 printf(tsargs);
199 printf("0\n13\t%d\n", axis);
200 pvect(norm[0]);
201 pvect(norm[1]);
202 pvect(norm[2]);
203 fvsum(v2, norm[3], vc2, -1.0);
204 pvect(v2);
205 printf("\n%s ", texname);
206 }
207 printf("polygon %s.%d\n", surfname, ++nout);
208 printf("0\n0\n9\n");
209 pvect(p2->p);
210 pvect(p1->p);
211 pvect(p3->p);
212 }
213 }
214
215
216 comprow(s, row, siz) /* compute row of values */
217 double s;
218 register POINT *row;
219 int siz;
220 {
221 double st[2];
222 register int i;
223 /* compute one past each end */
224 st[0] = s;
225 for (i = -1; i <= siz+1; i++) {
226 st[1] = (double)i/siz;
227 row[i].p[0] = funvalue(XNAME, 2, st);
228 row[i].p[1] = funvalue(YNAME, 2, st);
229 row[i].p[2] = funvalue(ZNAME, 2, st);
230 }
231 }
232
233
234 compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
235 register POINT *r0, *r1, *r2;
236 int siz;
237 {
238 FVECT v1, v2, vc;
239 register int i;
240
241 if (!smooth) /* not needed if no smoothing */
242 return;
243 /* compute middle points */
244 while (siz-- >= 0) {
245 fvsum(v1, r2[0].p, r1[0].p, -1.0);
246 fvsum(v2, r1[1].p, r1[0].p, -1.0);
247 fcross(r1[0].n, v1, v2);
248 fvsum(v1, r0[0].p, r1[0].p, -1.0);
249 fcross(vc, v2, v1);
250 fvsum(r1[0].n, r1[0].n, vc, 1.0);
251 fvsum(v2, r1[-1].p, r1[0].p, -1.0);
252 fcross(vc, v1, v2);
253 fvsum(r1[0].n, r1[0].n, vc, 1.0);
254 fvsum(v1, r2[0].p, r1[0].p, -1.0);
255 fcross(vc, v2, v1);
256 fvsum(r1[0].n, r1[0].n, vc, 1.0);
257 normalize(r1[0].n);
258 r0++; r1++; r2++;
259 }
260 }
261
262
263 int
264 norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
265 register FVECT resmat[4];
266 POINT *p0, *p1, *p2, *p3;
267 {
268 #define u ((ax+1)%3)
269 #define v ((ax+2)%3)
270
271 register int ax;
272 double eqnmat[4][4];
273 FVECT v1;
274 register int i, j;
275
276 if (!smooth) /* no interpolation if no smoothing */
277 return(-1);
278 /* find dominant axis */
279 VCOPY(v1, p0->n);
280 fvsum(v1, v1, p1->n, 1.0);
281 fvsum(v1, v1, p2->n, 1.0);
282 fvsum(v1, v1, p3->n, 1.0);
283 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
284 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
285 /* assign equation matrix */
286 eqnmat[0][0] = p0->p[u]*p0->p[v];
287 eqnmat[0][1] = p0->p[u];
288 eqnmat[0][2] = p0->p[v];
289 eqnmat[0][3] = 1.0;
290 eqnmat[1][0] = p1->p[u]*p1->p[v];
291 eqnmat[1][1] = p1->p[u];
292 eqnmat[1][2] = p1->p[v];
293 eqnmat[1][3] = 1.0;
294 eqnmat[2][0] = p2->p[u]*p2->p[v];
295 eqnmat[2][1] = p2->p[u];
296 eqnmat[2][2] = p2->p[v];
297 eqnmat[2][3] = 1.0;
298 eqnmat[3][0] = p3->p[u]*p3->p[v];
299 eqnmat[3][1] = p3->p[u];
300 eqnmat[3][2] = p3->p[v];
301 eqnmat[3][3] = 1.0;
302 /* invert matrix (solve system) */
303 if (!invmat(eqnmat, eqnmat))
304 return(-1); /* no solution */
305 /* compute result matrix */
306 for (j = 0; j < 4; j++)
307 for (i = 0; i < 3; i++)
308 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
309 eqnmat[j][1]*p1->n[i] +
310 eqnmat[j][2]*p2->n[i] +
311 eqnmat[j][3]*p3->n[i];
312 return(ax);
313
314 #undef u
315 #undef v
316 }
317
318
319 /*
320 * invmat - computes the inverse of mat into inverse. Returns 1
321 * if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
322 * method.
323 */
324
325 invmat(inverse,mat)
326 double mat[4][4],inverse[4][4];
327 {
328 #define SWAP(a,b,t) (t=a,a=b,b=t)
329
330 double m4tmp[4][4];
331 register int i,j,k;
332 register double temp;
333
334 bcopy((char *)mat, (char *)m4tmp, sizeof(m4tmp));
335 /* set inverse to identity */
336 for (i = 0; i < 4; i++)
337 for (j = 0; j < 4; j++)
338 inverse[i][j] = i==j ? 1.0 : 0.0;
339
340 for(i = 0; i < 4; i++) {
341 /* Look for raw with largest pivot and swap raws */
342 temp = FTINY; j = -1;
343 for(k = i; k < 4; k++)
344 if(ABS(m4tmp[k][i]) > temp) {
345 temp = ABS(m4tmp[k][i]);
346 j = k;
347 }
348 if(j == -1) /* No replacing raw -> no inverse */
349 return(0);
350 if (j != i)
351 for(k = 0; k < 4; k++) {
352 SWAP(m4tmp[i][k],m4tmp[j][k],temp);
353 SWAP(inverse[i][k],inverse[j][k],temp);
354 }
355
356 temp = m4tmp[i][i];
357 for(k = 0; k < 4; k++) {
358 m4tmp[i][k] /= temp;
359 inverse[i][k] /= temp;
360 }
361 for(j = 0; j < 4; j++) {
362 if(j != i) {
363 temp = m4tmp[j][i];
364 for(k = 0; k < 4; k++) {
365 m4tmp[j][k] -= m4tmp[i][k]*temp;
366 inverse[j][k] -= inverse[i][k]*temp;
367 }
368 }
369 }
370 }
371 return(1);
372
373 #undef SWAP
374 }
375
376
377 eputs(msg)
378 char *msg;
379 {
380 fputs(msg, stderr);
381 }
382
383
384 wputs(msg)
385 char *msg;
386 {
387 eputs(msg);
388 }
389
390
391 quit(code)
392 {
393 exit(code);
394 }
395
396
397 printhead(ac, av) /* print command header */
398 register int ac;
399 register char **av;
400 {
401 putchar('#');
402 while (ac--) {
403 putchar(' ');
404 fputs(*av++, stdout);
405 }
406 putchar('\n');
407 }
408
409
410 double
411 l_hermite()
412 {
413 double t;
414
415 t = argument(5);
416 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
417 argument(2)*(-2.0*t+3.0)*t*t +
418 argument(3)*((t-2.0)*t+1.0)*t +
419 argument(4)*(t-1.0)*t*t );
420 }
421
422
423 double
424 l_bezier()
425 {
426 double t;
427
428 t = argument(5);
429 return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
430 argument(2) * 3.*t*(1.+t*(-2.+t)) +
431 argument(3) * 3.*t*t*(1.-t) +
432 argument(4) * t*t*t );
433 }
434
435
436 double
437 l_bspline()
438 {
439 double t;
440
441 t = argument(5);
442 return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
443 argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
444 argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
445 argument(4) * (1./6.*t*t*t) );
446 }