ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 1.5
Committed: Fri Jan 19 00:03:08 1990 UTC (34 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.4: +2 -7 lines
Log Message:
improved portability of bcopy()

File Contents

# Content
1 /* Copyright (c) 1989 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * gensurf.c - program to generate functional surfaces
9 *
10 * Parametric functions x(s,t), y(s,t) and z(s,t)
11 * specify the surface, which is tesselated into an m by n
12 * array of paired triangles.
13 * The surface normal is defined by the right hand
14 * rule applied to (s,t).
15 *
16 * 4/3/87
17 */
18
19 #include "standard.h"
20
21 #define XNAME "X_" /* x function name */
22 #define YNAME "Y_" /* y function name */
23 #define ZNAME "Z_" /* z function name */
24
25 #define ABS(x) ((x)>=0 ? (x) : -(x))
26
27 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
28
29 char vformat[] = "%15.9g %15.9g %15.9g\n";
30 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
31 char texname[] = "Phong";
32
33 int smooth = 0; /* apply smoothing? */
34
35 char *modname, *surfname;
36
37 double funvalue(), l_hermite(), argument();
38
39 typedef struct {
40 FVECT p; /* vertex position */
41 FVECT n; /* average normal */
42 } POINT;
43
44
45 main(argc, argv)
46 int argc;
47 char *argv[];
48 {
49 POINT *row0, *row1, *row2, *rp;
50 int i, j, m, n;
51 char stmp[256];
52
53 varset("PI", PI);
54 funset("hermite", 5, l_hermite);
55
56 if (argc < 8)
57 goto userror;
58
59 for (i = 8; i < argc; i++)
60 if (!strcmp(argv[i], "-e"))
61 scompile(NULL, argv[++i]);
62 else if (!strcmp(argv[i], "-f"))
63 fcompile(argv[++i]);
64 else if (!strcmp(argv[i], "-s"))
65 smooth++;
66 else
67 goto userror;
68
69 modname = argv[1];
70 surfname = argv[2];
71 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
72 scompile(NULL, stmp);
73 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
74 scompile(NULL, stmp);
75 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
76 scompile(NULL, stmp);
77 m = atoi(argv[6]);
78 n = atoi(argv[7]);
79 if (m <= 0 || n <= 0)
80 goto userror;
81
82 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
83 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
84 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
85 if (row0 == NULL || row1 == NULL || row2 == NULL) {
86 fprintf(stderr, "%s: out of memory\n", argv[0]);
87 quit(1);
88 }
89 row0++; row1++; row2++;
90 /* print header */
91 printhead(argc, argv);
92 /* initialize */
93 comprow(-1.0/m, row0, n);
94 comprow(0.0, row1, n);
95 comprow(1.0/m, row2, n);
96 compnorms(row0, row1, row2, n);
97 /* for each row */
98 for (i = 0; i < m; i++) {
99 /* compute next row */
100 rp = row0;
101 row0 = row1;
102 row1 = row2;
103 row2 = rp;
104 comprow((double)(i+2)/m, row2, n);
105 compnorms(row0, row1, row2, n);
106
107 for (j = 0; j < n; j++) {
108 /* put polygons */
109 if ((i+j) & 1)
110 putsquare(&row0[j], &row1[j],
111 &row0[j+1], &row1[j+1]);
112 else
113 putsquare(&row1[j], &row1[j+1],
114 &row0[j], &row0[j+1]);
115 }
116 }
117
118 quit(0);
119
120 userror:
121 fprintf(stderr, "Usage: %s material name ", argv[0]);
122 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
123 quit(1);
124 }
125
126
127 putsquare(p0, p1, p2, p3) /* put out a square */
128 POINT *p0, *p1, *p2, *p3;
129 {
130 static int nout = 0;
131 FVECT norm[4];
132 int axis;
133 FVECT v1, v2, vc1, vc2;
134 int ok1, ok2;
135 /* compute exact normals */
136 fvsum(v1, p1->p, p0->p, -1.0);
137 fvsum(v2, p2->p, p0->p, -1.0);
138 fcross(vc1, v1, v2);
139 ok1 = normalize(vc1) != 0.0;
140 fvsum(v1, p2->p, p3->p, -1.0);
141 fvsum(v2, p1->p, p3->p, -1.0);
142 fcross(vc2, v1, v2);
143 ok2 = normalize(vc2) != 0.0;
144 if (!(ok1 | ok2))
145 return;
146 /* compute normal interpolation */
147 axis = norminterp(norm, p0, p1, p2, p3);
148
149 /* put out quadrilateral? */
150 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
151 printf("\n%s ", modname);
152 if (axis != -1) {
153 printf("texfunc %s\n", texname);
154 printf(tsargs);
155 printf("0\n13\t%d\n", axis);
156 pvect(norm[0]);
157 pvect(norm[1]);
158 pvect(norm[2]);
159 fvsum(v1, norm[3], vc1, -0.5);
160 fvsum(v1, v1, vc2, -0.5);
161 pvect(v1);
162 printf("\n%s ", texname);
163 }
164 printf("polygon %s.%d\n", surfname, ++nout);
165 printf("0\n0\n12\n");
166 pvect(p0->p);
167 pvect(p1->p);
168 pvect(p3->p);
169 pvect(p2->p);
170 return;
171 }
172 /* put out triangles? */
173 if (ok1) {
174 printf("\n%s ", modname);
175 if (axis != -1) {
176 printf("texfunc %s\n", texname);
177 printf(tsargs);
178 printf("0\n13\t%d\n", axis);
179 pvect(norm[0]);
180 pvect(norm[1]);
181 pvect(norm[2]);
182 fvsum(v1, norm[3], vc1, -1.0);
183 pvect(v1);
184 printf("\n%s ", texname);
185 }
186 printf("polygon %s.%d\n", surfname, ++nout);
187 printf("0\n0\n9\n");
188 pvect(p0->p);
189 pvect(p1->p);
190 pvect(p2->p);
191 }
192 if (ok2) {
193 printf("\n%s ", modname);
194 if (axis != -1) {
195 printf("texfunc %s\n", texname);
196 printf(tsargs);
197 printf("0\n13\t%d\n", axis);
198 pvect(norm[0]);
199 pvect(norm[1]);
200 pvect(norm[2]);
201 fvsum(v2, norm[3], vc2, -1.0);
202 pvect(v2);
203 printf("\n%s ", texname);
204 }
205 printf("polygon %s.%d\n", surfname, ++nout);
206 printf("0\n0\n9\n");
207 pvect(p2->p);
208 pvect(p1->p);
209 pvect(p3->p);
210 }
211 }
212
213
214 comprow(s, row, siz) /* compute row of values */
215 double s;
216 register POINT *row;
217 int siz;
218 {
219 double st[2];
220 register int i;
221 /* compute one past each end */
222 st[0] = s;
223 for (i = -1; i <= siz+1; i++) {
224 st[1] = (double)i/siz;
225 row[i].p[0] = funvalue(XNAME, 2, st);
226 row[i].p[1] = funvalue(YNAME, 2, st);
227 row[i].p[2] = funvalue(ZNAME, 2, st);
228 }
229 }
230
231
232 compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
233 register POINT *r0, *r1, *r2;
234 int siz;
235 {
236 FVECT v1, v2, vc;
237 register int i;
238
239 if (!smooth) /* not needed if no smoothing */
240 return;
241 /* compute middle points */
242 while (siz-- >= 0) {
243 fvsum(v1, r2[0].p, r1[0].p, -1.0);
244 fvsum(v2, r1[1].p, r1[0].p, -1.0);
245 fcross(r1[0].n, v1, v2);
246 fvsum(v1, r0[0].p, r1[0].p, -1.0);
247 fcross(vc, v2, v1);
248 fvsum(r1[0].n, r1[0].n, vc, 1.0);
249 fvsum(v2, r1[-1].p, r1[0].p, -1.0);
250 fcross(vc, v1, v2);
251 fvsum(r1[0].n, r1[0].n, vc, 1.0);
252 fvsum(v1, r2[0].p, r1[0].p, -1.0);
253 fcross(vc, v2, v1);
254 fvsum(r1[0].n, r1[0].n, vc, 1.0);
255 normalize(r1[0].n);
256 r0++; r1++; r2++;
257 }
258 }
259
260
261 int
262 norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
263 register FVECT resmat[4];
264 POINT *p0, *p1, *p2, *p3;
265 {
266 #define u ((ax+1)%3)
267 #define v ((ax+2)%3)
268
269 register int ax;
270 double eqnmat[4][4];
271 FVECT v1;
272 register int i, j;
273
274 if (!smooth) /* no interpolation if no smoothing */
275 return(-1);
276 /* find dominant axis */
277 VCOPY(v1, p0->n);
278 fvsum(v1, v1, p1->n, 1.0);
279 fvsum(v1, v1, p2->n, 1.0);
280 fvsum(v1, v1, p3->n, 1.0);
281 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
282 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
283 /* assign equation matrix */
284 eqnmat[0][0] = p0->p[u]*p0->p[v];
285 eqnmat[0][1] = p0->p[u];
286 eqnmat[0][2] = p0->p[v];
287 eqnmat[0][3] = 1.0;
288 eqnmat[1][0] = p1->p[u]*p1->p[v];
289 eqnmat[1][1] = p1->p[u];
290 eqnmat[1][2] = p1->p[v];
291 eqnmat[1][3] = 1.0;
292 eqnmat[2][0] = p2->p[u]*p2->p[v];
293 eqnmat[2][1] = p2->p[u];
294 eqnmat[2][2] = p2->p[v];
295 eqnmat[2][3] = 1.0;
296 eqnmat[3][0] = p3->p[u]*p3->p[v];
297 eqnmat[3][1] = p3->p[u];
298 eqnmat[3][2] = p3->p[v];
299 eqnmat[3][3] = 1.0;
300 /* invert matrix (solve system) */
301 if (!invmat(eqnmat, eqnmat))
302 return(-1); /* no solution */
303 /* compute result matrix */
304 for (j = 0; j < 4; j++)
305 for (i = 0; i < 3; i++)
306 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
307 eqnmat[j][1]*p1->n[i] +
308 eqnmat[j][2]*p2->n[i] +
309 eqnmat[j][3]*p3->n[i];
310 return(ax);
311
312 #undef u
313 #undef v
314 }
315
316
317 /*
318 * invmat - computes the inverse of mat into inverse. Returns 1
319 * if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
320 * method.
321 */
322
323 invmat(inverse,mat)
324 double mat[4][4],inverse[4][4];
325 {
326 #define SWAP(a,b,t) (t=a,a=b,b=t)
327
328 double m4tmp[4][4];
329 register int i,j,k;
330 register double temp;
331
332 bcopy((char *)mat, (char *)m4tmp, sizeof(m4tmp));
333 /* set inverse to identity */
334 for (i = 0; i < 4; i++)
335 for (j = 0; j < 4; j++)
336 inverse[i][j] = i==j ? 1.0 : 0.0;
337
338 for(i = 0; i < 4; i++) {
339 /* Look for raw with largest pivot and swap raws */
340 temp = FTINY; j = -1;
341 for(k = i; k < 4; k++)
342 if(ABS(m4tmp[k][i]) > temp) {
343 temp = ABS(m4tmp[k][i]);
344 j = k;
345 }
346 if(j == -1) /* No replacing raw -> no inverse */
347 return(0);
348 if (j != i)
349 for(k = 0; k < 4; k++) {
350 SWAP(m4tmp[i][k],m4tmp[j][k],temp);
351 SWAP(inverse[i][k],inverse[j][k],temp);
352 }
353
354 temp = m4tmp[i][i];
355 for(k = 0; k < 4; k++) {
356 m4tmp[i][k] /= temp;
357 inverse[i][k] /= temp;
358 }
359 for(j = 0; j < 4; j++) {
360 if(j != i) {
361 temp = m4tmp[j][i];
362 for(k = 0; k < 4; k++) {
363 m4tmp[j][k] -= m4tmp[i][k]*temp;
364 inverse[j][k] -= inverse[i][k]*temp;
365 }
366 }
367 }
368 }
369 return(1);
370
371 #undef SWAP
372 }
373
374
375 eputs(msg)
376 char *msg;
377 {
378 fputs(msg, stderr);
379 }
380
381
382 wputs(msg)
383 char *msg;
384 {
385 eputs(msg);
386 }
387
388
389 quit(code)
390 {
391 exit(code);
392 }
393
394
395 printhead(ac, av) /* print command header */
396 register int ac;
397 register char **av;
398 {
399 putchar('#');
400 while (ac--) {
401 putchar(' ');
402 fputs(*av++, stdout);
403 }
404 putchar('\n');
405 }
406
407
408 double
409 l_hermite()
410 {
411 double t;
412
413 t = argument(5);
414 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
415 argument(2)*(-2.0*t+3.0)*t*t +
416 argument(3)*((t-2.0)*t+1.0)*t +
417 argument(4)*(t-1.0)*t*t );
418 }