ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 1.4
Committed: Wed Oct 18 18:49:09 1989 UTC (34 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.3: +51 -79 lines
Log Message:
improved smoothing at edges, improved stability of invmat()

File Contents

# Content
1 /* Copyright (c) 1989 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * gensurf.c - program to generate functional surfaces
9 *
10 * Parametric functions x(s,t), y(s,t) and z(s,t)
11 * specify the surface, which is tesselated into an m by n
12 * array of paired triangles.
13 * The surface normal is defined by the right hand
14 * rule applied to (s,t).
15 *
16 * 4/3/87
17 */
18
19 #include <stdio.h>
20 #include "fvect.h"
21
22 #define XNAME "X_" /* x function name */
23 #define YNAME "Y_" /* y function name */
24 #define ZNAME "Z_" /* z function name */
25
26 #define PI 3.14159265358979323846
27
28 #define FTINY 1e-7
29
30 #define ABS(x) ((x)>=0 ? (x) : -(x))
31
32 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
33
34 char vformat[] = "%15.9g %15.9g %15.9g\n";
35 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
36 char texname[] = "Phong";
37
38 int smooth = 0; /* apply smoothing? */
39
40 char *modname, *surfname;
41
42 double funvalue(), l_hermite(), argument();
43
44 typedef struct {
45 FVECT p; /* vertex position */
46 FVECT n; /* average normal */
47 } POINT;
48
49
50 main(argc, argv)
51 int argc;
52 char *argv[];
53 {
54 POINT *row0, *row1, *row2, *rp;
55 int i, j, m, n;
56 char stmp[256];
57
58 varset("PI", PI);
59 funset("hermite", 5, l_hermite);
60
61 if (argc < 8)
62 goto userror;
63
64 for (i = 8; i < argc; i++)
65 if (!strcmp(argv[i], "-e"))
66 scompile(NULL, argv[++i]);
67 else if (!strcmp(argv[i], "-f"))
68 fcompile(argv[++i]);
69 else if (!strcmp(argv[i], "-s"))
70 smooth++;
71 else
72 goto userror;
73
74 modname = argv[1];
75 surfname = argv[2];
76 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
77 scompile(NULL, stmp);
78 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
79 scompile(NULL, stmp);
80 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
81 scompile(NULL, stmp);
82 m = atoi(argv[6]);
83 n = atoi(argv[7]);
84 if (m <= 0 || n <= 0)
85 goto userror;
86
87 row0 = (POINT *)malloc((n+3)*sizeof(POINT));
88 row1 = (POINT *)malloc((n+3)*sizeof(POINT));
89 row2 = (POINT *)malloc((n+3)*sizeof(POINT));
90 if (row0 == NULL || row1 == NULL || row2 == NULL) {
91 fprintf(stderr, "%s: out of memory\n", argv[0]);
92 quit(1);
93 }
94 row0++; row1++; row2++;
95 /* print header */
96 printhead(argc, argv);
97 /* initialize */
98 comprow(-1.0/m, row0, n);
99 comprow(0.0, row1, n);
100 comprow(1.0/m, row2, n);
101 compnorms(row0, row1, row2, n);
102 /* for each row */
103 for (i = 0; i < m; i++) {
104 /* compute next row */
105 rp = row0;
106 row0 = row1;
107 row1 = row2;
108 row2 = rp;
109 comprow((double)(i+2)/m, row2, n);
110 compnorms(row0, row1, row2, n);
111
112 for (j = 0; j < n; j++) {
113 /* put polygons */
114 if ((i+j) & 1)
115 putsquare(&row0[j], &row1[j],
116 &row0[j+1], &row1[j+1]);
117 else
118 putsquare(&row1[j], &row1[j+1],
119 &row0[j], &row0[j+1]);
120 }
121 }
122
123 quit(0);
124
125 userror:
126 fprintf(stderr, "Usage: %s material name ", argv[0]);
127 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
128 quit(1);
129 }
130
131
132 putsquare(p0, p1, p2, p3) /* put out a square */
133 POINT *p0, *p1, *p2, *p3;
134 {
135 static int nout = 0;
136 FVECT norm[4];
137 int axis;
138 FVECT v1, v2, vc1, vc2;
139 int ok1, ok2;
140 /* compute exact normals */
141 fvsum(v1, p1->p, p0->p, -1.0);
142 fvsum(v2, p2->p, p0->p, -1.0);
143 fcross(vc1, v1, v2);
144 ok1 = normalize(vc1) != 0.0;
145 fvsum(v1, p2->p, p3->p, -1.0);
146 fvsum(v2, p1->p, p3->p, -1.0);
147 fcross(vc2, v1, v2);
148 ok2 = normalize(vc2) != 0.0;
149 if (!(ok1 | ok2))
150 return;
151 /* compute normal interpolation */
152 axis = norminterp(norm, p0, p1, p2, p3);
153
154 /* put out quadrilateral? */
155 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
156 printf("\n%s ", modname);
157 if (axis != -1) {
158 printf("texfunc %s\n", texname);
159 printf(tsargs);
160 printf("0\n13\t%d\n", axis);
161 pvect(norm[0]);
162 pvect(norm[1]);
163 pvect(norm[2]);
164 fvsum(v1, norm[3], vc1, -0.5);
165 fvsum(v1, v1, vc2, -0.5);
166 pvect(v1);
167 printf("\n%s ", texname);
168 }
169 printf("polygon %s.%d\n", surfname, ++nout);
170 printf("0\n0\n12\n");
171 pvect(p0->p);
172 pvect(p1->p);
173 pvect(p3->p);
174 pvect(p2->p);
175 return;
176 }
177 /* put out triangles? */
178 if (ok1) {
179 printf("\n%s ", modname);
180 if (axis != -1) {
181 printf("texfunc %s\n", texname);
182 printf(tsargs);
183 printf("0\n13\t%d\n", axis);
184 pvect(norm[0]);
185 pvect(norm[1]);
186 pvect(norm[2]);
187 fvsum(v1, norm[3], vc1, -1.0);
188 pvect(v1);
189 printf("\n%s ", texname);
190 }
191 printf("polygon %s.%d\n", surfname, ++nout);
192 printf("0\n0\n9\n");
193 pvect(p0->p);
194 pvect(p1->p);
195 pvect(p2->p);
196 }
197 if (ok2) {
198 printf("\n%s ", modname);
199 if (axis != -1) {
200 printf("texfunc %s\n", texname);
201 printf(tsargs);
202 printf("0\n13\t%d\n", axis);
203 pvect(norm[0]);
204 pvect(norm[1]);
205 pvect(norm[2]);
206 fvsum(v2, norm[3], vc2, -1.0);
207 pvect(v2);
208 printf("\n%s ", texname);
209 }
210 printf("polygon %s.%d\n", surfname, ++nout);
211 printf("0\n0\n9\n");
212 pvect(p2->p);
213 pvect(p1->p);
214 pvect(p3->p);
215 }
216 }
217
218
219 comprow(s, row, siz) /* compute row of values */
220 double s;
221 register POINT *row;
222 int siz;
223 {
224 double st[2];
225 register int i;
226 /* compute one past each end */
227 st[0] = s;
228 for (i = -1; i <= siz+1; i++) {
229 st[1] = (double)i/siz;
230 row[i].p[0] = funvalue(XNAME, 2, st);
231 row[i].p[1] = funvalue(YNAME, 2, st);
232 row[i].p[2] = funvalue(ZNAME, 2, st);
233 }
234 }
235
236
237 compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
238 register POINT *r0, *r1, *r2;
239 int siz;
240 {
241 FVECT v1, v2, vc;
242 register int i;
243
244 if (!smooth) /* not needed if no smoothing */
245 return;
246 /* compute middle points */
247 while (siz-- >= 0) {
248 fvsum(v1, r2[0].p, r1[0].p, -1.0);
249 fvsum(v2, r1[1].p, r1[0].p, -1.0);
250 fcross(r1[0].n, v1, v2);
251 fvsum(v1, r0[0].p, r1[0].p, -1.0);
252 fcross(vc, v2, v1);
253 fvsum(r1[0].n, r1[0].n, vc, 1.0);
254 fvsum(v2, r1[-1].p, r1[0].p, -1.0);
255 fcross(vc, v1, v2);
256 fvsum(r1[0].n, r1[0].n, vc, 1.0);
257 fvsum(v1, r2[0].p, r1[0].p, -1.0);
258 fcross(vc, v2, v1);
259 fvsum(r1[0].n, r1[0].n, vc, 1.0);
260 normalize(r1[0].n);
261 r0++; r1++; r2++;
262 }
263 }
264
265
266 int
267 norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
268 register FVECT resmat[4];
269 POINT *p0, *p1, *p2, *p3;
270 {
271 #define u ((ax+1)%3)
272 #define v ((ax+2)%3)
273
274 register int ax;
275 double eqnmat[4][4];
276 FVECT v1;
277 register int i, j;
278
279 if (!smooth) /* no interpolation if no smoothing */
280 return(-1);
281 /* find dominant axis */
282 VCOPY(v1, p0->n);
283 fvsum(v1, v1, p1->n, 1.0);
284 fvsum(v1, v1, p2->n, 1.0);
285 fvsum(v1, v1, p3->n, 1.0);
286 ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
287 ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
288 /* assign equation matrix */
289 eqnmat[0][0] = p0->p[u]*p0->p[v];
290 eqnmat[0][1] = p0->p[u];
291 eqnmat[0][2] = p0->p[v];
292 eqnmat[0][3] = 1.0;
293 eqnmat[1][0] = p1->p[u]*p1->p[v];
294 eqnmat[1][1] = p1->p[u];
295 eqnmat[1][2] = p1->p[v];
296 eqnmat[1][3] = 1.0;
297 eqnmat[2][0] = p2->p[u]*p2->p[v];
298 eqnmat[2][1] = p2->p[u];
299 eqnmat[2][2] = p2->p[v];
300 eqnmat[2][3] = 1.0;
301 eqnmat[3][0] = p3->p[u]*p3->p[v];
302 eqnmat[3][1] = p3->p[u];
303 eqnmat[3][2] = p3->p[v];
304 eqnmat[3][3] = 1.0;
305 /* invert matrix (solve system) */
306 if (!invmat(eqnmat, eqnmat))
307 return(-1); /* no solution */
308 /* compute result matrix */
309 for (j = 0; j < 4; j++)
310 for (i = 0; i < 3; i++)
311 resmat[j][i] = eqnmat[j][0]*p0->n[i] +
312 eqnmat[j][1]*p1->n[i] +
313 eqnmat[j][2]*p2->n[i] +
314 eqnmat[j][3]*p3->n[i];
315 return(ax);
316
317 #undef u
318 #undef v
319 }
320
321
322 /*
323 * invmat - computes the inverse of mat into inverse. Returns 1
324 * if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
325 * method.
326 */
327
328 invmat(inverse,mat)
329 double mat[4][4],inverse[4][4];
330 {
331 #define SWAP(a,b,t) (t=a,a=b,b=t)
332
333 double m4tmp[4][4];
334 register int i,j,k;
335 register double temp;
336
337 bcopy(mat, m4tmp, sizeof(m4tmp));
338 /* set inverse to identity */
339 for (i = 0; i < 4; i++)
340 for (j = 0; j < 4; j++)
341 inverse[i][j] = i==j ? 1.0 : 0.0;
342
343 for(i = 0; i < 4; i++) {
344 /* Look for raw with largest pivot and swap raws */
345 temp = FTINY; j = -1;
346 for(k = i; k < 4; k++)
347 if(ABS(m4tmp[k][i]) > temp) {
348 temp = ABS(m4tmp[k][i]);
349 j = k;
350 }
351 if(j == -1) /* No replacing raw -> no inverse */
352 return(0);
353 if (j != i)
354 for(k = 0; k < 4; k++) {
355 SWAP(m4tmp[i][k],m4tmp[j][k],temp);
356 SWAP(inverse[i][k],inverse[j][k],temp);
357 }
358
359 temp = m4tmp[i][i];
360 for(k = 0; k < 4; k++) {
361 m4tmp[i][k] /= temp;
362 inverse[i][k] /= temp;
363 }
364 for(j = 0; j < 4; j++) {
365 if(j != i) {
366 temp = m4tmp[j][i];
367 for(k = 0; k < 4; k++) {
368 m4tmp[j][k] -= m4tmp[i][k]*temp;
369 inverse[j][k] -= inverse[i][k]*temp;
370 }
371 }
372 }
373 }
374 return(1);
375
376 #undef SWAP
377 }
378
379
380 eputs(msg)
381 char *msg;
382 {
383 fputs(msg, stderr);
384 }
385
386
387 wputs(msg)
388 char *msg;
389 {
390 eputs(msg);
391 }
392
393
394 quit(code)
395 {
396 exit(code);
397 }
398
399
400 printhead(ac, av) /* print command header */
401 register int ac;
402 register char **av;
403 {
404 putchar('#');
405 while (ac--) {
406 putchar(' ');
407 fputs(*av++, stdout);
408 }
409 putchar('\n');
410 }
411
412
413 double
414 l_hermite()
415 {
416 double t;
417
418 t = argument(5);
419 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
420 argument(2)*(-2.0*t+3.0)*t*t +
421 argument(3)*((t-2.0)*t+1.0)*t +
422 argument(4)*(t-1.0)*t*t );
423 }