ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensurf.c
Revision: 1.3
Committed: Wed Oct 18 15:01:23 1989 UTC (34 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.2: +307 -83 lines
Log Message:
added smoothing option

File Contents

# Content
1 /* Copyright (c) 1989 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * gensurf.c - program to generate functional surfaces
9 *
10 * Parametric functions x(s,t), y(s,t) and z(s,t)
11 * specify the surface, which is tesselated into an m by n
12 * array of paired triangles.
13 * The surface normal is defined by the right hand
14 * rule applied to (s,t).
15 *
16 * 4/3/87
17 */
18
19 #include <stdio.h>
20 #include "fvect.h"
21
22 #define XNAME "X_" /* x function name */
23 #define YNAME "Y_" /* y function name */
24 #define ZNAME "Z_" /* z function name */
25
26 #define PI 3.14159265358979323846
27
28 #define FTINY 1e-7
29
30 #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
31
32 char vformat[] = "%15.9g %15.9g %15.9g\n";
33 char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
34 char texname[] = "Phong";
35
36 int smooth = 0; /* apply smoothing? */
37
38 char *modname, *surfname;
39
40 double funvalue(), l_hermite(), argument(), fabs();
41
42 typedef struct {
43 FVECT p; /* vertex position */
44 FVECT n; /* average normal */
45 } POINT;
46
47
48 main(argc, argv)
49 int argc;
50 char *argv[];
51 {
52 POINT *row0, *row1, *row2, *rp;
53 int i, j, m, n;
54 char stmp[256];
55
56 varset("PI", PI);
57 funset("hermite", 5, l_hermite);
58
59 if (argc < 8)
60 goto userror;
61
62 for (i = 8; i < argc; i++)
63 if (!strcmp(argv[i], "-e"))
64 scompile(NULL, argv[++i]);
65 else if (!strcmp(argv[i], "-f"))
66 fcompile(argv[++i]);
67 else if (!strcmp(argv[i], "-s"))
68 smooth++;
69 else
70 goto userror;
71
72 modname = argv[1];
73 surfname = argv[2];
74 sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
75 scompile(NULL, stmp);
76 sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
77 scompile(NULL, stmp);
78 sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
79 scompile(NULL, stmp);
80 m = atoi(argv[6]);
81 n = atoi(argv[7]);
82 if (m <= 0 || n <= 0)
83 goto userror;
84
85 row0 = (POINT *)malloc((n+1)*sizeof(POINT));
86 row1 = (POINT *)malloc((n+1)*sizeof(POINT));
87 row2 = (POINT *)malloc((n+1)*sizeof(POINT));
88 if (row0 == NULL || row1 == NULL || row2 == NULL) {
89 fprintf(stderr, "%s: out of memory\n", argv[0]);
90 quit(1);
91 }
92 /* print header */
93 printhead(argc, argv);
94 /* compute first two rows */
95 comprow(0.0, row1, n);
96 comprow(1.0/m, row2, n);
97 compnorms(row1, row1, row2, n);
98 /* for each row */
99 for (i = 0; i < m; i++) {
100 /* compute next row */
101 rp = row0;
102 row0 = row1;
103 row1 = row2;
104 row2 = rp;
105 if (i+2 <= m) {
106 comprow((double)(i+2)/m, row2, n);
107 compnorms(row0, row1, row2, n);
108 } else
109 compnorms(row0, row1, row1, n);
110
111 for (j = 0; j < n; j++) {
112 /* put polygons */
113 if ((i+j) & 1)
114 putsquare(&row0[j], &row1[j],
115 &row0[j+1], &row1[j+1]);
116 else
117 putsquare(&row1[j], &row1[j+1],
118 &row0[j], &row0[j+1]);
119 }
120 }
121
122 quit(0);
123
124 userror:
125 fprintf(stderr, "Usage: %s material name ", argv[0]);
126 fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
127 quit(1);
128 }
129
130
131 putsquare(p0, p1, p2, p3) /* put out a square */
132 POINT *p0, *p1, *p2, *p3;
133 {
134 static int nout = 0;
135 FVECT norm[4];
136 int axis;
137 FVECT v1, v2, vc1, vc2;
138 int ok1, ok2;
139 /* compute exact normals */
140 fvsum(v1, p1->p, p0->p, -1.0);
141 fvsum(v2, p2->p, p0->p, -1.0);
142 fcross(vc1, v1, v2);
143 ok1 = normalize(vc1) != 0.0;
144 fvsum(v1, p2->p, p3->p, -1.0);
145 fvsum(v2, p1->p, p3->p, -1.0);
146 fcross(vc2, v1, v2);
147 ok2 = normalize(vc2) != 0.0;
148 if (!(ok1 | ok2))
149 return;
150 /* compute normal interpolation */
151 axis = norminterp(norm, p0, p1, p2, p3);
152
153 /* put out quadrilateral? */
154 if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
155 printf("\n%s ", modname);
156 if (axis != -1) {
157 printf("texfunc %s\n", texname);
158 printf(tsargs);
159 printf("0\n13\t%d\n", axis);
160 pvect(norm[0]);
161 pvect(norm[1]);
162 pvect(norm[2]);
163 fvsum(v1, norm[3], vc1, -0.5);
164 fvsum(v1, v1, vc2, -0.5);
165 pvect(v1);
166 printf("\n%s ", texname);
167 }
168 printf("polygon %s.%d\n", surfname, ++nout);
169 printf("0\n0\n12\n");
170 pvect(p0->p);
171 pvect(p1->p);
172 pvect(p3->p);
173 pvect(p2->p);
174 return;
175 }
176 /* put out triangles? */
177 if (ok1) {
178 printf("\n%s ", modname);
179 if (axis != -1) {
180 printf("texfunc %s\n", texname);
181 printf(tsargs);
182 printf("0\n13\t%d\n", axis);
183 pvect(norm[0]);
184 pvect(norm[1]);
185 pvect(norm[2]);
186 fvsum(v1, norm[3], vc1, -1.0);
187 pvect(v1);
188 printf("\n%s ", texname);
189 }
190 printf("polygon %s.%d\n", surfname, ++nout);
191 printf("0\n0\n9\n");
192 pvect(p0->p);
193 pvect(p1->p);
194 pvect(p2->p);
195 }
196 if (ok2) {
197 printf("\n%s ", modname);
198 if (axis != -1) {
199 printf("texfunc %s\n", texname);
200 printf(tsargs);
201 printf("0\n13\t%d\n", axis);
202 pvect(norm[0]);
203 pvect(norm[1]);
204 pvect(norm[2]);
205 fvsum(v2, norm[3], vc2, -1.0);
206 pvect(v2);
207 printf("\n%s ", texname);
208 }
209 printf("polygon %s.%d\n", surfname, ++nout);
210 printf("0\n0\n9\n");
211 pvect(p2->p);
212 pvect(p1->p);
213 pvect(p3->p);
214 }
215 }
216
217
218 comprow(s, row, siz) /* compute row of values */
219 double s;
220 register POINT *row;
221 int siz;
222 {
223 double st[2], step;
224
225 st[0] = s;
226 st[1] = 0.0;
227 step = 1.0 / siz;
228 while (siz-- >= 0) {
229 row->p[0] = funvalue(XNAME, 2, st);
230 row->p[1] = funvalue(YNAME, 2, st);
231 row->p[2] = funvalue(ZNAME, 2, st);
232 row++;
233 st[1] += step;
234 }
235 }
236
237
238 compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
239 register POINT *r0, *r1, *r2;
240 int siz;
241 {
242 FVECT v1, v2, vc;
243
244 if (!smooth) /* not needed if no smoothing */
245 return;
246 /* compute first point */
247 fvsum(v1, r2[0].p, r1[0].p, -1.0);
248 fvsum(v2, r1[1].p, r1[0].p, -1.0);
249 fcross(r1[0].n, v1, v2);
250 fvsum(v1, r0[0].p, r1[0].p, -1.0);
251 fcross(vc, v2, v1);
252 fvsum(r1[0].n, r1[0].n, vc, 1.0);
253 normalize(r1[0].n);
254 r0++; r1++; r2++;
255 /* compute middle points */
256 while (--siz > 0) {
257 fvsum(v1, r2[0].p, r1[0].p, -1.0);
258 fvsum(v2, r1[1].p, r1[0].p, -1.0);
259 fcross(r1[0].n, v1, v2);
260 fvsum(v1, r0[0].p, r1[0].p, -1.0);
261 fcross(vc, v2, v1);
262 fvsum(r1[0].n, r1[0].n, vc, 1.0);
263 fvsum(v2, r1[-1].p, r1[0].p, -1.0);
264 fcross(vc, v1, v2);
265 fvsum(r1[0].n, r1[0].n, vc, 1.0);
266 fvsum(v1, r2[0].p, r1[0].p, -1.0);
267 fcross(vc, v2, v1);
268 fvsum(r1[0].n, r1[0].n, vc, 1.0);
269 normalize(r1[0].n);
270 r0++; r1++; r2++;
271 }
272 /* compute end point */
273 fvsum(v1, r0[0].p, r1[0].p, -1.0);
274 fvsum(v2, r1[-1].p, r1[0].p, -1.0);
275 fcross(r1[0].n, v1, v2);
276 fvsum(v1, r2[0].p, r1[0].p, -1.0);
277 fcross(vc, v2, v1);
278 fvsum(r1[0].n, r1[0].n, vc, 1.0);
279 normalize(r1[0].n);
280 }
281
282
283 int
284 norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
285 register FVECT resmat[4];
286 POINT *p0, *p1, *p2, *p3;
287 {
288 #define u ((ax+1)%3)
289 #define v ((ax+2)%3)
290
291 register int ax;
292 double eqnmat[4][4], solmat[4][4];
293 FVECT v1;
294 register int i, j;
295
296 if (!smooth) /* no interpolation if no smoothing */
297 return(-1);
298 /* find dominant axis */
299 VCOPY(v1, p0->n);
300 fvsum(v1, v1, p1->n, 1.0);
301 fvsum(v1, v1, p2->n, 1.0);
302 fvsum(v1, v1, p3->n, 1.0);
303 ax = fabs(v1[0]) > fabs(v1[1]) ? 0 : 1;
304 ax = fabs(v1[ax]) > fabs(v1[2]) ? ax : 2;
305 /* assign equation matrix */
306 eqnmat[0][0] = p0->p[u]*p0->p[v];
307 eqnmat[0][1] = p0->p[u];
308 eqnmat[0][2] = p0->p[v];
309 eqnmat[0][3] = 1.0;
310 eqnmat[1][0] = p1->p[u]*p1->p[v];
311 eqnmat[1][1] = p1->p[u];
312 eqnmat[1][2] = p1->p[v];
313 eqnmat[1][3] = 1.0;
314 eqnmat[2][0] = p2->p[u]*p2->p[v];
315 eqnmat[2][1] = p2->p[u];
316 eqnmat[2][2] = p2->p[v];
317 eqnmat[2][3] = 1.0;
318 eqnmat[3][0] = p3->p[u]*p3->p[v];
319 eqnmat[3][1] = p3->p[u];
320 eqnmat[3][2] = p3->p[v];
321 eqnmat[3][3] = 1.0;
322 /* invert matrix (solve system) */
323 if (!invmat(solmat, eqnmat))
324 return(-1); /* no solution */
325 /* compute result matrix */
326 for (j = 0; j < 4; j++)
327 for (i = 0; i < 3; i++)
328 resmat[j][i] = solmat[j][0]*p0->n[i] +
329 solmat[j][1]*p1->n[i] +
330 solmat[j][2]*p2->n[i] +
331 solmat[j][3]*p3->n[i];
332 return(ax);
333
334 #undef u
335 #undef v
336 }
337
338
339 static double m4tmp[4][4]; /* for efficiency */
340
341 #define copymat4(m4a,m4b) bcopy((char *)m4b,(char *)m4a,sizeof(m4tmp))
342
343
344 setident4(m4)
345 double m4[4][4];
346 {
347 static double ident[4][4] = {
348 1.,0.,0.,0.,
349 0.,1.,0.,0.,
350 0.,0.,1.,0.,
351 0.,0.,0.,1.,
352 };
353 copymat4(m4, ident);
354 }
355
356 /*
357 * invmat - computes the inverse of mat into inverse. Returns 1
358 * if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
359 * method.
360 */
361
362 invmat(inverse,mat)
363 double mat[4][4],inverse[4][4];
364 {
365 #define SWAP(a,b,t) (t=a,a=b,b=t)
366
367 register int i,j,k;
368 register double temp;
369
370 setident4(inverse);
371 copymat4(m4tmp, mat);
372
373 for(i = 0; i < 4; i++) {
374 if(m4tmp[i][i] == 0) { /* Pivot is zero */
375 /* Look for a raw with pivot != 0 and swap raws */
376 for(j = i + 1; j < 4; j++)
377 if(m4tmp[j][i] != 0) {
378 for( k = 0; k < 4; k++) {
379 SWAP(m4tmp[i][k],m4tmp[j][k],temp);
380 SWAP(inverse[i][k],inverse[j][k],temp);
381 }
382 break;
383 }
384 if(j == 4) /* No replacing raw -> no inverse */
385 return(0);
386 }
387
388 temp = m4tmp[i][i];
389 for(k = 0; k < 4; k++) {
390 m4tmp[i][k] /= temp;
391 inverse[i][k] /= temp;
392 }
393 for(j = 0; j < 4; j++) {
394 if(j != i) {
395 temp = m4tmp[j][i];
396 for(k = 0; k < 4; k++) {
397 m4tmp[j][k] -= m4tmp[i][k]*temp;
398 inverse[j][k] -= inverse[i][k]*temp;
399 }
400 }
401 }
402 }
403 return(1);
404 #undef SWAP
405 }
406
407
408 eputs(msg)
409 char *msg;
410 {
411 fputs(msg, stderr);
412 }
413
414
415 wputs(msg)
416 char *msg;
417 {
418 eputs(msg);
419 }
420
421
422 quit(code)
423 {
424 exit(code);
425 }
426
427
428 printhead(ac, av) /* print command header */
429 register int ac;
430 register char **av;
431 {
432 putchar('#');
433 while (ac--) {
434 putchar(' ');
435 fputs(*av++, stdout);
436 }
437 putchar('\n');
438 }
439
440
441 double
442 l_hermite()
443 {
444 double t;
445
446 t = argument(5);
447 return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
448 argument(2)*(-2.0*t+3.0)*t*t +
449 argument(3)*((t-2.0)*t+1.0)*t +
450 argument(4)*(t-1.0)*t*t );
451 }