1 |
– |
/* |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
+ |
/* |
5 |
|
* gensurf.c - program to generate functional surfaces |
6 |
|
* |
7 |
|
* Parametric functions x(s,t), y(s,t) and z(s,t) |
11 |
|
* rule applied to (s,t). |
12 |
|
* |
13 |
|
* 4/3/87 |
14 |
+ |
* |
15 |
+ |
* 4/16/02 Added conditional vertex output |
16 |
|
*/ |
17 |
|
|
18 |
< |
#include <stdio.h> |
18 |
> |
#include "standard.h" |
19 |
|
|
20 |
< |
#define XNAME "X_" /* x function name */ |
21 |
< |
#define YNAME "Y_" /* y function name */ |
22 |
< |
#define ZNAME "Z_" /* z function name */ |
20 |
> |
#include "paths.h" |
21 |
> |
#include "resolu.h" |
22 |
> |
#include "rterror.h" |
23 |
> |
#include "calcomp.h" |
24 |
|
|
25 |
< |
#define PI 3.14159265358979323846 |
25 |
> |
char XNAME[] = "X`SYS"; /* x function name */ |
26 |
> |
char YNAME[] = "Y`SYS"; /* y function name */ |
27 |
> |
char ZNAME[] = "Z`SYS"; /* z function name */ |
28 |
|
|
29 |
< |
#define FTINY 1e-7 |
29 |
> |
char VNAME[] = "valid"; /* valid vertex name */ |
30 |
|
|
31 |
< |
#define vertex(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
31 |
> |
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
32 |
|
|
33 |
< |
char vformat[] = "%15.9g %15.9g %15.9g\n"; |
33 |
> |
#define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY) |
34 |
|
|
35 |
< |
double funvalue(), dist2(), fdot(), l_hermite(), argument(); |
35 |
> |
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
36 |
|
|
37 |
+ |
char vformat[] = "%18.12g %18.12g %18.12g\n"; |
38 |
+ |
char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal"; |
39 |
+ |
char texname[] = "Phong"; |
40 |
|
|
41 |
+ |
int smooth = 0; /* apply smoothing? */ |
42 |
+ |
int objout = 0; /* output .OBJ format? */ |
43 |
+ |
|
44 |
+ |
char *modname, *surfname; |
45 |
+ |
|
46 |
+ |
/* recorded data flags */ |
47 |
+ |
#define HASBORDER 01 |
48 |
+ |
#define TRIPLETS 02 |
49 |
+ |
/* a data structure */ |
50 |
+ |
struct { |
51 |
+ |
int flags; /* data type */ |
52 |
+ |
short m, n; /* number of s and t values */ |
53 |
+ |
RREAL *data; /* the data itself, s major sort */ |
54 |
+ |
} datarec; /* our recorded data */ |
55 |
+ |
|
56 |
+ |
/* XXX this is redundant with rt/noise3.c, should go to a library */ |
57 |
+ |
double l_hermite(), l_bezier(), l_bspline(), l_dataval(); |
58 |
+ |
|
59 |
+ |
typedef struct { |
60 |
+ |
int valid; /* point is valid (vertex number) */ |
61 |
+ |
int nvalid; /* normal is valid */ |
62 |
+ |
FVECT p; /* vertex position */ |
63 |
+ |
FVECT n; /* average normal */ |
64 |
+ |
RREAL uv[2]; /* (u,v) position */ |
65 |
+ |
} POINT; |
66 |
+ |
|
67 |
+ |
int nverts = 0; /* vertex output count */ |
68 |
+ |
int nnorms = 0; /* normal output count */ |
69 |
+ |
|
70 |
+ |
void loaddata(char *file, int m, int n, int pointsize); |
71 |
+ |
double l_dataval(char *nam); |
72 |
+ |
void putobjrow(POINT *rp, int n); |
73 |
+ |
void putobjvert(POINT *p); |
74 |
+ |
void putsquare(POINT *p0, POINT *p1, POINT *p2, POINT *p3); |
75 |
+ |
void comprow(double s, POINT *row, int siz); |
76 |
+ |
void compnorms(POINT *r0, POINT *r1, POINT *r2, int siz); |
77 |
+ |
int norminterp(FVECT resmat[4], POINT *p0, POINT *p1, POINT *p2, POINT *p3); |
78 |
+ |
|
79 |
+ |
|
80 |
+ |
int |
81 |
|
main(argc, argv) |
82 |
|
int argc; |
83 |
|
char *argv[]; |
84 |
|
{ |
85 |
< |
static double *xyz[4]; |
39 |
< |
double *row0, *row1, *dp; |
40 |
< |
double v1[3], v2[3], vc1[3], vc2[3]; |
41 |
< |
double a1, a2; |
85 |
> |
POINT *row0, *row1, *row2, *rp; |
86 |
|
int i, j, m, n; |
87 |
|
char stmp[256]; |
44 |
– |
double d; |
45 |
– |
register int k; |
88 |
|
|
89 |
< |
varset("PI", PI); |
90 |
< |
funset("hermite", 5, l_hermite); |
89 |
> |
esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; |
90 |
> |
esupport &= ~(E_OUTCHAN|E_INCHAN); |
91 |
> |
varset("PI", ':', PI); |
92 |
> |
funset("hermite", 5, ':', l_hermite); |
93 |
> |
funset("bezier", 5, ':', l_bezier); |
94 |
> |
funset("bspline", 5, ':', l_bspline); |
95 |
|
|
96 |
|
if (argc < 8) |
97 |
|
goto userror; |
98 |
|
|
99 |
|
for (i = 8; i < argc; i++) |
100 |
|
if (!strcmp(argv[i], "-e")) |
101 |
< |
scompile(NULL, argv[++i]); |
102 |
< |
else if (!strcmp(argv[i], "-f")) |
103 |
< |
fcompile(argv[++i]); |
101 |
> |
scompile(argv[++i], NULL, 0); |
102 |
> |
else if (!strcmp(argv[i], "-f")) { |
103 |
> |
char *fpath = getpath(argv[++i], getrlibpath(), 0); |
104 |
> |
if (fpath == NULL) { |
105 |
> |
fprintf(stderr, "%s: cannot find file '%s'\n", |
106 |
> |
argv[0], argv[i]); |
107 |
> |
quit(1); |
108 |
> |
} |
109 |
> |
fcompile(fpath); |
110 |
> |
} else if (!strcmp(argv[i], "-s")) |
111 |
> |
smooth++; |
112 |
> |
else if (!strcmp(argv[i], "-o")) |
113 |
> |
objout++; |
114 |
|
else |
115 |
|
goto userror; |
116 |
|
|
117 |
< |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
118 |
< |
scompile(NULL, stmp); |
119 |
< |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
120 |
< |
scompile(NULL, stmp); |
65 |
< |
sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]); |
66 |
< |
scompile(NULL, stmp); |
67 |
< |
m = atoi(argv[6]); |
68 |
< |
n = atoi(argv[7]); |
117 |
> |
modname = argv[1]; |
118 |
> |
surfname = argv[2]; |
119 |
> |
m = eval(argv[6]) + .5; |
120 |
> |
n = eval(argv[7]) + .5; |
121 |
|
if (m <= 0 || n <= 0) |
122 |
|
goto userror; |
123 |
< |
|
124 |
< |
row0 = (double *)malloc((n+1)*3*sizeof(double)); |
125 |
< |
row1 = (double *)malloc((n+1)*3*sizeof(double)); |
126 |
< |
if (row0 == NULL || row1 == NULL) { |
123 |
> |
if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */ |
124 |
> |
funset(ZNAME, 2, ':', l_dataval); |
125 |
> |
if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) { |
126 |
> |
loaddata(argv[5], m, n, 3); |
127 |
> |
funset(XNAME, 2, ':', l_dataval); |
128 |
> |
funset(YNAME, 2, ':', l_dataval); |
129 |
> |
} else { |
130 |
> |
loaddata(argv[5], m, n, 1); |
131 |
> |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
132 |
> |
scompile(stmp, NULL, 0); |
133 |
> |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
134 |
> |
scompile(stmp, NULL, 0); |
135 |
> |
} |
136 |
> |
} else { |
137 |
> |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
138 |
> |
scompile(stmp, NULL, 0); |
139 |
> |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
140 |
> |
scompile(stmp, NULL, 0); |
141 |
> |
sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]); |
142 |
> |
scompile(stmp, NULL, 0); |
143 |
> |
} |
144 |
> |
row0 = (POINT *)malloc((n+3)*sizeof(POINT)); |
145 |
> |
row1 = (POINT *)malloc((n+3)*sizeof(POINT)); |
146 |
> |
row2 = (POINT *)malloc((n+3)*sizeof(POINT)); |
147 |
> |
if (row0 == NULL || row1 == NULL || row2 == NULL) { |
148 |
|
fprintf(stderr, "%s: out of memory\n", argv[0]); |
149 |
|
quit(1); |
150 |
|
} |
151 |
< |
|
152 |
< |
printhead(argc, argv); |
153 |
< |
|
154 |
< |
comprow(0.0, row1, n); /* compute zeroeth row */ |
155 |
< |
|
151 |
> |
row0++; row1++; row2++; |
152 |
> |
/* print header */ |
153 |
> |
fputs("# ", stdout); |
154 |
> |
printargs(argc, argv, stdout); |
155 |
> |
eclock = 0; |
156 |
> |
/* initialize */ |
157 |
> |
comprow(-1.0/m, row0, n); |
158 |
> |
comprow(0.0, row1, n); |
159 |
> |
comprow(1.0/m, row2, n); |
160 |
> |
compnorms(row0, row1, row2, n); |
161 |
> |
if (objout) { |
162 |
> |
printf("\nusemtl %s\n\n", modname); |
163 |
> |
putobjrow(row1, n); |
164 |
> |
} |
165 |
> |
/* for each row */ |
166 |
|
for (i = 0; i < m; i++) { |
167 |
|
/* compute next row */ |
168 |
< |
dp = row0; |
168 |
> |
rp = row0; |
169 |
|
row0 = row1; |
170 |
< |
row1 = dp; |
171 |
< |
comprow((double)(i+1)/m, row1, n); |
170 |
> |
row1 = row2; |
171 |
> |
row2 = rp; |
172 |
> |
comprow((double)(i+2)/m, row2, n); |
173 |
> |
compnorms(row0, row1, row2, n); |
174 |
> |
if (objout) |
175 |
> |
putobjrow(row1, n); |
176 |
|
|
177 |
|
for (j = 0; j < n; j++) { |
178 |
< |
/* get vertices */ |
179 |
< |
xyz[0] = row0 + 3*j; |
180 |
< |
xyz[1] = row1 + 3*j; |
181 |
< |
xyz[2] = xyz[0] + 3; |
182 |
< |
xyz[3] = xyz[1] + 3; |
183 |
< |
/* rotate vertices */ |
184 |
< |
if (dist2(xyz[0],xyz[3]) < dist2(xyz[1],xyz[2])-FTINY) { |
185 |
< |
dp = xyz[0]; |
186 |
< |
xyz[0] = xyz[1]; |
187 |
< |
xyz[1] = xyz[3]; |
188 |
< |
xyz[3] = xyz[2]; |
189 |
< |
xyz[2] = dp; |
103 |
< |
} |
104 |
< |
/* get normals */ |
105 |
< |
for (k = 0; k < 3; k++) { |
106 |
< |
v1[k] = xyz[1][k] - xyz[0][k]; |
107 |
< |
v2[k] = xyz[2][k] - xyz[0][k]; |
108 |
< |
} |
109 |
< |
fcross(vc1, v1, v2); |
110 |
< |
a1 = fdot(vc1, vc1); |
111 |
< |
for (k = 0; k < 3; k++) { |
112 |
< |
v1[k] = xyz[2][k] - xyz[3][k]; |
113 |
< |
v2[k] = xyz[1][k] - xyz[3][k]; |
114 |
< |
} |
115 |
< |
fcross(vc2, v1, v2); |
116 |
< |
a2 = fdot(vc2, vc2); |
117 |
< |
/* check coplanar */ |
118 |
< |
if (a1 > FTINY*FTINY && a2 > FTINY*FTINY) { |
119 |
< |
d = fdot(vc1, vc2); |
120 |
< |
if (d*d/a1/a2 >= 1.0-FTINY*FTINY) { |
121 |
< |
if (d > 0.0) { /* coplanar */ |
122 |
< |
printf( |
123 |
< |
"\n%s polygon %s.%d.%d\n", |
124 |
< |
argv[1], argv[2], i+1, j+1); |
125 |
< |
printf("0\n0\n12\n"); |
126 |
< |
vertex(xyz[0]); |
127 |
< |
vertex(xyz[1]); |
128 |
< |
vertex(xyz[3]); |
129 |
< |
vertex(xyz[2]); |
130 |
< |
} /* else overlapped */ |
131 |
< |
continue; |
132 |
< |
} /* else bent */ |
133 |
< |
} |
134 |
< |
/* check triangles */ |
135 |
< |
if (a1 > FTINY*FTINY) { |
136 |
< |
printf("\n%s polygon %s.%da%d\n", |
137 |
< |
argv[1], argv[2], i+1, j+1); |
138 |
< |
printf("0\n0\n9\n"); |
139 |
< |
vertex(xyz[0]); |
140 |
< |
vertex(xyz[1]); |
141 |
< |
vertex(xyz[2]); |
142 |
< |
} |
143 |
< |
if (a2 > FTINY*FTINY) { |
144 |
< |
printf("\n%s polygon %s.%db%d\n", |
145 |
< |
argv[1], argv[2], i+1, j+1); |
146 |
< |
printf("0\n0\n9\n"); |
147 |
< |
vertex(xyz[2]); |
148 |
< |
vertex(xyz[1]); |
149 |
< |
vertex(xyz[3]); |
150 |
< |
} |
178 |
> |
int orient = (j & 1); |
179 |
> |
/* put polygons */ |
180 |
> |
if (!(row0[j].valid && row1[j+1].valid)) |
181 |
> |
orient = 1; |
182 |
> |
else if (!(row1[j].valid && row0[j+1].valid)) |
183 |
> |
orient = 0; |
184 |
> |
if (orient) |
185 |
> |
putsquare(&row0[j], &row1[j], |
186 |
> |
&row0[j+1], &row1[j+1]); |
187 |
> |
else |
188 |
> |
putsquare(&row1[j], &row1[j+1], |
189 |
> |
&row0[j], &row0[j+1]); |
190 |
|
} |
191 |
|
} |
192 |
|
|
193 |
< |
quit(0); |
193 |
> |
return 0; |
194 |
|
|
195 |
|
userror: |
196 |
|
fprintf(stderr, "Usage: %s material name ", argv[0]); |
197 |
< |
fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-e expr] [-f file]\n"); |
198 |
< |
quit(1); |
197 |
> |
fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-o][-e expr][-f file]\n"); |
198 |
> |
return 1; |
199 |
|
} |
200 |
|
|
201 |
|
|
202 |
< |
comprow(s, row, siz) /* compute row of values */ |
203 |
< |
double s; |
204 |
< |
register double *row; |
205 |
< |
int siz; |
202 |
> |
void |
203 |
> |
loaddata( /* load point data from file */ |
204 |
> |
char *file, |
205 |
> |
int m, |
206 |
> |
int n, |
207 |
> |
int pointsize |
208 |
> |
) |
209 |
|
{ |
210 |
< |
double st[2], step; |
210 |
> |
FILE *fp; |
211 |
> |
char word[64]; |
212 |
> |
int size; |
213 |
> |
RREAL *dp; |
214 |
|
|
215 |
< |
st[0] = s; |
216 |
< |
st[1] = 0.0; |
217 |
< |
step = 1.0 / siz; |
218 |
< |
while (siz-- >= 0) { |
219 |
< |
*row++ = funvalue(XNAME, 2, st); |
220 |
< |
*row++ = funvalue(YNAME, 2, st); |
221 |
< |
*row++ = funvalue(ZNAME, 2, st); |
222 |
< |
st[1] += step; |
215 |
> |
datarec.flags = HASBORDER; /* assume border values */ |
216 |
> |
datarec.m = m+1; |
217 |
> |
datarec.n = n+1; |
218 |
> |
size = datarec.m*datarec.n*pointsize; |
219 |
> |
if (pointsize == 3) |
220 |
> |
datarec.flags |= TRIPLETS; |
221 |
> |
dp = (RREAL *)malloc(size*sizeof(RREAL)); |
222 |
> |
if ((datarec.data = dp) == NULL) { |
223 |
> |
fputs("Out of memory\n", stderr); |
224 |
> |
exit(1); |
225 |
|
} |
226 |
+ |
if (!strcmp(file, "-")) { |
227 |
+ |
file = "<stdin>"; |
228 |
+ |
fp = stdin; |
229 |
+ |
} else if ((fp = fopen(file, "r")) == NULL) { |
230 |
+ |
fputs(file, stderr); |
231 |
+ |
fputs(": cannot open\n", stderr); |
232 |
+ |
exit(1); |
233 |
+ |
} |
234 |
+ |
while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) { |
235 |
+ |
if (!isflt(word)) { |
236 |
+ |
fprintf(stderr, "%s: garbled data value: %s\n", |
237 |
+ |
file, word); |
238 |
+ |
exit(1); |
239 |
+ |
} |
240 |
+ |
*dp++ = atof(word); |
241 |
+ |
size--; |
242 |
+ |
} |
243 |
+ |
if (size == (m+n+1)*pointsize) { /* no border after all */ |
244 |
+ |
dp = (RREAL *)realloc(datarec.data, |
245 |
+ |
m*n*pointsize*sizeof(RREAL)); |
246 |
+ |
if (dp != NULL) |
247 |
+ |
datarec.data = dp; |
248 |
+ |
datarec.flags &= ~HASBORDER; |
249 |
+ |
datarec.m = m; |
250 |
+ |
datarec.n = n; |
251 |
+ |
size = 0; |
252 |
+ |
} |
253 |
+ |
if (datarec.m < 2 || datarec.n < 2 || size != 0 || |
254 |
+ |
fgetword(word, sizeof(word), fp) != NULL) { |
255 |
+ |
fputs(file, stderr); |
256 |
+ |
fputs(": bad number of data points\n", stderr); |
257 |
+ |
exit(1); |
258 |
+ |
} |
259 |
+ |
fclose(fp); |
260 |
|
} |
261 |
|
|
262 |
|
|
263 |
< |
eputs(msg) |
264 |
< |
char *msg; |
263 |
> |
double |
264 |
> |
l_dataval( /* return recorded data value */ |
265 |
> |
char *nam |
266 |
> |
) |
267 |
|
{ |
268 |
< |
fputs(msg, stderr); |
268 |
> |
double u, v; |
269 |
> |
int i, j; |
270 |
> |
RREAL *dp; |
271 |
> |
double d00, d01, d10, d11; |
272 |
> |
/* compute coordinates */ |
273 |
> |
u = argument(1); v = argument(2); |
274 |
> |
if (datarec.flags & HASBORDER) { |
275 |
> |
i = u *= datarec.m-1; |
276 |
> |
j = v *= datarec.n-1; |
277 |
> |
} else { |
278 |
> |
i = u = u*datarec.m - .5; |
279 |
> |
j = v = v*datarec.n - .5; |
280 |
> |
} |
281 |
> |
if (i < 0) i = 0; |
282 |
> |
else if (i > datarec.m-2) i = datarec.m-2; |
283 |
> |
if (j < 0) j = 0; |
284 |
> |
else if (j > datarec.n-2) j = datarec.n-2; |
285 |
> |
/* compute value */ |
286 |
> |
if (datarec.flags & TRIPLETS) { |
287 |
> |
dp = datarec.data + 3*(j*datarec.m + i); |
288 |
> |
if (nam == ZNAME) |
289 |
> |
dp += 2; |
290 |
> |
else if (nam == YNAME) |
291 |
> |
dp++; |
292 |
> |
d00 = dp[0]; d01 = dp[3]; |
293 |
> |
dp += 3*datarec.m; |
294 |
> |
d10 = dp[0]; d11 = dp[3]; |
295 |
> |
} else { |
296 |
> |
dp = datarec.data + j*datarec.m + i; |
297 |
> |
d00 = dp[0]; d01 = dp[1]; |
298 |
> |
dp += datarec.m; |
299 |
> |
d10 = dp[0]; d11 = dp[1]; |
300 |
> |
} |
301 |
> |
/* bilinear interpolation */ |
302 |
> |
return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11)); |
303 |
|
} |
304 |
|
|
305 |
|
|
306 |
< |
wputs(msg) |
307 |
< |
char *msg; |
306 |
> |
void |
307 |
> |
putobjrow( /* output vertex row to .OBJ */ |
308 |
> |
POINT *rp, |
309 |
> |
int n |
310 |
> |
) |
311 |
|
{ |
312 |
< |
eputs(msg); |
312 |
> |
for ( ; n-- >= 0; rp++) { |
313 |
> |
if (!rp->valid) |
314 |
> |
continue; |
315 |
> |
fputs("v ", stdout); |
316 |
> |
pvect(rp->p); |
317 |
> |
if (smooth && !ZEROVECT(rp->n)) { |
318 |
> |
printf("\tvn %.9g %.9g %.9g\n", |
319 |
> |
rp->n[0], rp->n[1], rp->n[2]); |
320 |
> |
rp->nvalid = ++nnorms; |
321 |
> |
} else |
322 |
> |
rp->nvalid = 0; |
323 |
> |
printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]); |
324 |
> |
rp->valid = ++nverts; |
325 |
> |
} |
326 |
|
} |
327 |
|
|
328 |
|
|
329 |
< |
quit(code) |
329 |
> |
void |
330 |
> |
putobjvert( /* put out OBJ vertex index triplet */ |
331 |
> |
POINT *p |
332 |
> |
) |
333 |
|
{ |
334 |
< |
exit(code); |
334 |
> |
int pti = p->valid ? p->valid-nverts-1 : 0; |
335 |
> |
int ni = p->nvalid ? p->nvalid-nnorms-1 : 0; |
336 |
> |
|
337 |
> |
printf(" %d/%d/%d", pti, pti, ni); |
338 |
|
} |
339 |
|
|
340 |
|
|
341 |
< |
printhead(ac, av) /* print command header */ |
342 |
< |
register int ac; |
343 |
< |
register char **av; |
341 |
> |
void |
342 |
> |
putsquare( /* put out a square */ |
343 |
> |
POINT *p0, |
344 |
> |
POINT *p1, |
345 |
> |
POINT *p2, |
346 |
> |
POINT *p3 |
347 |
> |
) |
348 |
|
{ |
349 |
< |
putchar('#'); |
350 |
< |
while (ac--) { |
351 |
< |
putchar(' '); |
352 |
< |
fputs(*av++, stdout); |
349 |
> |
static int nout = 0; |
350 |
> |
FVECT norm[4]; |
351 |
> |
int axis; |
352 |
> |
FVECT v1, v2, vc1, vc2; |
353 |
> |
int ok1, ok2; |
354 |
> |
/* compute exact normals */ |
355 |
> |
ok1 = (p0->valid && p1->valid && p2->valid); |
356 |
> |
if (ok1) { |
357 |
> |
VSUB(v1, p1->p, p0->p); |
358 |
> |
VSUB(v2, p2->p, p0->p); |
359 |
> |
fcross(vc1, v1, v2); |
360 |
> |
ok1 = (normalize(vc1) != 0.0); |
361 |
|
} |
362 |
< |
putchar('\n'); |
362 |
> |
ok2 = (p1->valid && p2->valid && p3->valid); |
363 |
> |
if (ok2) { |
364 |
> |
VSUB(v1, p2->p, p3->p); |
365 |
> |
VSUB(v2, p1->p, p3->p); |
366 |
> |
fcross(vc2, v1, v2); |
367 |
> |
ok2 = (normalize(vc2) != 0.0); |
368 |
> |
} |
369 |
> |
if (!(ok1 | ok2)) |
370 |
> |
return; |
371 |
> |
if (objout) { /* output .OBJ faces */ |
372 |
> |
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
373 |
> |
putc('f', stdout); |
374 |
> |
putobjvert(p0); putobjvert(p1); |
375 |
> |
putobjvert(p3); putobjvert(p2); |
376 |
> |
putc('\n', stdout); |
377 |
> |
return; |
378 |
> |
} |
379 |
> |
if (ok1) { |
380 |
> |
putc('f', stdout); |
381 |
> |
putobjvert(p0); putobjvert(p1); putobjvert(p2); |
382 |
> |
putc('\n', stdout); |
383 |
> |
} |
384 |
> |
if (ok2) { |
385 |
> |
putc('f', stdout); |
386 |
> |
putobjvert(p2); putobjvert(p1); putobjvert(p3); |
387 |
> |
putc('\n', stdout); |
388 |
> |
} |
389 |
> |
return; |
390 |
> |
} |
391 |
> |
/* compute normal interpolation */ |
392 |
> |
axis = norminterp(norm, p0, p1, p2, p3); |
393 |
> |
|
394 |
> |
/* put out quadrilateral? */ |
395 |
> |
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
396 |
> |
printf("\n%s ", modname); |
397 |
> |
if (axis != -1) { |
398 |
> |
printf("texfunc %s\n%s\n", texname, tsargs); |
399 |
> |
printf("0\n13\t%d\n", axis); |
400 |
> |
pvect(norm[0]); |
401 |
> |
pvect(norm[1]); |
402 |
> |
pvect(norm[2]); |
403 |
> |
fvsum(v1, norm[3], vc1, -0.5); |
404 |
> |
fvsum(v1, v1, vc2, -0.5); |
405 |
> |
pvect(v1); |
406 |
> |
printf("\n%s ", texname); |
407 |
> |
} |
408 |
> |
printf("polygon %s.%d\n", surfname, ++nout); |
409 |
> |
printf("0\n0\n12\n"); |
410 |
> |
pvect(p0->p); |
411 |
> |
pvect(p1->p); |
412 |
> |
pvect(p3->p); |
413 |
> |
pvect(p2->p); |
414 |
> |
return; |
415 |
> |
} |
416 |
> |
/* put out triangles? */ |
417 |
> |
if (ok1) { |
418 |
> |
printf("\n%s ", modname); |
419 |
> |
if (axis != -1) { |
420 |
> |
printf("texfunc %s\n%s\n", texname, tsargs); |
421 |
> |
printf("0\n13\t%d\n", axis); |
422 |
> |
pvect(norm[0]); |
423 |
> |
pvect(norm[1]); |
424 |
> |
pvect(norm[2]); |
425 |
> |
fvsum(v1, norm[3], vc1, -1.0); |
426 |
> |
pvect(v1); |
427 |
> |
printf("\n%s ", texname); |
428 |
> |
} |
429 |
> |
printf("polygon %s.%d\n", surfname, ++nout); |
430 |
> |
printf("0\n0\n9\n"); |
431 |
> |
pvect(p0->p); |
432 |
> |
pvect(p1->p); |
433 |
> |
pvect(p2->p); |
434 |
> |
} |
435 |
> |
if (ok2) { |
436 |
> |
printf("\n%s ", modname); |
437 |
> |
if (axis != -1) { |
438 |
> |
printf("texfunc %s\n%s\n", texname, tsargs); |
439 |
> |
printf("0\n13\t%d\n", axis); |
440 |
> |
pvect(norm[0]); |
441 |
> |
pvect(norm[1]); |
442 |
> |
pvect(norm[2]); |
443 |
> |
fvsum(v2, norm[3], vc2, -1.0); |
444 |
> |
pvect(v2); |
445 |
> |
printf("\n%s ", texname); |
446 |
> |
} |
447 |
> |
printf("polygon %s.%d\n", surfname, ++nout); |
448 |
> |
printf("0\n0\n9\n"); |
449 |
> |
pvect(p2->p); |
450 |
> |
pvect(p1->p); |
451 |
> |
pvect(p3->p); |
452 |
> |
} |
453 |
|
} |
454 |
|
|
455 |
|
|
456 |
+ |
void |
457 |
+ |
comprow( /* compute row of values */ |
458 |
+ |
double s, |
459 |
+ |
POINT *row, |
460 |
+ |
int siz |
461 |
+ |
) |
462 |
+ |
{ |
463 |
+ |
double st[2]; |
464 |
+ |
int end; |
465 |
+ |
int checkvalid; |
466 |
+ |
int i; |
467 |
+ |
|
468 |
+ |
if (smooth) { |
469 |
+ |
i = -1; /* compute one past each end */ |
470 |
+ |
end = siz+1; |
471 |
+ |
} else { |
472 |
+ |
if (s < -FTINY || s > 1.0+FTINY) |
473 |
+ |
return; |
474 |
+ |
i = 0; |
475 |
+ |
end = siz; |
476 |
+ |
} |
477 |
+ |
st[0] = s; |
478 |
+ |
checkvalid = (fundefined(VNAME) == 2); |
479 |
+ |
while (i <= end) { |
480 |
+ |
st[1] = (double)i/siz; |
481 |
+ |
if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) { |
482 |
+ |
row[i].valid = 0; |
483 |
+ |
row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0; |
484 |
+ |
row[i].uv[0] = row[i].uv[1] = 0.0; |
485 |
+ |
} else { |
486 |
+ |
row[i].valid = 1; |
487 |
+ |
row[i].p[0] = funvalue(XNAME, 2, st); |
488 |
+ |
row[i].p[1] = funvalue(YNAME, 2, st); |
489 |
+ |
row[i].p[2] = funvalue(ZNAME, 2, st); |
490 |
+ |
row[i].uv[0] = st[0]; |
491 |
+ |
row[i].uv[1] = st[1]; |
492 |
+ |
} |
493 |
+ |
i++; |
494 |
+ |
} |
495 |
+ |
} |
496 |
+ |
|
497 |
+ |
|
498 |
+ |
void |
499 |
+ |
compnorms( /* compute row of averaged normals */ |
500 |
+ |
POINT *r0, |
501 |
+ |
POINT *r1, |
502 |
+ |
POINT *r2, |
503 |
+ |
int siz |
504 |
+ |
) |
505 |
+ |
{ |
506 |
+ |
FVECT v1, v2; |
507 |
+ |
|
508 |
+ |
if (!smooth) /* not needed if no smoothing */ |
509 |
+ |
return; |
510 |
+ |
/* compute row 1 normals */ |
511 |
+ |
while (siz-- >= 0) { |
512 |
+ |
if (!r1[0].valid) |
513 |
+ |
goto skip; |
514 |
+ |
if (!r0[0].valid) { |
515 |
+ |
if (!r2[0].valid) { |
516 |
+ |
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
517 |
+ |
goto skip; |
518 |
+ |
} |
519 |
+ |
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
520 |
+ |
} else if (!r2[0].valid) |
521 |
+ |
fvsum(v1, r1[0].p, r0[0].p, -1.0); |
522 |
+ |
else |
523 |
+ |
fvsum(v1, r2[0].p, r0[0].p, -1.0); |
524 |
+ |
if (!r1[-1].valid) { |
525 |
+ |
if (!r1[1].valid) { |
526 |
+ |
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
527 |
+ |
goto skip; |
528 |
+ |
} |
529 |
+ |
fvsum(v2, r1[1].p, r1[0].p, -1.0); |
530 |
+ |
} else if (!r1[1].valid) |
531 |
+ |
fvsum(v2, r1[0].p, r1[-1].p, -1.0); |
532 |
+ |
else |
533 |
+ |
fvsum(v2, r1[1].p, r1[-1].p, -1.0); |
534 |
+ |
fcross(r1[0].n, v1, v2); |
535 |
+ |
normalize(r1[0].n); |
536 |
+ |
skip: |
537 |
+ |
r0++; r1++; r2++; |
538 |
+ |
} |
539 |
+ |
} |
540 |
+ |
|
541 |
+ |
|
542 |
+ |
int |
543 |
+ |
norminterp( /* compute normal interpolation */ |
544 |
+ |
FVECT resmat[4], |
545 |
+ |
POINT *p0, |
546 |
+ |
POINT *p1, |
547 |
+ |
POINT *p2, |
548 |
+ |
POINT *p3 |
549 |
+ |
) |
550 |
+ |
{ |
551 |
+ |
#define u ((ax+1)%3) |
552 |
+ |
#define v ((ax+2)%3) |
553 |
+ |
|
554 |
+ |
int ax; |
555 |
+ |
MAT4 eqnmat; |
556 |
+ |
FVECT v1; |
557 |
+ |
int i, j; |
558 |
+ |
|
559 |
+ |
if (!smooth) /* no interpolation if no smoothing */ |
560 |
+ |
return(-1); |
561 |
+ |
/* find dominant axis */ |
562 |
+ |
VCOPY(v1, p0->n); |
563 |
+ |
fvsum(v1, v1, p1->n, 1.0); |
564 |
+ |
fvsum(v1, v1, p2->n, 1.0); |
565 |
+ |
fvsum(v1, v1, p3->n, 1.0); |
566 |
+ |
ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1; |
567 |
+ |
ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2; |
568 |
+ |
/* assign equation matrix */ |
569 |
+ |
eqnmat[0][0] = p0->p[u]*p0->p[v]; |
570 |
+ |
eqnmat[0][1] = p0->p[u]; |
571 |
+ |
eqnmat[0][2] = p0->p[v]; |
572 |
+ |
eqnmat[0][3] = 1.0; |
573 |
+ |
eqnmat[1][0] = p1->p[u]*p1->p[v]; |
574 |
+ |
eqnmat[1][1] = p1->p[u]; |
575 |
+ |
eqnmat[1][2] = p1->p[v]; |
576 |
+ |
eqnmat[1][3] = 1.0; |
577 |
+ |
eqnmat[2][0] = p2->p[u]*p2->p[v]; |
578 |
+ |
eqnmat[2][1] = p2->p[u]; |
579 |
+ |
eqnmat[2][2] = p2->p[v]; |
580 |
+ |
eqnmat[2][3] = 1.0; |
581 |
+ |
eqnmat[3][0] = p3->p[u]*p3->p[v]; |
582 |
+ |
eqnmat[3][1] = p3->p[u]; |
583 |
+ |
eqnmat[3][2] = p3->p[v]; |
584 |
+ |
eqnmat[3][3] = 1.0; |
585 |
+ |
/* invert matrix (solve system) */ |
586 |
+ |
if (!invmat4(eqnmat, eqnmat)) |
587 |
+ |
return(-1); /* no solution */ |
588 |
+ |
/* compute result matrix */ |
589 |
+ |
for (j = 0; j < 4; j++) |
590 |
+ |
for (i = 0; i < 3; i++) |
591 |
+ |
resmat[j][i] = eqnmat[j][0]*p0->n[i] + |
592 |
+ |
eqnmat[j][1]*p1->n[i] + |
593 |
+ |
eqnmat[j][2]*p2->n[i] + |
594 |
+ |
eqnmat[j][3]*p3->n[i]; |
595 |
+ |
return(ax); |
596 |
+ |
|
597 |
+ |
#undef u |
598 |
+ |
#undef v |
599 |
+ |
} |
600 |
+ |
|
601 |
+ |
|
602 |
|
double |
603 |
< |
l_hermite() |
603 |
> |
l_hermite(char *nm) |
604 |
|
{ |
605 |
|
double t; |
606 |
|
|
609 |
|
argument(2)*(-2.0*t+3.0)*t*t + |
610 |
|
argument(3)*((t-2.0)*t+1.0)*t + |
611 |
|
argument(4)*(t-1.0)*t*t ); |
612 |
+ |
} |
613 |
+ |
|
614 |
+ |
|
615 |
+ |
double |
616 |
+ |
l_bezier(char *nm) |
617 |
+ |
{ |
618 |
+ |
double t; |
619 |
+ |
|
620 |
+ |
t = argument(5); |
621 |
+ |
return( argument(1) * (1.+t*(-3.+t*(3.-t))) + |
622 |
+ |
argument(2) * 3.*t*(1.+t*(-2.+t)) + |
623 |
+ |
argument(3) * 3.*t*t*(1.-t) + |
624 |
+ |
argument(4) * t*t*t ); |
625 |
+ |
} |
626 |
+ |
|
627 |
+ |
|
628 |
+ |
double |
629 |
+ |
l_bspline(char *nm) |
630 |
+ |
{ |
631 |
+ |
double t; |
632 |
+ |
|
633 |
+ |
t = argument(5); |
634 |
+ |
return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) + |
635 |
+ |
argument(2) * (2./3.+t*t*(-1.+1./2.*t)) + |
636 |
+ |
argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) + |
637 |
+ |
argument(4) * (1./6.*t*t*t) ); |
638 |
|
} |