| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 4 |
– |
|
| 5 |
– |
/* Copyright (c) 1989 Regents of the University of California */ |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
|
* gensurf.c - program to generate functional surfaces |
| 6 |
|
* |
| 11 |
|
* rule applied to (s,t). |
| 12 |
|
* |
| 13 |
|
* 4/3/87 |
| 14 |
+ |
* |
| 15 |
+ |
* 4/16/02 Added conditional vertex output |
| 16 |
|
*/ |
| 17 |
|
|
| 18 |
|
#include "standard.h" |
| 19 |
|
|
| 20 |
< |
char XNAME[] = "X`SYS`"; /* x function name */ |
| 21 |
< |
char YNAME[] = "Y`SYS`"; /* y function name */ |
| 22 |
< |
char ZNAME[] = "Z`SYS`"; /* z function name */ |
| 20 |
> |
char XNAME[] = "X`SYS"; /* x function name */ |
| 21 |
> |
char YNAME[] = "Y`SYS"; /* y function name */ |
| 22 |
> |
char ZNAME[] = "Z`SYS"; /* z function name */ |
| 23 |
|
|
| 24 |
+ |
char VNAME[] = "valid"; /* valid vertex name */ |
| 25 |
+ |
|
| 26 |
|
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
| 27 |
|
|
| 28 |
|
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
| 49 |
|
extern double funvalue(), argument(); |
| 50 |
|
|
| 51 |
|
typedef struct { |
| 52 |
+ |
int valid; /* point is valid */ |
| 53 |
|
FVECT p; /* vertex position */ |
| 54 |
|
FVECT n; /* average normal */ |
| 55 |
|
} POINT; |
| 136 |
|
compnorms(row0, row1, row2, n); |
| 137 |
|
|
| 138 |
|
for (j = 0; j < n; j++) { |
| 139 |
+ |
int orient = (j & 1); |
| 140 |
|
/* put polygons */ |
| 141 |
< |
if ((i+j) & 1) |
| 141 |
> |
if (!(row0[j].valid & row1[j+1].valid)) |
| 142 |
> |
orient = 1; |
| 143 |
> |
else if (!(row1[j].valid & row0[j+1].valid)) |
| 144 |
> |
orient = 0; |
| 145 |
> |
if (orient) |
| 146 |
|
putsquare(&row0[j], &row1[j], |
| 147 |
|
&row0[j+1], &row1[j+1]); |
| 148 |
|
else |
| 165 |
|
int m, n; |
| 166 |
|
int pointsize; |
| 167 |
|
{ |
| 161 |
– |
extern char *fgetword(); |
| 168 |
|
FILE *fp; |
| 169 |
|
char word[64]; |
| 170 |
|
register int size; |
| 171 |
|
register FLOAT *dp; |
| 172 |
|
|
| 173 |
|
datarec.flags = HASBORDER; /* assume border values */ |
| 174 |
< |
size = (m+1)*(n+1)*pointsize; |
| 174 |
> |
datarec.m = m+1; |
| 175 |
> |
datarec.n = n+1; |
| 176 |
> |
size = datarec.m*datarec.n*pointsize; |
| 177 |
|
if (pointsize == 3) |
| 178 |
|
datarec.flags |= TRIPLETS; |
| 179 |
|
dp = (FLOAT *)malloc(size*sizeof(FLOAT)); |
| 204 |
|
if (dp != NULL) |
| 205 |
|
datarec.data = dp; |
| 206 |
|
datarec.flags &= ~HASBORDER; |
| 207 |
+ |
datarec.m = m; |
| 208 |
+ |
datarec.n = n; |
| 209 |
|
size = 0; |
| 210 |
|
} |
| 211 |
< |
if (size || fgetword(word, sizeof(word), fp) != NULL) { |
| 211 |
> |
if (datarec.m < 2 || datarec.n < 2 || size != 0 || |
| 212 |
> |
fgetword(word, sizeof(word), fp) != NULL) { |
| 213 |
|
fputs(file, stderr); |
| 214 |
|
fputs(": bad number of data points\n", stderr); |
| 215 |
|
exit(1); |
| 229 |
|
/* compute coordinates */ |
| 230 |
|
u = argument(1); v = argument(2); |
| 231 |
|
if (datarec.flags & HASBORDER) { |
| 232 |
< |
i = u *= datarec.m; |
| 233 |
< |
j = v *= datarec.n; |
| 232 |
> |
i = u *= datarec.m-1; |
| 233 |
> |
j = v *= datarec.n-1; |
| 234 |
|
} else { |
| 235 |
< |
i = u = u*(datarec.m+1) - .5; |
| 236 |
< |
j = v = v*(datarec.n+1) - .5; |
| 235 |
> |
i = u = u*datarec.m - .5; |
| 236 |
> |
j = v = v*datarec.n - .5; |
| 237 |
|
} |
| 238 |
|
if (i < 0) i = 0; |
| 239 |
|
else if (i > datarec.m-2) i = datarec.m-2; |
| 241 |
|
else if (j > datarec.n-2) j = datarec.n-2; |
| 242 |
|
/* compute value */ |
| 243 |
|
if (datarec.flags & TRIPLETS) { |
| 244 |
< |
dp = datarec.data + 3*(j*datarec.n + i); |
| 245 |
< |
if (nam == YNAME) |
| 235 |
< |
dp++; |
| 236 |
< |
else if (nam == ZNAME) |
| 244 |
> |
dp = datarec.data + 3*(j*datarec.m + i); |
| 245 |
> |
if (nam == ZNAME) |
| 246 |
|
dp += 2; |
| 247 |
+ |
else if (nam == YNAME) |
| 248 |
+ |
dp++; |
| 249 |
|
d00 = dp[0]; d01 = dp[3]; |
| 250 |
< |
dp += 3*datarec.n; |
| 250 |
> |
dp += 3*datarec.m; |
| 251 |
|
d10 = dp[0]; d11 = dp[3]; |
| 252 |
|
} else { |
| 253 |
< |
dp = datarec.data + j*datarec.n + i; |
| 253 |
> |
dp = datarec.data + j*datarec.m + i; |
| 254 |
|
d00 = dp[0]; d01 = dp[1]; |
| 255 |
< |
dp += datarec.n; |
| 255 |
> |
dp += datarec.m; |
| 256 |
|
d10 = dp[0]; d11 = dp[1]; |
| 257 |
|
} |
| 258 |
|
/* bilinear interpolation */ |
| 269 |
|
FVECT v1, v2, vc1, vc2; |
| 270 |
|
int ok1, ok2; |
| 271 |
|
/* compute exact normals */ |
| 272 |
< |
fvsum(v1, p1->p, p0->p, -1.0); |
| 273 |
< |
fvsum(v2, p2->p, p0->p, -1.0); |
| 274 |
< |
fcross(vc1, v1, v2); |
| 275 |
< |
ok1 = normalize(vc1) != 0.0; |
| 276 |
< |
fvsum(v1, p2->p, p3->p, -1.0); |
| 277 |
< |
fvsum(v2, p1->p, p3->p, -1.0); |
| 278 |
< |
fcross(vc2, v1, v2); |
| 279 |
< |
ok2 = normalize(vc2) != 0.0; |
| 272 |
> |
ok1 = (p0->valid & p1->valid & p2->valid); |
| 273 |
> |
if (ok1) { |
| 274 |
> |
fvsum(v1, p1->p, p0->p, -1.0); |
| 275 |
> |
fvsum(v2, p2->p, p0->p, -1.0); |
| 276 |
> |
fcross(vc1, v1, v2); |
| 277 |
> |
ok1 = (normalize(vc1) != 0.0); |
| 278 |
> |
} |
| 279 |
> |
ok2 = (p1->valid & p2->valid & p3->valid); |
| 280 |
> |
if (ok2) { |
| 281 |
> |
fvsum(v1, p2->p, p3->p, -1.0); |
| 282 |
> |
fvsum(v2, p1->p, p3->p, -1.0); |
| 283 |
> |
fcross(vc2, v1, v2); |
| 284 |
> |
ok2 = (normalize(vc2) != 0.0); |
| 285 |
> |
} |
| 286 |
|
if (!(ok1 | ok2)) |
| 287 |
|
return; |
| 288 |
|
/* compute normal interpolation */ |
| 360 |
|
{ |
| 361 |
|
double st[2]; |
| 362 |
|
int end; |
| 363 |
+ |
int checkvalid; |
| 364 |
|
register int i; |
| 365 |
|
|
| 366 |
|
if (smooth) { |
| 373 |
|
end = siz; |
| 374 |
|
} |
| 375 |
|
st[0] = s; |
| 376 |
+ |
checkvalid = (fundefined(VNAME) == 2); |
| 377 |
|
while (i <= end) { |
| 378 |
|
st[1] = (double)i/siz; |
| 379 |
< |
row[i].p[0] = funvalue(XNAME, 2, st); |
| 380 |
< |
row[i].p[1] = funvalue(YNAME, 2, st); |
| 381 |
< |
row[i].p[2] = funvalue(ZNAME, 2, st); |
| 379 |
> |
if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) { |
| 380 |
> |
row[i].valid = 0; |
| 381 |
> |
row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0; |
| 382 |
> |
} else { |
| 383 |
> |
row[i].valid = 1; |
| 384 |
> |
row[i].p[0] = funvalue(XNAME, 2, st); |
| 385 |
> |
row[i].p[1] = funvalue(YNAME, 2, st); |
| 386 |
> |
row[i].p[2] = funvalue(ZNAME, 2, st); |
| 387 |
> |
} |
| 388 |
|
i++; |
| 389 |
|
} |
| 390 |
|
} |
| 395 |
|
int siz; |
| 396 |
|
{ |
| 397 |
|
FVECT v1, v2; |
| 373 |
– |
register int i; |
| 398 |
|
|
| 399 |
|
if (!smooth) /* not needed if no smoothing */ |
| 400 |
|
return; |
| 401 |
< |
/* compute middle points */ |
| 401 |
> |
/* compute row 1 normals */ |
| 402 |
|
while (siz-- >= 0) { |
| 403 |
< |
fvsum(v1, r2[0].p, r0[0].p, -1.0); |
| 404 |
< |
fvsum(v2, r1[1].p, r1[-1].p, -1.0); |
| 403 |
> |
if (!r1[0].valid) |
| 404 |
> |
continue; |
| 405 |
> |
if (!r0[0].valid) { |
| 406 |
> |
if (!r2[0].valid) { |
| 407 |
> |
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
| 408 |
> |
continue; |
| 409 |
> |
} |
| 410 |
> |
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
| 411 |
> |
} else if (!r2[0].valid) |
| 412 |
> |
fvsum(v1, r1[0].p, r0[0].p, -1.0); |
| 413 |
> |
else |
| 414 |
> |
fvsum(v1, r2[0].p, r0[0].p, -1.0); |
| 415 |
> |
if (!r1[-1].valid) { |
| 416 |
> |
if (!r1[1].valid) { |
| 417 |
> |
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
| 418 |
> |
continue; |
| 419 |
> |
} |
| 420 |
> |
fvsum(v2, r1[1].p, r1[0].p, -1.0); |
| 421 |
> |
} else if (!r1[1].valid) |
| 422 |
> |
fvsum(v2, r1[0].p, r1[-1].p, -1.0); |
| 423 |
> |
else |
| 424 |
> |
fvsum(v2, r1[1].p, r1[-1].p, -1.0); |
| 425 |
|
fcross(r1[0].n, v1, v2); |
| 426 |
|
normalize(r1[0].n); |
| 427 |
|
r0++; r1++; r2++; |
| 469 |
|
eqnmat[3][2] = p3->p[v]; |
| 470 |
|
eqnmat[3][3] = 1.0; |
| 471 |
|
/* invert matrix (solve system) */ |
| 472 |
< |
if (!invmat(eqnmat, eqnmat)) |
| 472 |
> |
if (!invmat4(eqnmat, eqnmat)) |
| 473 |
|
return(-1); /* no solution */ |
| 474 |
|
/* compute result matrix */ |
| 475 |
|
for (j = 0; j < 4; j++) |
| 485 |
|
} |
| 486 |
|
|
| 487 |
|
|
| 488 |
< |
/* |
| 445 |
< |
* invmat - computes the inverse of mat into inverse. Returns 1 |
| 446 |
< |
* if there exists an inverse, 0 otherwise. It uses Gaussian Elimination |
| 447 |
< |
* method. |
| 448 |
< |
*/ |
| 449 |
< |
|
| 450 |
< |
invmat(inverse,mat) |
| 451 |
< |
MAT4 inverse, mat; |
| 452 |
< |
{ |
| 453 |
< |
#define SWAP(a,b,t) (t=a,a=b,b=t) |
| 454 |
< |
|
| 455 |
< |
MAT4 m4tmp; |
| 456 |
< |
register int i,j,k; |
| 457 |
< |
register double temp; |
| 458 |
< |
|
| 459 |
< |
copymat4(m4tmp, mat); |
| 460 |
< |
/* set inverse to identity */ |
| 461 |
< |
for (i = 0; i < 4; i++) |
| 462 |
< |
for (j = 0; j < 4; j++) |
| 463 |
< |
inverse[i][j] = i==j ? 1.0 : 0.0; |
| 464 |
< |
|
| 465 |
< |
for(i = 0; i < 4; i++) { |
| 466 |
< |
/* Look for row with largest pivot and swap rows */ |
| 467 |
< |
temp = FTINY; j = -1; |
| 468 |
< |
for(k = i; k < 4; k++) |
| 469 |
< |
if(ABS(m4tmp[k][i]) > temp) { |
| 470 |
< |
temp = ABS(m4tmp[k][i]); |
| 471 |
< |
j = k; |
| 472 |
< |
} |
| 473 |
< |
if(j == -1) /* No replacing row -> no inverse */ |
| 474 |
< |
return(0); |
| 475 |
< |
if (j != i) |
| 476 |
< |
for(k = 0; k < 4; k++) { |
| 477 |
< |
SWAP(m4tmp[i][k],m4tmp[j][k],temp); |
| 478 |
< |
SWAP(inverse[i][k],inverse[j][k],temp); |
| 479 |
< |
} |
| 480 |
< |
|
| 481 |
< |
temp = m4tmp[i][i]; |
| 482 |
< |
for(k = 0; k < 4; k++) { |
| 483 |
< |
m4tmp[i][k] /= temp; |
| 484 |
< |
inverse[i][k] /= temp; |
| 485 |
< |
} |
| 486 |
< |
for(j = 0; j < 4; j++) { |
| 487 |
< |
if(j != i) { |
| 488 |
< |
temp = m4tmp[j][i]; |
| 489 |
< |
for(k = 0; k < 4; k++) { |
| 490 |
< |
m4tmp[j][k] -= m4tmp[i][k]*temp; |
| 491 |
< |
inverse[j][k] -= inverse[i][k]*temp; |
| 492 |
< |
} |
| 493 |
< |
} |
| 494 |
< |
} |
| 495 |
< |
} |
| 496 |
< |
return(1); |
| 497 |
< |
|
| 498 |
< |
#undef SWAP |
| 499 |
< |
} |
| 500 |
< |
|
| 501 |
< |
|
| 488 |
> |
void |
| 489 |
|
eputs(msg) |
| 490 |
|
char *msg; |
| 491 |
|
{ |
| 493 |
|
} |
| 494 |
|
|
| 495 |
|
|
| 496 |
+ |
void |
| 497 |
|
wputs(msg) |
| 498 |
|
char *msg; |
| 499 |
|
{ |
| 501 |
|
} |
| 502 |
|
|
| 503 |
|
|
| 504 |
+ |
void |
| 505 |
|
quit(code) |
| 506 |
+ |
int code; |
| 507 |
|
{ |
| 508 |
|
exit(code); |
| 509 |
|
} |