| 1 |
|
#ifndef lint |
| 2 |
< |
static const char RCSid[] = "$Id$"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 4 |
|
/* |
| 5 |
|
* gensurf.c - program to generate functional surfaces |
| 25 |
|
|
| 26 |
|
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
| 27 |
|
|
| 28 |
+ |
#define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY) |
| 29 |
+ |
|
| 30 |
|
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
| 31 |
|
|
| 32 |
|
char vformat[] = "%15.9g %15.9g %15.9g\n"; |
| 34 |
|
char texname[] = "Phong"; |
| 35 |
|
|
| 36 |
|
int smooth = 0; /* apply smoothing? */ |
| 37 |
+ |
int objout = 0; /* output .OBJ format? */ |
| 38 |
|
|
| 39 |
|
char *modname, *surfname; |
| 40 |
|
|
| 45 |
|
struct { |
| 46 |
|
int flags; /* data type */ |
| 47 |
|
short m, n; /* number of s and t values */ |
| 48 |
< |
FLOAT *data; /* the data itself, s major sort */ |
| 48 |
> |
RREAL *data; /* the data itself, s major sort */ |
| 49 |
|
} datarec; /* our recorded data */ |
| 50 |
|
|
| 51 |
|
double l_hermite(), l_bezier(), l_bspline(), l_dataval(); |
| 52 |
|
extern double funvalue(), argument(); |
| 53 |
|
|
| 54 |
|
typedef struct { |
| 55 |
< |
int valid; /* point is valid */ |
| 55 |
> |
int valid; /* point is valid (vertex number) */ |
| 56 |
|
FVECT p; /* vertex position */ |
| 57 |
|
FVECT n; /* average normal */ |
| 58 |
+ |
RREAL uv[2]; /* (u,v) position */ |
| 59 |
|
} POINT; |
| 60 |
|
|
| 61 |
|
|
| 83 |
|
fcompile(argv[++i]); |
| 84 |
|
else if (!strcmp(argv[i], "-s")) |
| 85 |
|
smooth++; |
| 86 |
+ |
else if (!strcmp(argv[i], "-o")) |
| 87 |
+ |
objout++; |
| 88 |
|
else |
| 89 |
|
goto userror; |
| 90 |
|
|
| 131 |
|
comprow(0.0, row1, n); |
| 132 |
|
comprow(1.0/m, row2, n); |
| 133 |
|
compnorms(row0, row1, row2, n); |
| 134 |
+ |
if (objout) { |
| 135 |
+ |
printf("\nusemtl %s\n\n", modname); |
| 136 |
+ |
putobjrow(row1, n); |
| 137 |
+ |
} |
| 138 |
|
/* for each row */ |
| 139 |
|
for (i = 0; i < m; i++) { |
| 140 |
|
/* compute next row */ |
| 144 |
|
row2 = rp; |
| 145 |
|
comprow((double)(i+2)/m, row2, n); |
| 146 |
|
compnorms(row0, row1, row2, n); |
| 147 |
+ |
if (objout) |
| 148 |
+ |
putobjrow(row1, n); |
| 149 |
|
|
| 150 |
|
for (j = 0; j < n; j++) { |
| 151 |
|
int orient = (j & 1); |
| 152 |
|
/* put polygons */ |
| 153 |
< |
if (!(row0[j].valid & row1[j+1].valid)) |
| 153 |
> |
if (!(row0[j].valid && row1[j+1].valid)) |
| 154 |
|
orient = 1; |
| 155 |
< |
else if (!(row1[j].valid & row0[j+1].valid)) |
| 155 |
> |
else if (!(row1[j].valid && row0[j+1].valid)) |
| 156 |
|
orient = 0; |
| 157 |
|
if (orient) |
| 158 |
|
putsquare(&row0[j], &row1[j], |
| 180 |
|
FILE *fp; |
| 181 |
|
char word[64]; |
| 182 |
|
register int size; |
| 183 |
< |
register FLOAT *dp; |
| 183 |
> |
register RREAL *dp; |
| 184 |
|
|
| 185 |
|
datarec.flags = HASBORDER; /* assume border values */ |
| 186 |
|
datarec.m = m+1; |
| 188 |
|
size = datarec.m*datarec.n*pointsize; |
| 189 |
|
if (pointsize == 3) |
| 190 |
|
datarec.flags |= TRIPLETS; |
| 191 |
< |
dp = (FLOAT *)malloc(size*sizeof(FLOAT)); |
| 191 |
> |
dp = (RREAL *)malloc(size*sizeof(RREAL)); |
| 192 |
|
if ((datarec.data = dp) == NULL) { |
| 193 |
|
fputs("Out of memory\n", stderr); |
| 194 |
|
exit(1); |
| 211 |
|
size--; |
| 212 |
|
} |
| 213 |
|
if (size == (m+n+1)*pointsize) { /* no border after all */ |
| 214 |
< |
dp = (FLOAT *)realloc((char *)datarec.data, |
| 215 |
< |
m*n*pointsize*sizeof(FLOAT)); |
| 214 |
> |
dp = (RREAL *)realloc((void *)datarec.data, |
| 215 |
> |
m*n*pointsize*sizeof(RREAL)); |
| 216 |
|
if (dp != NULL) |
| 217 |
|
datarec.data = dp; |
| 218 |
|
datarec.flags &= ~HASBORDER; |
| 236 |
|
{ |
| 237 |
|
double u, v; |
| 238 |
|
register int i, j; |
| 239 |
< |
register FLOAT *dp; |
| 239 |
> |
register RREAL *dp; |
| 240 |
|
double d00, d01, d10, d11; |
| 241 |
|
/* compute coordinates */ |
| 242 |
|
u = argument(1); v = argument(2); |
| 272 |
|
} |
| 273 |
|
|
| 274 |
|
|
| 275 |
+ |
putobjrow(rp, n) /* output vertex row to .OBJ */ |
| 276 |
+ |
register POINT *rp; |
| 277 |
+ |
int n; |
| 278 |
+ |
{ |
| 279 |
+ |
static int nverts = 0; |
| 280 |
+ |
|
| 281 |
+ |
for ( ; n-- >= 0; rp++) { |
| 282 |
+ |
if (!rp->valid) |
| 283 |
+ |
continue; |
| 284 |
+ |
fputs("v ", stdout); |
| 285 |
+ |
pvect(rp->p); |
| 286 |
+ |
if (smooth && !ZEROVECT(rp->n)) |
| 287 |
+ |
printf("\tvn %.9g %.9g %.9g\n", |
| 288 |
+ |
rp->n[0], rp->n[1], rp->n[2]); |
| 289 |
+ |
printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]); |
| 290 |
+ |
rp->valid = ++nverts; |
| 291 |
+ |
} |
| 292 |
+ |
} |
| 293 |
+ |
|
| 294 |
+ |
|
| 295 |
|
putsquare(p0, p1, p2, p3) /* put out a square */ |
| 296 |
|
POINT *p0, *p1, *p2, *p3; |
| 297 |
|
{ |
| 301 |
|
FVECT v1, v2, vc1, vc2; |
| 302 |
|
int ok1, ok2; |
| 303 |
|
/* compute exact normals */ |
| 304 |
< |
ok1 = (p0->valid & p1->valid & p2->valid); |
| 304 |
> |
ok1 = (p0->valid && p1->valid && p2->valid); |
| 305 |
|
if (ok1) { |
| 306 |
< |
fvsum(v1, p1->p, p0->p, -1.0); |
| 307 |
< |
fvsum(v2, p2->p, p0->p, -1.0); |
| 306 |
> |
VSUB(v1, p1->p, p0->p); |
| 307 |
> |
VSUB(v2, p2->p, p0->p); |
| 308 |
|
fcross(vc1, v1, v2); |
| 309 |
|
ok1 = (normalize(vc1) != 0.0); |
| 310 |
|
} |
| 311 |
< |
ok2 = (p1->valid & p2->valid & p3->valid); |
| 311 |
> |
ok2 = (p1->valid && p2->valid && p3->valid); |
| 312 |
|
if (ok2) { |
| 313 |
< |
fvsum(v1, p2->p, p3->p, -1.0); |
| 314 |
< |
fvsum(v2, p1->p, p3->p, -1.0); |
| 313 |
> |
VSUB(v1, p2->p, p3->p); |
| 314 |
> |
VSUB(v2, p1->p, p3->p); |
| 315 |
|
fcross(vc2, v1, v2); |
| 316 |
|
ok2 = (normalize(vc2) != 0.0); |
| 317 |
|
} |
| 318 |
|
if (!(ok1 | ok2)) |
| 319 |
|
return; |
| 320 |
+ |
if (objout) { /* output .OBJ faces */ |
| 321 |
+ |
int p0n=0, p1n=0, p2n=0, p3n=0; |
| 322 |
+ |
if (smooth) { |
| 323 |
+ |
if (!ZEROVECT(p0->n)) |
| 324 |
+ |
p0n = p0->valid; |
| 325 |
+ |
if (!ZEROVECT(p1->n)) |
| 326 |
+ |
p1n = p1->valid; |
| 327 |
+ |
if (!ZEROVECT(p2->n)) |
| 328 |
+ |
p2n = p2->valid; |
| 329 |
+ |
if (!ZEROVECT(p3->n)) |
| 330 |
+ |
p3n = p3->valid; |
| 331 |
+ |
} |
| 332 |
+ |
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
| 333 |
+ |
printf("f %d/%d/%d %d/%d/%d %d/%d/%d %d/%d/%d\n", |
| 334 |
+ |
p0->valid, p0->valid, p0n, |
| 335 |
+ |
p1->valid, p1->valid, p1n, |
| 336 |
+ |
p3->valid, p3->valid, p3n, |
| 337 |
+ |
p2->valid, p2->valid, p2n); |
| 338 |
+ |
return; |
| 339 |
+ |
} |
| 340 |
+ |
if (ok1) |
| 341 |
+ |
printf("f %d/%d/%d %d/%d/%d %d/%d/%d\n", |
| 342 |
+ |
p0->valid, p0->valid, p0n, |
| 343 |
+ |
p1->valid, p1->valid, p1n, |
| 344 |
+ |
p2->valid, p2->valid, p2n); |
| 345 |
+ |
if (ok2) |
| 346 |
+ |
printf("f %d/%d/%d %d/%d/%d %d/%d/%d\n", |
| 347 |
+ |
p2->valid, p2->valid, p2n, |
| 348 |
+ |
p1->valid, p1->valid, p1n, |
| 349 |
+ |
p3->valid, p3->valid, p3n); |
| 350 |
+ |
return; |
| 351 |
+ |
} |
| 352 |
|
/* compute normal interpolation */ |
| 353 |
|
axis = norminterp(norm, p0, p1, p2, p3); |
| 354 |
|
|
| 443 |
|
if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) { |
| 444 |
|
row[i].valid = 0; |
| 445 |
|
row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0; |
| 446 |
+ |
row[i].uv[0] = row[i].uv[1] = 0.0; |
| 447 |
|
} else { |
| 448 |
|
row[i].valid = 1; |
| 449 |
|
row[i].p[0] = funvalue(XNAME, 2, st); |
| 450 |
|
row[i].p[1] = funvalue(YNAME, 2, st); |
| 451 |
|
row[i].p[2] = funvalue(ZNAME, 2, st); |
| 452 |
+ |
row[i].uv[0] = st[0]; |
| 453 |
+ |
row[i].uv[1] = st[1]; |
| 454 |
|
} |
| 455 |
|
i++; |
| 456 |
|
} |
| 590 |
|
|
| 591 |
|
|
| 592 |
|
double |
| 593 |
< |
l_hermite() |
| 593 |
> |
l_hermite(char *nm) |
| 594 |
|
{ |
| 595 |
|
double t; |
| 596 |
|
|
| 603 |
|
|
| 604 |
|
|
| 605 |
|
double |
| 606 |
< |
l_bezier() |
| 606 |
> |
l_bezier(char *nm) |
| 607 |
|
{ |
| 608 |
|
double t; |
| 609 |
|
|
| 616 |
|
|
| 617 |
|
|
| 618 |
|
double |
| 619 |
< |
l_bspline() |
| 619 |
> |
l_bspline(char *nm) |
| 620 |
|
{ |
| 621 |
|
double t; |
| 622 |
|
|