1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id$"; |
3 |
#endif |
4 |
/* |
5 |
* gensurf.c - program to generate functional surfaces |
6 |
* |
7 |
* Parametric functions x(s,t), y(s,t) and z(s,t) |
8 |
* specify the surface, which is tesselated into an m by n |
9 |
* array of paired triangles. |
10 |
* The surface normal is defined by the right hand |
11 |
* rule applied to (s,t). |
12 |
* |
13 |
* 4/3/87 |
14 |
* |
15 |
* 4/16/02 Added conditional vertex output |
16 |
*/ |
17 |
|
18 |
#include "standard.h" |
19 |
|
20 |
char XNAME[] = "X`SYS"; /* x function name */ |
21 |
char YNAME[] = "Y`SYS"; /* y function name */ |
22 |
char ZNAME[] = "Z`SYS"; /* z function name */ |
23 |
|
24 |
char VNAME[] = "valid"; /* valid vertex name */ |
25 |
|
26 |
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
27 |
|
28 |
#define ZEROVECT(v) (DOT(v,v) <= FTINY*FTINY) |
29 |
|
30 |
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
31 |
|
32 |
char vformat[] = "%15.9g %15.9g %15.9g\n"; |
33 |
char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n"; |
34 |
char texname[] = "Phong"; |
35 |
|
36 |
int smooth = 0; /* apply smoothing? */ |
37 |
int objout = 0; /* output .OBJ format? */ |
38 |
|
39 |
char *modname, *surfname; |
40 |
|
41 |
/* recorded data flags */ |
42 |
#define HASBORDER 01 |
43 |
#define TRIPLETS 02 |
44 |
/* a data structure */ |
45 |
struct { |
46 |
int flags; /* data type */ |
47 |
short m, n; /* number of s and t values */ |
48 |
FLOAT *data; /* the data itself, s major sort */ |
49 |
} datarec; /* our recorded data */ |
50 |
|
51 |
double l_hermite(), l_bezier(), l_bspline(), l_dataval(); |
52 |
extern double funvalue(), argument(); |
53 |
|
54 |
typedef struct { |
55 |
int valid; /* point is valid (vertex number) */ |
56 |
FVECT p; /* vertex position */ |
57 |
FVECT n; /* average normal */ |
58 |
FLOAT uv[2]; /* (u,v) position */ |
59 |
} POINT; |
60 |
|
61 |
|
62 |
main(argc, argv) |
63 |
int argc; |
64 |
char *argv[]; |
65 |
{ |
66 |
extern long eclock; |
67 |
POINT *row0, *row1, *row2, *rp; |
68 |
int i, j, m, n; |
69 |
char stmp[256]; |
70 |
|
71 |
varset("PI", ':', PI); |
72 |
funset("hermite", 5, ':', l_hermite); |
73 |
funset("bezier", 5, ':', l_bezier); |
74 |
funset("bspline", 5, ':', l_bspline); |
75 |
|
76 |
if (argc < 8) |
77 |
goto userror; |
78 |
|
79 |
for (i = 8; i < argc; i++) |
80 |
if (!strcmp(argv[i], "-e")) |
81 |
scompile(argv[++i], NULL, 0); |
82 |
else if (!strcmp(argv[i], "-f")) |
83 |
fcompile(argv[++i]); |
84 |
else if (!strcmp(argv[i], "-s")) |
85 |
smooth++; |
86 |
else if (!strcmp(argv[i], "-o")) |
87 |
objout++; |
88 |
else |
89 |
goto userror; |
90 |
|
91 |
modname = argv[1]; |
92 |
surfname = argv[2]; |
93 |
m = atoi(argv[6]); |
94 |
n = atoi(argv[7]); |
95 |
if (m <= 0 || n <= 0) |
96 |
goto userror; |
97 |
if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */ |
98 |
funset(ZNAME, 2, ':', l_dataval); |
99 |
if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) { |
100 |
loaddata(argv[5], m, n, 3); |
101 |
funset(XNAME, 2, ':', l_dataval); |
102 |
funset(YNAME, 2, ':', l_dataval); |
103 |
} else { |
104 |
loaddata(argv[5], m, n, 1); |
105 |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
106 |
scompile(stmp, NULL, 0); |
107 |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
108 |
scompile(stmp, NULL, 0); |
109 |
} |
110 |
} else { |
111 |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
112 |
scompile(stmp, NULL, 0); |
113 |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
114 |
scompile(stmp, NULL, 0); |
115 |
sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]); |
116 |
scompile(stmp, NULL, 0); |
117 |
} |
118 |
row0 = (POINT *)malloc((n+3)*sizeof(POINT)); |
119 |
row1 = (POINT *)malloc((n+3)*sizeof(POINT)); |
120 |
row2 = (POINT *)malloc((n+3)*sizeof(POINT)); |
121 |
if (row0 == NULL || row1 == NULL || row2 == NULL) { |
122 |
fprintf(stderr, "%s: out of memory\n", argv[0]); |
123 |
quit(1); |
124 |
} |
125 |
row0++; row1++; row2++; |
126 |
/* print header */ |
127 |
printhead(argc, argv); |
128 |
eclock = 0; |
129 |
/* initialize */ |
130 |
comprow(-1.0/m, row0, n); |
131 |
comprow(0.0, row1, n); |
132 |
comprow(1.0/m, row2, n); |
133 |
compnorms(row0, row1, row2, n); |
134 |
if (objout) { |
135 |
printf("\nusemtl %s\n\n", modname); |
136 |
putobjrow(row1, n); |
137 |
} |
138 |
/* for each row */ |
139 |
for (i = 0; i < m; i++) { |
140 |
/* compute next row */ |
141 |
rp = row0; |
142 |
row0 = row1; |
143 |
row1 = row2; |
144 |
row2 = rp; |
145 |
comprow((double)(i+2)/m, row2, n); |
146 |
compnorms(row0, row1, row2, n); |
147 |
if (objout) |
148 |
putobjrow(row1, n); |
149 |
|
150 |
for (j = 0; j < n; j++) { |
151 |
int orient = (j & 1); |
152 |
/* put polygons */ |
153 |
if (!(row0[j].valid && row1[j+1].valid)) |
154 |
orient = 1; |
155 |
else if (!(row1[j].valid && row0[j+1].valid)) |
156 |
orient = 0; |
157 |
if (orient) |
158 |
putsquare(&row0[j], &row1[j], |
159 |
&row0[j+1], &row1[j+1]); |
160 |
else |
161 |
putsquare(&row1[j], &row1[j+1], |
162 |
&row0[j], &row0[j+1]); |
163 |
} |
164 |
} |
165 |
|
166 |
quit(0); |
167 |
|
168 |
userror: |
169 |
fprintf(stderr, "Usage: %s material name ", argv[0]); |
170 |
fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n"); |
171 |
quit(1); |
172 |
} |
173 |
|
174 |
|
175 |
loaddata(file, m, n, pointsize) /* load point data from file */ |
176 |
char *file; |
177 |
int m, n; |
178 |
int pointsize; |
179 |
{ |
180 |
FILE *fp; |
181 |
char word[64]; |
182 |
register int size; |
183 |
register FLOAT *dp; |
184 |
|
185 |
datarec.flags = HASBORDER; /* assume border values */ |
186 |
datarec.m = m+1; |
187 |
datarec.n = n+1; |
188 |
size = datarec.m*datarec.n*pointsize; |
189 |
if (pointsize == 3) |
190 |
datarec.flags |= TRIPLETS; |
191 |
dp = (FLOAT *)malloc(size*sizeof(FLOAT)); |
192 |
if ((datarec.data = dp) == NULL) { |
193 |
fputs("Out of memory\n", stderr); |
194 |
exit(1); |
195 |
} |
196 |
if (!strcmp(file, "-")) { |
197 |
file = "<stdin>"; |
198 |
fp = stdin; |
199 |
} else if ((fp = fopen(file, "r")) == NULL) { |
200 |
fputs(file, stderr); |
201 |
fputs(": cannot open\n", stderr); |
202 |
exit(1); |
203 |
} |
204 |
while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) { |
205 |
if (!isflt(word)) { |
206 |
fprintf(stderr, "%s: garbled data value: %s\n", |
207 |
file, word); |
208 |
exit(1); |
209 |
} |
210 |
*dp++ = atof(word); |
211 |
size--; |
212 |
} |
213 |
if (size == (m+n+1)*pointsize) { /* no border after all */ |
214 |
dp = (FLOAT *)realloc((char *)datarec.data, |
215 |
m*n*pointsize*sizeof(FLOAT)); |
216 |
if (dp != NULL) |
217 |
datarec.data = dp; |
218 |
datarec.flags &= ~HASBORDER; |
219 |
datarec.m = m; |
220 |
datarec.n = n; |
221 |
size = 0; |
222 |
} |
223 |
if (datarec.m < 2 || datarec.n < 2 || size != 0 || |
224 |
fgetword(word, sizeof(word), fp) != NULL) { |
225 |
fputs(file, stderr); |
226 |
fputs(": bad number of data points\n", stderr); |
227 |
exit(1); |
228 |
} |
229 |
fclose(fp); |
230 |
} |
231 |
|
232 |
|
233 |
double |
234 |
l_dataval(nam) /* return recorded data value */ |
235 |
char *nam; |
236 |
{ |
237 |
double u, v; |
238 |
register int i, j; |
239 |
register FLOAT *dp; |
240 |
double d00, d01, d10, d11; |
241 |
/* compute coordinates */ |
242 |
u = argument(1); v = argument(2); |
243 |
if (datarec.flags & HASBORDER) { |
244 |
i = u *= datarec.m-1; |
245 |
j = v *= datarec.n-1; |
246 |
} else { |
247 |
i = u = u*datarec.m - .5; |
248 |
j = v = v*datarec.n - .5; |
249 |
} |
250 |
if (i < 0) i = 0; |
251 |
else if (i > datarec.m-2) i = datarec.m-2; |
252 |
if (j < 0) j = 0; |
253 |
else if (j > datarec.n-2) j = datarec.n-2; |
254 |
/* compute value */ |
255 |
if (datarec.flags & TRIPLETS) { |
256 |
dp = datarec.data + 3*(j*datarec.m + i); |
257 |
if (nam == ZNAME) |
258 |
dp += 2; |
259 |
else if (nam == YNAME) |
260 |
dp++; |
261 |
d00 = dp[0]; d01 = dp[3]; |
262 |
dp += 3*datarec.m; |
263 |
d10 = dp[0]; d11 = dp[3]; |
264 |
} else { |
265 |
dp = datarec.data + j*datarec.m + i; |
266 |
d00 = dp[0]; d01 = dp[1]; |
267 |
dp += datarec.m; |
268 |
d10 = dp[0]; d11 = dp[1]; |
269 |
} |
270 |
/* bilinear interpolation */ |
271 |
return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11)); |
272 |
} |
273 |
|
274 |
|
275 |
putobjrow(rp, n) /* output vertex row to .OBJ */ |
276 |
register POINT *rp; |
277 |
int n; |
278 |
{ |
279 |
static int nverts = 0; |
280 |
|
281 |
for ( ; n-- >= 0; rp++) { |
282 |
if (!rp->valid) |
283 |
continue; |
284 |
fputs("v ", stdout); |
285 |
pvect(rp->p); |
286 |
if (smooth && !ZEROVECT(rp->n)) |
287 |
printf("\tvn %.9g %.9g %.9g\n", |
288 |
rp->n[0], rp->n[1], rp->n[2]); |
289 |
printf("\tvt %.9g %.9g\n", rp->uv[0], rp->uv[1]); |
290 |
rp->valid = ++nverts; |
291 |
} |
292 |
} |
293 |
|
294 |
|
295 |
putsquare(p0, p1, p2, p3) /* put out a square */ |
296 |
POINT *p0, *p1, *p2, *p3; |
297 |
{ |
298 |
static int nout = 0; |
299 |
FVECT norm[4]; |
300 |
int axis; |
301 |
FVECT v1, v2, vc1, vc2; |
302 |
int ok1, ok2; |
303 |
/* compute exact normals */ |
304 |
ok1 = (p0->valid && p1->valid && p2->valid); |
305 |
if (ok1) { |
306 |
VSUB(v1, p1->p, p0->p); |
307 |
VSUB(v2, p2->p, p0->p); |
308 |
fcross(vc1, v1, v2); |
309 |
ok1 = (normalize(vc1) != 0.0); |
310 |
} |
311 |
ok2 = (p1->valid && p2->valid && p3->valid); |
312 |
if (ok2) { |
313 |
VSUB(v1, p2->p, p3->p); |
314 |
VSUB(v2, p1->p, p3->p); |
315 |
fcross(vc2, v1, v2); |
316 |
ok2 = (normalize(vc2) != 0.0); |
317 |
} |
318 |
if (!(ok1 | ok2)) |
319 |
return; |
320 |
if (objout) { /* output .OBJ faces */ |
321 |
int p0n=0, p1n=0, p2n=0, p3n=0; |
322 |
if (smooth) { |
323 |
if (!ZEROVECT(p0->n)) |
324 |
p0n = p0->valid; |
325 |
if (!ZEROVECT(p1->n)) |
326 |
p1n = p1->valid; |
327 |
if (!ZEROVECT(p2->n)) |
328 |
p2n = p2->valid; |
329 |
if (!ZEROVECT(p3->n)) |
330 |
p3n = p3->valid; |
331 |
} |
332 |
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
333 |
printf("f %d/%d/%d %d/%d/%d %d/%d/%d %d/%d/%d\n", |
334 |
p0->valid, p0->valid, p0n, |
335 |
p1->valid, p1->valid, p1n, |
336 |
p3->valid, p3->valid, p3n, |
337 |
p2->valid, p2->valid, p2n); |
338 |
return; |
339 |
} |
340 |
if (ok1) |
341 |
printf("f %d/%d/%d %d/%d/%d %d/%d/%d\n", |
342 |
p0->valid, p0->valid, p0n, |
343 |
p1->valid, p1->valid, p1n, |
344 |
p2->valid, p2->valid, p2n); |
345 |
if (ok2) |
346 |
printf("f %d/%d/%d %d/%d/%d %d/%d/%d\n", |
347 |
p2->valid, p2->valid, p2n, |
348 |
p1->valid, p1->valid, p1n, |
349 |
p3->valid, p3->valid, p3n); |
350 |
return; |
351 |
} |
352 |
/* compute normal interpolation */ |
353 |
axis = norminterp(norm, p0, p1, p2, p3); |
354 |
|
355 |
/* put out quadrilateral? */ |
356 |
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
357 |
printf("\n%s ", modname); |
358 |
if (axis != -1) { |
359 |
printf("texfunc %s\n", texname); |
360 |
printf(tsargs); |
361 |
printf("0\n13\t%d\n", axis); |
362 |
pvect(norm[0]); |
363 |
pvect(norm[1]); |
364 |
pvect(norm[2]); |
365 |
fvsum(v1, norm[3], vc1, -0.5); |
366 |
fvsum(v1, v1, vc2, -0.5); |
367 |
pvect(v1); |
368 |
printf("\n%s ", texname); |
369 |
} |
370 |
printf("polygon %s.%d\n", surfname, ++nout); |
371 |
printf("0\n0\n12\n"); |
372 |
pvect(p0->p); |
373 |
pvect(p1->p); |
374 |
pvect(p3->p); |
375 |
pvect(p2->p); |
376 |
return; |
377 |
} |
378 |
/* put out triangles? */ |
379 |
if (ok1) { |
380 |
printf("\n%s ", modname); |
381 |
if (axis != -1) { |
382 |
printf("texfunc %s\n", texname); |
383 |
printf(tsargs); |
384 |
printf("0\n13\t%d\n", axis); |
385 |
pvect(norm[0]); |
386 |
pvect(norm[1]); |
387 |
pvect(norm[2]); |
388 |
fvsum(v1, norm[3], vc1, -1.0); |
389 |
pvect(v1); |
390 |
printf("\n%s ", texname); |
391 |
} |
392 |
printf("polygon %s.%d\n", surfname, ++nout); |
393 |
printf("0\n0\n9\n"); |
394 |
pvect(p0->p); |
395 |
pvect(p1->p); |
396 |
pvect(p2->p); |
397 |
} |
398 |
if (ok2) { |
399 |
printf("\n%s ", modname); |
400 |
if (axis != -1) { |
401 |
printf("texfunc %s\n", texname); |
402 |
printf(tsargs); |
403 |
printf("0\n13\t%d\n", axis); |
404 |
pvect(norm[0]); |
405 |
pvect(norm[1]); |
406 |
pvect(norm[2]); |
407 |
fvsum(v2, norm[3], vc2, -1.0); |
408 |
pvect(v2); |
409 |
printf("\n%s ", texname); |
410 |
} |
411 |
printf("polygon %s.%d\n", surfname, ++nout); |
412 |
printf("0\n0\n9\n"); |
413 |
pvect(p2->p); |
414 |
pvect(p1->p); |
415 |
pvect(p3->p); |
416 |
} |
417 |
} |
418 |
|
419 |
|
420 |
comprow(s, row, siz) /* compute row of values */ |
421 |
double s; |
422 |
register POINT *row; |
423 |
int siz; |
424 |
{ |
425 |
double st[2]; |
426 |
int end; |
427 |
int checkvalid; |
428 |
register int i; |
429 |
|
430 |
if (smooth) { |
431 |
i = -1; /* compute one past each end */ |
432 |
end = siz+1; |
433 |
} else { |
434 |
if (s < -FTINY || s > 1.0+FTINY) |
435 |
return; |
436 |
i = 0; |
437 |
end = siz; |
438 |
} |
439 |
st[0] = s; |
440 |
checkvalid = (fundefined(VNAME) == 2); |
441 |
while (i <= end) { |
442 |
st[1] = (double)i/siz; |
443 |
if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) { |
444 |
row[i].valid = 0; |
445 |
row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0; |
446 |
row[i].uv[0] = row[i].uv[1] = 0.0; |
447 |
} else { |
448 |
row[i].valid = 1; |
449 |
row[i].p[0] = funvalue(XNAME, 2, st); |
450 |
row[i].p[1] = funvalue(YNAME, 2, st); |
451 |
row[i].p[2] = funvalue(ZNAME, 2, st); |
452 |
row[i].uv[0] = st[0]; |
453 |
row[i].uv[1] = st[1]; |
454 |
} |
455 |
i++; |
456 |
} |
457 |
} |
458 |
|
459 |
|
460 |
compnorms(r0, r1, r2, siz) /* compute row of averaged normals */ |
461 |
register POINT *r0, *r1, *r2; |
462 |
int siz; |
463 |
{ |
464 |
FVECT v1, v2; |
465 |
|
466 |
if (!smooth) /* not needed if no smoothing */ |
467 |
return; |
468 |
/* compute row 1 normals */ |
469 |
while (siz-- >= 0) { |
470 |
if (!r1[0].valid) |
471 |
continue; |
472 |
if (!r0[0].valid) { |
473 |
if (!r2[0].valid) { |
474 |
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
475 |
continue; |
476 |
} |
477 |
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
478 |
} else if (!r2[0].valid) |
479 |
fvsum(v1, r1[0].p, r0[0].p, -1.0); |
480 |
else |
481 |
fvsum(v1, r2[0].p, r0[0].p, -1.0); |
482 |
if (!r1[-1].valid) { |
483 |
if (!r1[1].valid) { |
484 |
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
485 |
continue; |
486 |
} |
487 |
fvsum(v2, r1[1].p, r1[0].p, -1.0); |
488 |
} else if (!r1[1].valid) |
489 |
fvsum(v2, r1[0].p, r1[-1].p, -1.0); |
490 |
else |
491 |
fvsum(v2, r1[1].p, r1[-1].p, -1.0); |
492 |
fcross(r1[0].n, v1, v2); |
493 |
normalize(r1[0].n); |
494 |
r0++; r1++; r2++; |
495 |
} |
496 |
} |
497 |
|
498 |
|
499 |
int |
500 |
norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */ |
501 |
register FVECT resmat[4]; |
502 |
POINT *p0, *p1, *p2, *p3; |
503 |
{ |
504 |
#define u ((ax+1)%3) |
505 |
#define v ((ax+2)%3) |
506 |
|
507 |
register int ax; |
508 |
MAT4 eqnmat; |
509 |
FVECT v1; |
510 |
register int i, j; |
511 |
|
512 |
if (!smooth) /* no interpolation if no smoothing */ |
513 |
return(-1); |
514 |
/* find dominant axis */ |
515 |
VCOPY(v1, p0->n); |
516 |
fvsum(v1, v1, p1->n, 1.0); |
517 |
fvsum(v1, v1, p2->n, 1.0); |
518 |
fvsum(v1, v1, p3->n, 1.0); |
519 |
ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1; |
520 |
ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2; |
521 |
/* assign equation matrix */ |
522 |
eqnmat[0][0] = p0->p[u]*p0->p[v]; |
523 |
eqnmat[0][1] = p0->p[u]; |
524 |
eqnmat[0][2] = p0->p[v]; |
525 |
eqnmat[0][3] = 1.0; |
526 |
eqnmat[1][0] = p1->p[u]*p1->p[v]; |
527 |
eqnmat[1][1] = p1->p[u]; |
528 |
eqnmat[1][2] = p1->p[v]; |
529 |
eqnmat[1][3] = 1.0; |
530 |
eqnmat[2][0] = p2->p[u]*p2->p[v]; |
531 |
eqnmat[2][1] = p2->p[u]; |
532 |
eqnmat[2][2] = p2->p[v]; |
533 |
eqnmat[2][3] = 1.0; |
534 |
eqnmat[3][0] = p3->p[u]*p3->p[v]; |
535 |
eqnmat[3][1] = p3->p[u]; |
536 |
eqnmat[3][2] = p3->p[v]; |
537 |
eqnmat[3][3] = 1.0; |
538 |
/* invert matrix (solve system) */ |
539 |
if (!invmat4(eqnmat, eqnmat)) |
540 |
return(-1); /* no solution */ |
541 |
/* compute result matrix */ |
542 |
for (j = 0; j < 4; j++) |
543 |
for (i = 0; i < 3; i++) |
544 |
resmat[j][i] = eqnmat[j][0]*p0->n[i] + |
545 |
eqnmat[j][1]*p1->n[i] + |
546 |
eqnmat[j][2]*p2->n[i] + |
547 |
eqnmat[j][3]*p3->n[i]; |
548 |
return(ax); |
549 |
|
550 |
#undef u |
551 |
#undef v |
552 |
} |
553 |
|
554 |
|
555 |
void |
556 |
eputs(msg) |
557 |
char *msg; |
558 |
{ |
559 |
fputs(msg, stderr); |
560 |
} |
561 |
|
562 |
|
563 |
void |
564 |
wputs(msg) |
565 |
char *msg; |
566 |
{ |
567 |
eputs(msg); |
568 |
} |
569 |
|
570 |
|
571 |
void |
572 |
quit(code) |
573 |
int code; |
574 |
{ |
575 |
exit(code); |
576 |
} |
577 |
|
578 |
|
579 |
printhead(ac, av) /* print command header */ |
580 |
register int ac; |
581 |
register char **av; |
582 |
{ |
583 |
putchar('#'); |
584 |
while (ac--) { |
585 |
putchar(' '); |
586 |
fputs(*av++, stdout); |
587 |
} |
588 |
putchar('\n'); |
589 |
} |
590 |
|
591 |
|
592 |
double |
593 |
l_hermite() |
594 |
{ |
595 |
double t; |
596 |
|
597 |
t = argument(5); |
598 |
return( argument(1)*((2.0*t-3.0)*t*t+1.0) + |
599 |
argument(2)*(-2.0*t+3.0)*t*t + |
600 |
argument(3)*((t-2.0)*t+1.0)*t + |
601 |
argument(4)*(t-1.0)*t*t ); |
602 |
} |
603 |
|
604 |
|
605 |
double |
606 |
l_bezier() |
607 |
{ |
608 |
double t; |
609 |
|
610 |
t = argument(5); |
611 |
return( argument(1) * (1.+t*(-3.+t*(3.-t))) + |
612 |
argument(2) * 3.*t*(1.+t*(-2.+t)) + |
613 |
argument(3) * 3.*t*t*(1.-t) + |
614 |
argument(4) * t*t*t ); |
615 |
} |
616 |
|
617 |
|
618 |
double |
619 |
l_bspline() |
620 |
{ |
621 |
double t; |
622 |
|
623 |
t = argument(5); |
624 |
return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) + |
625 |
argument(2) * (2./3.+t*t*(-1.+1./2.*t)) + |
626 |
argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) + |
627 |
argument(4) * (1./6.*t*t*t) ); |
628 |
} |