1 |
greg |
1.1 |
#ifndef lint |
2 |
greg |
2.6 |
static const char RCSid[] = "$Id$"; |
3 |
greg |
1.1 |
#endif |
4 |
greg |
1.2 |
/* |
5 |
greg |
1.1 |
* gensurf.c - program to generate functional surfaces |
6 |
|
|
* |
7 |
|
|
* Parametric functions x(s,t), y(s,t) and z(s,t) |
8 |
|
|
* specify the surface, which is tesselated into an m by n |
9 |
|
|
* array of paired triangles. |
10 |
|
|
* The surface normal is defined by the right hand |
11 |
|
|
* rule applied to (s,t). |
12 |
|
|
* |
13 |
|
|
* 4/3/87 |
14 |
greg |
2.6 |
* |
15 |
|
|
* 4/16/02 Added conditional vertex output |
16 |
greg |
1.1 |
*/ |
17 |
|
|
|
18 |
greg |
1.5 |
#include "standard.h" |
19 |
greg |
1.1 |
|
20 |
greg |
2.6 |
char XNAME[] = "X`SYS"; /* x function name */ |
21 |
|
|
char YNAME[] = "Y`SYS"; /* y function name */ |
22 |
|
|
char ZNAME[] = "Z`SYS"; /* z function name */ |
23 |
|
|
|
24 |
|
|
char VNAME[] = "valid"; /* valid vertex name */ |
25 |
greg |
1.1 |
|
26 |
greg |
1.4 |
#define ABS(x) ((x)>=0 ? (x) : -(x)) |
27 |
|
|
|
28 |
greg |
1.3 |
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2]) |
29 |
greg |
1.1 |
|
30 |
|
|
char vformat[] = "%15.9g %15.9g %15.9g\n"; |
31 |
greg |
1.3 |
char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n"; |
32 |
|
|
char texname[] = "Phong"; |
33 |
greg |
1.1 |
|
34 |
greg |
1.3 |
int smooth = 0; /* apply smoothing? */ |
35 |
greg |
1.1 |
|
36 |
greg |
1.3 |
char *modname, *surfname; |
37 |
greg |
1.1 |
|
38 |
greg |
2.2 |
/* recorded data flags */ |
39 |
|
|
#define HASBORDER 01 |
40 |
|
|
#define TRIPLETS 02 |
41 |
|
|
/* a data structure */ |
42 |
|
|
struct { |
43 |
|
|
int flags; /* data type */ |
44 |
|
|
short m, n; /* number of s and t values */ |
45 |
|
|
FLOAT *data; /* the data itself, s major sort */ |
46 |
|
|
} datarec; /* our recorded data */ |
47 |
greg |
1.3 |
|
48 |
greg |
2.2 |
double l_hermite(), l_bezier(), l_bspline(), l_dataval(); |
49 |
|
|
extern double funvalue(), argument(); |
50 |
|
|
|
51 |
greg |
1.3 |
typedef struct { |
52 |
greg |
2.6 |
int valid; /* point is valid */ |
53 |
greg |
1.3 |
FVECT p; /* vertex position */ |
54 |
|
|
FVECT n; /* average normal */ |
55 |
|
|
} POINT; |
56 |
|
|
|
57 |
|
|
|
58 |
greg |
1.1 |
main(argc, argv) |
59 |
|
|
int argc; |
60 |
|
|
char *argv[]; |
61 |
|
|
{ |
62 |
greg |
1.9 |
extern long eclock; |
63 |
greg |
1.3 |
POINT *row0, *row1, *row2, *rp; |
64 |
greg |
1.1 |
int i, j, m, n; |
65 |
|
|
char stmp[256]; |
66 |
|
|
|
67 |
greg |
1.13 |
varset("PI", ':', PI); |
68 |
greg |
1.14 |
funset("hermite", 5, ':', l_hermite); |
69 |
|
|
funset("bezier", 5, ':', l_bezier); |
70 |
|
|
funset("bspline", 5, ':', l_bspline); |
71 |
greg |
1.1 |
|
72 |
|
|
if (argc < 8) |
73 |
|
|
goto userror; |
74 |
|
|
|
75 |
|
|
for (i = 8; i < argc; i++) |
76 |
|
|
if (!strcmp(argv[i], "-e")) |
77 |
greg |
1.10 |
scompile(argv[++i], NULL, 0); |
78 |
greg |
1.1 |
else if (!strcmp(argv[i], "-f")) |
79 |
|
|
fcompile(argv[++i]); |
80 |
greg |
1.3 |
else if (!strcmp(argv[i], "-s")) |
81 |
|
|
smooth++; |
82 |
greg |
1.1 |
else |
83 |
|
|
goto userror; |
84 |
|
|
|
85 |
greg |
1.3 |
modname = argv[1]; |
86 |
|
|
surfname = argv[2]; |
87 |
greg |
1.1 |
m = atoi(argv[6]); |
88 |
|
|
n = atoi(argv[7]); |
89 |
|
|
if (m <= 0 || n <= 0) |
90 |
|
|
goto userror; |
91 |
greg |
2.2 |
if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */ |
92 |
|
|
funset(ZNAME, 2, ':', l_dataval); |
93 |
|
|
if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) { |
94 |
|
|
loaddata(argv[5], m, n, 3); |
95 |
|
|
funset(XNAME, 2, ':', l_dataval); |
96 |
|
|
funset(YNAME, 2, ':', l_dataval); |
97 |
|
|
} else { |
98 |
|
|
loaddata(argv[5], m, n, 1); |
99 |
|
|
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
100 |
|
|
scompile(stmp, NULL, 0); |
101 |
|
|
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
102 |
|
|
scompile(stmp, NULL, 0); |
103 |
|
|
} |
104 |
|
|
} else { |
105 |
|
|
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]); |
106 |
|
|
scompile(stmp, NULL, 0); |
107 |
|
|
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]); |
108 |
|
|
scompile(stmp, NULL, 0); |
109 |
|
|
sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]); |
110 |
|
|
scompile(stmp, NULL, 0); |
111 |
|
|
} |
112 |
greg |
1.4 |
row0 = (POINT *)malloc((n+3)*sizeof(POINT)); |
113 |
|
|
row1 = (POINT *)malloc((n+3)*sizeof(POINT)); |
114 |
|
|
row2 = (POINT *)malloc((n+3)*sizeof(POINT)); |
115 |
greg |
1.3 |
if (row0 == NULL || row1 == NULL || row2 == NULL) { |
116 |
greg |
1.1 |
fprintf(stderr, "%s: out of memory\n", argv[0]); |
117 |
|
|
quit(1); |
118 |
|
|
} |
119 |
greg |
1.4 |
row0++; row1++; row2++; |
120 |
greg |
1.3 |
/* print header */ |
121 |
greg |
1.1 |
printhead(argc, argv); |
122 |
greg |
1.9 |
eclock = 0; |
123 |
greg |
1.4 |
/* initialize */ |
124 |
|
|
comprow(-1.0/m, row0, n); |
125 |
greg |
1.3 |
comprow(0.0, row1, n); |
126 |
|
|
comprow(1.0/m, row2, n); |
127 |
greg |
1.4 |
compnorms(row0, row1, row2, n); |
128 |
greg |
1.3 |
/* for each row */ |
129 |
greg |
1.1 |
for (i = 0; i < m; i++) { |
130 |
|
|
/* compute next row */ |
131 |
greg |
1.3 |
rp = row0; |
132 |
greg |
1.1 |
row0 = row1; |
133 |
greg |
1.3 |
row1 = row2; |
134 |
|
|
row2 = rp; |
135 |
greg |
1.4 |
comprow((double)(i+2)/m, row2, n); |
136 |
|
|
compnorms(row0, row1, row2, n); |
137 |
greg |
1.1 |
|
138 |
|
|
for (j = 0; j < n; j++) { |
139 |
greg |
2.6 |
int orient = (j & 1); |
140 |
greg |
1.3 |
/* put polygons */ |
141 |
greg |
2.6 |
if (!(row0[j].valid & row1[j+1].valid)) |
142 |
|
|
orient = 1; |
143 |
|
|
else if (!(row1[j].valid & row0[j+1].valid)) |
144 |
|
|
orient = 0; |
145 |
|
|
if (orient) |
146 |
greg |
1.3 |
putsquare(&row0[j], &row1[j], |
147 |
|
|
&row0[j+1], &row1[j+1]); |
148 |
|
|
else |
149 |
|
|
putsquare(&row1[j], &row1[j+1], |
150 |
|
|
&row0[j], &row0[j+1]); |
151 |
greg |
1.1 |
} |
152 |
|
|
} |
153 |
|
|
|
154 |
|
|
quit(0); |
155 |
|
|
|
156 |
|
|
userror: |
157 |
|
|
fprintf(stderr, "Usage: %s material name ", argv[0]); |
158 |
greg |
1.3 |
fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n"); |
159 |
greg |
1.1 |
quit(1); |
160 |
greg |
2.2 |
} |
161 |
|
|
|
162 |
|
|
|
163 |
|
|
loaddata(file, m, n, pointsize) /* load point data from file */ |
164 |
|
|
char *file; |
165 |
|
|
int m, n; |
166 |
|
|
int pointsize; |
167 |
|
|
{ |
168 |
|
|
FILE *fp; |
169 |
|
|
char word[64]; |
170 |
|
|
register int size; |
171 |
|
|
register FLOAT *dp; |
172 |
|
|
|
173 |
|
|
datarec.flags = HASBORDER; /* assume border values */ |
174 |
greg |
2.3 |
datarec.m = m+1; |
175 |
|
|
datarec.n = n+1; |
176 |
|
|
size = datarec.m*datarec.n*pointsize; |
177 |
greg |
2.2 |
if (pointsize == 3) |
178 |
|
|
datarec.flags |= TRIPLETS; |
179 |
|
|
dp = (FLOAT *)malloc(size*sizeof(FLOAT)); |
180 |
|
|
if ((datarec.data = dp) == NULL) { |
181 |
|
|
fputs("Out of memory\n", stderr); |
182 |
|
|
exit(1); |
183 |
|
|
} |
184 |
|
|
if (!strcmp(file, "-")) { |
185 |
|
|
file = "<stdin>"; |
186 |
|
|
fp = stdin; |
187 |
|
|
} else if ((fp = fopen(file, "r")) == NULL) { |
188 |
|
|
fputs(file, stderr); |
189 |
|
|
fputs(": cannot open\n", stderr); |
190 |
|
|
exit(1); |
191 |
|
|
} |
192 |
|
|
while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) { |
193 |
|
|
if (!isflt(word)) { |
194 |
|
|
fprintf(stderr, "%s: garbled data value: %s\n", |
195 |
|
|
file, word); |
196 |
|
|
exit(1); |
197 |
|
|
} |
198 |
|
|
*dp++ = atof(word); |
199 |
|
|
size--; |
200 |
|
|
} |
201 |
|
|
if (size == (m+n+1)*pointsize) { /* no border after all */ |
202 |
|
|
dp = (FLOAT *)realloc((char *)datarec.data, |
203 |
|
|
m*n*pointsize*sizeof(FLOAT)); |
204 |
|
|
if (dp != NULL) |
205 |
|
|
datarec.data = dp; |
206 |
|
|
datarec.flags &= ~HASBORDER; |
207 |
greg |
2.3 |
datarec.m = m; |
208 |
|
|
datarec.n = n; |
209 |
greg |
2.2 |
size = 0; |
210 |
|
|
} |
211 |
greg |
2.3 |
if (datarec.m < 2 || datarec.n < 2 || size != 0 || |
212 |
|
|
fgetword(word, sizeof(word), fp) != NULL) { |
213 |
greg |
2.2 |
fputs(file, stderr); |
214 |
|
|
fputs(": bad number of data points\n", stderr); |
215 |
|
|
exit(1); |
216 |
|
|
} |
217 |
|
|
fclose(fp); |
218 |
|
|
} |
219 |
|
|
|
220 |
|
|
|
221 |
|
|
double |
222 |
|
|
l_dataval(nam) /* return recorded data value */ |
223 |
|
|
char *nam; |
224 |
|
|
{ |
225 |
|
|
double u, v; |
226 |
|
|
register int i, j; |
227 |
|
|
register FLOAT *dp; |
228 |
|
|
double d00, d01, d10, d11; |
229 |
|
|
/* compute coordinates */ |
230 |
|
|
u = argument(1); v = argument(2); |
231 |
|
|
if (datarec.flags & HASBORDER) { |
232 |
greg |
2.3 |
i = u *= datarec.m-1; |
233 |
|
|
j = v *= datarec.n-1; |
234 |
greg |
2.2 |
} else { |
235 |
greg |
2.3 |
i = u = u*datarec.m - .5; |
236 |
|
|
j = v = v*datarec.n - .5; |
237 |
greg |
2.2 |
} |
238 |
|
|
if (i < 0) i = 0; |
239 |
|
|
else if (i > datarec.m-2) i = datarec.m-2; |
240 |
|
|
if (j < 0) j = 0; |
241 |
|
|
else if (j > datarec.n-2) j = datarec.n-2; |
242 |
|
|
/* compute value */ |
243 |
|
|
if (datarec.flags & TRIPLETS) { |
244 |
greg |
2.3 |
dp = datarec.data + 3*(j*datarec.m + i); |
245 |
|
|
if (nam == ZNAME) |
246 |
|
|
dp += 2; |
247 |
|
|
else if (nam == YNAME) |
248 |
greg |
2.2 |
dp++; |
249 |
|
|
d00 = dp[0]; d01 = dp[3]; |
250 |
greg |
2.3 |
dp += 3*datarec.m; |
251 |
greg |
2.2 |
d10 = dp[0]; d11 = dp[3]; |
252 |
|
|
} else { |
253 |
greg |
2.3 |
dp = datarec.data + j*datarec.m + i; |
254 |
greg |
2.2 |
d00 = dp[0]; d01 = dp[1]; |
255 |
greg |
2.3 |
dp += datarec.m; |
256 |
greg |
2.2 |
d10 = dp[0]; d11 = dp[1]; |
257 |
|
|
} |
258 |
|
|
/* bilinear interpolation */ |
259 |
|
|
return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11)); |
260 |
greg |
1.1 |
} |
261 |
|
|
|
262 |
|
|
|
263 |
greg |
1.3 |
putsquare(p0, p1, p2, p3) /* put out a square */ |
264 |
|
|
POINT *p0, *p1, *p2, *p3; |
265 |
|
|
{ |
266 |
|
|
static int nout = 0; |
267 |
|
|
FVECT norm[4]; |
268 |
|
|
int axis; |
269 |
|
|
FVECT v1, v2, vc1, vc2; |
270 |
|
|
int ok1, ok2; |
271 |
|
|
/* compute exact normals */ |
272 |
greg |
2.6 |
ok1 = (p0->valid & p1->valid & p2->valid); |
273 |
|
|
if (ok1) { |
274 |
|
|
fvsum(v1, p1->p, p0->p, -1.0); |
275 |
|
|
fvsum(v2, p2->p, p0->p, -1.0); |
276 |
|
|
fcross(vc1, v1, v2); |
277 |
|
|
ok1 = (normalize(vc1) != 0.0); |
278 |
|
|
} |
279 |
|
|
ok2 = (p1->valid & p2->valid & p3->valid); |
280 |
|
|
if (ok2) { |
281 |
|
|
fvsum(v1, p2->p, p3->p, -1.0); |
282 |
|
|
fvsum(v2, p1->p, p3->p, -1.0); |
283 |
|
|
fcross(vc2, v1, v2); |
284 |
|
|
ok2 = (normalize(vc2) != 0.0); |
285 |
|
|
} |
286 |
greg |
1.3 |
if (!(ok1 | ok2)) |
287 |
|
|
return; |
288 |
|
|
/* compute normal interpolation */ |
289 |
|
|
axis = norminterp(norm, p0, p1, p2, p3); |
290 |
|
|
|
291 |
|
|
/* put out quadrilateral? */ |
292 |
|
|
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) { |
293 |
|
|
printf("\n%s ", modname); |
294 |
|
|
if (axis != -1) { |
295 |
|
|
printf("texfunc %s\n", texname); |
296 |
|
|
printf(tsargs); |
297 |
|
|
printf("0\n13\t%d\n", axis); |
298 |
|
|
pvect(norm[0]); |
299 |
|
|
pvect(norm[1]); |
300 |
|
|
pvect(norm[2]); |
301 |
|
|
fvsum(v1, norm[3], vc1, -0.5); |
302 |
|
|
fvsum(v1, v1, vc2, -0.5); |
303 |
|
|
pvect(v1); |
304 |
|
|
printf("\n%s ", texname); |
305 |
|
|
} |
306 |
|
|
printf("polygon %s.%d\n", surfname, ++nout); |
307 |
|
|
printf("0\n0\n12\n"); |
308 |
|
|
pvect(p0->p); |
309 |
|
|
pvect(p1->p); |
310 |
|
|
pvect(p3->p); |
311 |
|
|
pvect(p2->p); |
312 |
|
|
return; |
313 |
|
|
} |
314 |
|
|
/* put out triangles? */ |
315 |
|
|
if (ok1) { |
316 |
|
|
printf("\n%s ", modname); |
317 |
|
|
if (axis != -1) { |
318 |
|
|
printf("texfunc %s\n", texname); |
319 |
|
|
printf(tsargs); |
320 |
|
|
printf("0\n13\t%d\n", axis); |
321 |
|
|
pvect(norm[0]); |
322 |
|
|
pvect(norm[1]); |
323 |
|
|
pvect(norm[2]); |
324 |
|
|
fvsum(v1, norm[3], vc1, -1.0); |
325 |
|
|
pvect(v1); |
326 |
|
|
printf("\n%s ", texname); |
327 |
|
|
} |
328 |
|
|
printf("polygon %s.%d\n", surfname, ++nout); |
329 |
|
|
printf("0\n0\n9\n"); |
330 |
|
|
pvect(p0->p); |
331 |
|
|
pvect(p1->p); |
332 |
|
|
pvect(p2->p); |
333 |
|
|
} |
334 |
|
|
if (ok2) { |
335 |
|
|
printf("\n%s ", modname); |
336 |
|
|
if (axis != -1) { |
337 |
|
|
printf("texfunc %s\n", texname); |
338 |
|
|
printf(tsargs); |
339 |
|
|
printf("0\n13\t%d\n", axis); |
340 |
|
|
pvect(norm[0]); |
341 |
|
|
pvect(norm[1]); |
342 |
|
|
pvect(norm[2]); |
343 |
|
|
fvsum(v2, norm[3], vc2, -1.0); |
344 |
|
|
pvect(v2); |
345 |
|
|
printf("\n%s ", texname); |
346 |
|
|
} |
347 |
|
|
printf("polygon %s.%d\n", surfname, ++nout); |
348 |
|
|
printf("0\n0\n9\n"); |
349 |
|
|
pvect(p2->p); |
350 |
|
|
pvect(p1->p); |
351 |
|
|
pvect(p3->p); |
352 |
|
|
} |
353 |
|
|
} |
354 |
|
|
|
355 |
|
|
|
356 |
greg |
1.1 |
comprow(s, row, siz) /* compute row of values */ |
357 |
|
|
double s; |
358 |
greg |
1.3 |
register POINT *row; |
359 |
greg |
1.1 |
int siz; |
360 |
|
|
{ |
361 |
greg |
1.4 |
double st[2]; |
362 |
greg |
1.8 |
int end; |
363 |
greg |
2.6 |
int checkvalid; |
364 |
greg |
1.4 |
register int i; |
365 |
greg |
1.8 |
|
366 |
|
|
if (smooth) { |
367 |
|
|
i = -1; /* compute one past each end */ |
368 |
|
|
end = siz+1; |
369 |
|
|
} else { |
370 |
|
|
if (s < -FTINY || s > 1.0+FTINY) |
371 |
|
|
return; |
372 |
|
|
i = 0; |
373 |
|
|
end = siz; |
374 |
|
|
} |
375 |
greg |
1.1 |
st[0] = s; |
376 |
greg |
2.6 |
checkvalid = (fundefined(VNAME) == 2); |
377 |
greg |
1.8 |
while (i <= end) { |
378 |
greg |
1.4 |
st[1] = (double)i/siz; |
379 |
greg |
2.6 |
if (checkvalid && funvalue(VNAME, 2, st) <= 0.0) { |
380 |
|
|
row[i].valid = 0; |
381 |
|
|
row[i].p[0] = row[i].p[1] = row[i].p[2] = 0.0; |
382 |
|
|
} else { |
383 |
|
|
row[i].valid = 1; |
384 |
|
|
row[i].p[0] = funvalue(XNAME, 2, st); |
385 |
|
|
row[i].p[1] = funvalue(YNAME, 2, st); |
386 |
|
|
row[i].p[2] = funvalue(ZNAME, 2, st); |
387 |
|
|
} |
388 |
greg |
1.8 |
i++; |
389 |
greg |
1.1 |
} |
390 |
greg |
1.3 |
} |
391 |
|
|
|
392 |
|
|
|
393 |
|
|
compnorms(r0, r1, r2, siz) /* compute row of averaged normals */ |
394 |
|
|
register POINT *r0, *r1, *r2; |
395 |
|
|
int siz; |
396 |
|
|
{ |
397 |
greg |
1.11 |
FVECT v1, v2; |
398 |
greg |
1.3 |
|
399 |
|
|
if (!smooth) /* not needed if no smoothing */ |
400 |
|
|
return; |
401 |
greg |
2.6 |
/* compute row 1 normals */ |
402 |
greg |
1.4 |
while (siz-- >= 0) { |
403 |
greg |
2.6 |
if (!r1[0].valid) |
404 |
|
|
continue; |
405 |
|
|
if (!r0[0].valid) { |
406 |
|
|
if (!r2[0].valid) { |
407 |
|
|
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
408 |
|
|
continue; |
409 |
|
|
} |
410 |
|
|
fvsum(v1, r2[0].p, r1[0].p, -1.0); |
411 |
|
|
} else if (!r2[0].valid) |
412 |
|
|
fvsum(v1, r1[0].p, r0[0].p, -1.0); |
413 |
|
|
else |
414 |
|
|
fvsum(v1, r2[0].p, r0[0].p, -1.0); |
415 |
|
|
if (!r1[-1].valid) { |
416 |
|
|
if (!r1[1].valid) { |
417 |
|
|
r1[0].n[0] = r1[0].n[1] = r1[0].n[2] = 0.0; |
418 |
|
|
continue; |
419 |
|
|
} |
420 |
|
|
fvsum(v2, r1[1].p, r1[0].p, -1.0); |
421 |
|
|
} else if (!r1[1].valid) |
422 |
|
|
fvsum(v2, r1[0].p, r1[-1].p, -1.0); |
423 |
|
|
else |
424 |
|
|
fvsum(v2, r1[1].p, r1[-1].p, -1.0); |
425 |
greg |
1.3 |
fcross(r1[0].n, v1, v2); |
426 |
|
|
normalize(r1[0].n); |
427 |
|
|
r0++; r1++; r2++; |
428 |
|
|
} |
429 |
|
|
} |
430 |
|
|
|
431 |
|
|
|
432 |
|
|
int |
433 |
|
|
norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */ |
434 |
|
|
register FVECT resmat[4]; |
435 |
|
|
POINT *p0, *p1, *p2, *p3; |
436 |
|
|
{ |
437 |
|
|
#define u ((ax+1)%3) |
438 |
|
|
#define v ((ax+2)%3) |
439 |
|
|
|
440 |
|
|
register int ax; |
441 |
greg |
1.12 |
MAT4 eqnmat; |
442 |
greg |
1.3 |
FVECT v1; |
443 |
|
|
register int i, j; |
444 |
|
|
|
445 |
|
|
if (!smooth) /* no interpolation if no smoothing */ |
446 |
|
|
return(-1); |
447 |
|
|
/* find dominant axis */ |
448 |
|
|
VCOPY(v1, p0->n); |
449 |
|
|
fvsum(v1, v1, p1->n, 1.0); |
450 |
|
|
fvsum(v1, v1, p2->n, 1.0); |
451 |
|
|
fvsum(v1, v1, p3->n, 1.0); |
452 |
greg |
1.4 |
ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1; |
453 |
|
|
ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2; |
454 |
greg |
1.3 |
/* assign equation matrix */ |
455 |
|
|
eqnmat[0][0] = p0->p[u]*p0->p[v]; |
456 |
|
|
eqnmat[0][1] = p0->p[u]; |
457 |
|
|
eqnmat[0][2] = p0->p[v]; |
458 |
|
|
eqnmat[0][3] = 1.0; |
459 |
|
|
eqnmat[1][0] = p1->p[u]*p1->p[v]; |
460 |
|
|
eqnmat[1][1] = p1->p[u]; |
461 |
|
|
eqnmat[1][2] = p1->p[v]; |
462 |
|
|
eqnmat[1][3] = 1.0; |
463 |
|
|
eqnmat[2][0] = p2->p[u]*p2->p[v]; |
464 |
|
|
eqnmat[2][1] = p2->p[u]; |
465 |
|
|
eqnmat[2][2] = p2->p[v]; |
466 |
|
|
eqnmat[2][3] = 1.0; |
467 |
|
|
eqnmat[3][0] = p3->p[u]*p3->p[v]; |
468 |
|
|
eqnmat[3][1] = p3->p[u]; |
469 |
|
|
eqnmat[3][2] = p3->p[v]; |
470 |
|
|
eqnmat[3][3] = 1.0; |
471 |
|
|
/* invert matrix (solve system) */ |
472 |
greg |
2.5 |
if (!invmat4(eqnmat, eqnmat)) |
473 |
greg |
1.3 |
return(-1); /* no solution */ |
474 |
|
|
/* compute result matrix */ |
475 |
|
|
for (j = 0; j < 4; j++) |
476 |
|
|
for (i = 0; i < 3; i++) |
477 |
greg |
1.4 |
resmat[j][i] = eqnmat[j][0]*p0->n[i] + |
478 |
|
|
eqnmat[j][1]*p1->n[i] + |
479 |
|
|
eqnmat[j][2]*p2->n[i] + |
480 |
|
|
eqnmat[j][3]*p3->n[i]; |
481 |
greg |
1.3 |
return(ax); |
482 |
|
|
|
483 |
|
|
#undef u |
484 |
|
|
#undef v |
485 |
greg |
1.1 |
} |
486 |
|
|
|
487 |
|
|
|
488 |
greg |
2.6 |
void |
489 |
greg |
1.1 |
eputs(msg) |
490 |
|
|
char *msg; |
491 |
|
|
{ |
492 |
|
|
fputs(msg, stderr); |
493 |
|
|
} |
494 |
|
|
|
495 |
|
|
|
496 |
greg |
2.6 |
void |
497 |
greg |
1.1 |
wputs(msg) |
498 |
|
|
char *msg; |
499 |
|
|
{ |
500 |
|
|
eputs(msg); |
501 |
|
|
} |
502 |
|
|
|
503 |
|
|
|
504 |
greg |
2.6 |
void |
505 |
greg |
1.1 |
quit(code) |
506 |
greg |
2.4 |
int code; |
507 |
greg |
1.1 |
{ |
508 |
|
|
exit(code); |
509 |
|
|
} |
510 |
|
|
|
511 |
|
|
|
512 |
|
|
printhead(ac, av) /* print command header */ |
513 |
|
|
register int ac; |
514 |
|
|
register char **av; |
515 |
|
|
{ |
516 |
|
|
putchar('#'); |
517 |
|
|
while (ac--) { |
518 |
|
|
putchar(' '); |
519 |
|
|
fputs(*av++, stdout); |
520 |
|
|
} |
521 |
|
|
putchar('\n'); |
522 |
|
|
} |
523 |
|
|
|
524 |
|
|
|
525 |
|
|
double |
526 |
|
|
l_hermite() |
527 |
|
|
{ |
528 |
|
|
double t; |
529 |
|
|
|
530 |
|
|
t = argument(5); |
531 |
|
|
return( argument(1)*((2.0*t-3.0)*t*t+1.0) + |
532 |
|
|
argument(2)*(-2.0*t+3.0)*t*t + |
533 |
|
|
argument(3)*((t-2.0)*t+1.0)*t + |
534 |
|
|
argument(4)*(t-1.0)*t*t ); |
535 |
greg |
1.6 |
} |
536 |
|
|
|
537 |
|
|
|
538 |
|
|
double |
539 |
|
|
l_bezier() |
540 |
|
|
{ |
541 |
|
|
double t; |
542 |
|
|
|
543 |
|
|
t = argument(5); |
544 |
|
|
return( argument(1) * (1.+t*(-3.+t*(3.-t))) + |
545 |
|
|
argument(2) * 3.*t*(1.+t*(-2.+t)) + |
546 |
|
|
argument(3) * 3.*t*t*(1.-t) + |
547 |
|
|
argument(4) * t*t*t ); |
548 |
greg |
1.7 |
} |
549 |
|
|
|
550 |
|
|
|
551 |
|
|
double |
552 |
|
|
l_bspline() |
553 |
|
|
{ |
554 |
|
|
double t; |
555 |
|
|
|
556 |
|
|
t = argument(5); |
557 |
|
|
return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) + |
558 |
|
|
argument(2) * (2./3.+t*t*(-1.+1./2.*t)) + |
559 |
|
|
argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) + |
560 |
|
|
argument(4) * (1./6.*t*t*t) ); |
561 |
greg |
1.1 |
} |