| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
|
|
static char SCCSid[] = "$SunId$ LBL";
|
| 3 |
|
|
#endif
|
| 4 |
greg |
1.2 |
|
| 5 |
greg |
1.7 |
/* Copyright (c) 1989 Regents of the University of California */
|
| 6 |
|
|
|
| 7 |
greg |
1.2 |
/*
|
| 8 |
greg |
1.1 |
* gensurf.c - program to generate functional surfaces
|
| 9 |
|
|
*
|
| 10 |
|
|
* Parametric functions x(s,t), y(s,t) and z(s,t)
|
| 11 |
|
|
* specify the surface, which is tesselated into an m by n
|
| 12 |
|
|
* array of paired triangles.
|
| 13 |
|
|
* The surface normal is defined by the right hand
|
| 14 |
|
|
* rule applied to (s,t).
|
| 15 |
|
|
*
|
| 16 |
|
|
* 4/3/87
|
| 17 |
|
|
*/
|
| 18 |
|
|
|
| 19 |
greg |
1.5 |
#include "standard.h"
|
| 20 |
greg |
1.1 |
|
| 21 |
|
|
#define XNAME "X_" /* x function name */
|
| 22 |
|
|
#define YNAME "Y_" /* y function name */
|
| 23 |
|
|
#define ZNAME "Z_" /* z function name */
|
| 24 |
|
|
|
| 25 |
greg |
1.4 |
#define ABS(x) ((x)>=0 ? (x) : -(x))
|
| 26 |
|
|
|
| 27 |
greg |
1.3 |
#define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
|
| 28 |
greg |
1.1 |
|
| 29 |
|
|
char vformat[] = "%15.9g %15.9g %15.9g\n";
|
| 30 |
greg |
1.3 |
char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
|
| 31 |
|
|
char texname[] = "Phong";
|
| 32 |
greg |
1.1 |
|
| 33 |
greg |
1.3 |
int smooth = 0; /* apply smoothing? */
|
| 34 |
greg |
1.1 |
|
| 35 |
greg |
1.3 |
char *modname, *surfname;
|
| 36 |
greg |
1.1 |
|
| 37 |
greg |
1.7 |
double funvalue(), l_hermite(), l_bezier(), l_bspline(), argument();
|
| 38 |
greg |
1.3 |
|
| 39 |
|
|
typedef struct {
|
| 40 |
|
|
FVECT p; /* vertex position */
|
| 41 |
|
|
FVECT n; /* average normal */
|
| 42 |
|
|
} POINT;
|
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
greg |
1.1 |
main(argc, argv)
|
| 46 |
|
|
int argc;
|
| 47 |
|
|
char *argv[];
|
| 48 |
|
|
{
|
| 49 |
greg |
1.9 |
extern long eclock;
|
| 50 |
greg |
1.3 |
POINT *row0, *row1, *row2, *rp;
|
| 51 |
greg |
1.1 |
int i, j, m, n;
|
| 52 |
|
|
char stmp[256];
|
| 53 |
|
|
|
| 54 |
|
|
varset("PI", PI);
|
| 55 |
|
|
funset("hermite", 5, l_hermite);
|
| 56 |
greg |
1.6 |
funset("bezier", 5, l_bezier);
|
| 57 |
greg |
1.7 |
funset("bspline", 5, l_bspline);
|
| 58 |
greg |
1.1 |
|
| 59 |
|
|
if (argc < 8)
|
| 60 |
|
|
goto userror;
|
| 61 |
|
|
|
| 62 |
|
|
for (i = 8; i < argc; i++)
|
| 63 |
|
|
if (!strcmp(argv[i], "-e"))
|
| 64 |
greg |
1.10 |
scompile(argv[++i], NULL, 0);
|
| 65 |
greg |
1.1 |
else if (!strcmp(argv[i], "-f"))
|
| 66 |
|
|
fcompile(argv[++i]);
|
| 67 |
greg |
1.3 |
else if (!strcmp(argv[i], "-s"))
|
| 68 |
|
|
smooth++;
|
| 69 |
greg |
1.1 |
else
|
| 70 |
|
|
goto userror;
|
| 71 |
|
|
|
| 72 |
greg |
1.3 |
modname = argv[1];
|
| 73 |
|
|
surfname = argv[2];
|
| 74 |
greg |
1.1 |
sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
|
| 75 |
greg |
1.10 |
scompile(stmp, NULL, 0);
|
| 76 |
greg |
1.1 |
sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
|
| 77 |
greg |
1.10 |
scompile(stmp, NULL, 0);
|
| 78 |
greg |
1.1 |
sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
|
| 79 |
greg |
1.10 |
scompile(stmp, NULL, 0);
|
| 80 |
greg |
1.1 |
m = atoi(argv[6]);
|
| 81 |
|
|
n = atoi(argv[7]);
|
| 82 |
|
|
if (m <= 0 || n <= 0)
|
| 83 |
|
|
goto userror;
|
| 84 |
|
|
|
| 85 |
greg |
1.4 |
row0 = (POINT *)malloc((n+3)*sizeof(POINT));
|
| 86 |
|
|
row1 = (POINT *)malloc((n+3)*sizeof(POINT));
|
| 87 |
|
|
row2 = (POINT *)malloc((n+3)*sizeof(POINT));
|
| 88 |
greg |
1.3 |
if (row0 == NULL || row1 == NULL || row2 == NULL) {
|
| 89 |
greg |
1.1 |
fprintf(stderr, "%s: out of memory\n", argv[0]);
|
| 90 |
|
|
quit(1);
|
| 91 |
|
|
}
|
| 92 |
greg |
1.4 |
row0++; row1++; row2++;
|
| 93 |
greg |
1.3 |
/* print header */
|
| 94 |
greg |
1.1 |
printhead(argc, argv);
|
| 95 |
greg |
1.9 |
eclock = 0;
|
| 96 |
greg |
1.4 |
/* initialize */
|
| 97 |
|
|
comprow(-1.0/m, row0, n);
|
| 98 |
greg |
1.3 |
comprow(0.0, row1, n);
|
| 99 |
|
|
comprow(1.0/m, row2, n);
|
| 100 |
greg |
1.4 |
compnorms(row0, row1, row2, n);
|
| 101 |
greg |
1.3 |
/* for each row */
|
| 102 |
greg |
1.1 |
for (i = 0; i < m; i++) {
|
| 103 |
|
|
/* compute next row */
|
| 104 |
greg |
1.3 |
rp = row0;
|
| 105 |
greg |
1.1 |
row0 = row1;
|
| 106 |
greg |
1.3 |
row1 = row2;
|
| 107 |
|
|
row2 = rp;
|
| 108 |
greg |
1.4 |
comprow((double)(i+2)/m, row2, n);
|
| 109 |
|
|
compnorms(row0, row1, row2, n);
|
| 110 |
greg |
1.1 |
|
| 111 |
|
|
for (j = 0; j < n; j++) {
|
| 112 |
greg |
1.3 |
/* put polygons */
|
| 113 |
|
|
if ((i+j) & 1)
|
| 114 |
|
|
putsquare(&row0[j], &row1[j],
|
| 115 |
|
|
&row0[j+1], &row1[j+1]);
|
| 116 |
|
|
else
|
| 117 |
|
|
putsquare(&row1[j], &row1[j+1],
|
| 118 |
|
|
&row0[j], &row0[j+1]);
|
| 119 |
greg |
1.1 |
}
|
| 120 |
|
|
}
|
| 121 |
|
|
|
| 122 |
|
|
quit(0);
|
| 123 |
|
|
|
| 124 |
|
|
userror:
|
| 125 |
|
|
fprintf(stderr, "Usage: %s material name ", argv[0]);
|
| 126 |
greg |
1.3 |
fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
|
| 127 |
greg |
1.1 |
quit(1);
|
| 128 |
|
|
}
|
| 129 |
|
|
|
| 130 |
|
|
|
| 131 |
greg |
1.3 |
putsquare(p0, p1, p2, p3) /* put out a square */
|
| 132 |
|
|
POINT *p0, *p1, *p2, *p3;
|
| 133 |
|
|
{
|
| 134 |
|
|
static int nout = 0;
|
| 135 |
|
|
FVECT norm[4];
|
| 136 |
|
|
int axis;
|
| 137 |
|
|
FVECT v1, v2, vc1, vc2;
|
| 138 |
|
|
int ok1, ok2;
|
| 139 |
|
|
/* compute exact normals */
|
| 140 |
|
|
fvsum(v1, p1->p, p0->p, -1.0);
|
| 141 |
|
|
fvsum(v2, p2->p, p0->p, -1.0);
|
| 142 |
|
|
fcross(vc1, v1, v2);
|
| 143 |
|
|
ok1 = normalize(vc1) != 0.0;
|
| 144 |
|
|
fvsum(v1, p2->p, p3->p, -1.0);
|
| 145 |
|
|
fvsum(v2, p1->p, p3->p, -1.0);
|
| 146 |
|
|
fcross(vc2, v1, v2);
|
| 147 |
|
|
ok2 = normalize(vc2) != 0.0;
|
| 148 |
|
|
if (!(ok1 | ok2))
|
| 149 |
|
|
return;
|
| 150 |
|
|
/* compute normal interpolation */
|
| 151 |
|
|
axis = norminterp(norm, p0, p1, p2, p3);
|
| 152 |
|
|
|
| 153 |
|
|
/* put out quadrilateral? */
|
| 154 |
|
|
if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
|
| 155 |
|
|
printf("\n%s ", modname);
|
| 156 |
|
|
if (axis != -1) {
|
| 157 |
|
|
printf("texfunc %s\n", texname);
|
| 158 |
|
|
printf(tsargs);
|
| 159 |
|
|
printf("0\n13\t%d\n", axis);
|
| 160 |
|
|
pvect(norm[0]);
|
| 161 |
|
|
pvect(norm[1]);
|
| 162 |
|
|
pvect(norm[2]);
|
| 163 |
|
|
fvsum(v1, norm[3], vc1, -0.5);
|
| 164 |
|
|
fvsum(v1, v1, vc2, -0.5);
|
| 165 |
|
|
pvect(v1);
|
| 166 |
|
|
printf("\n%s ", texname);
|
| 167 |
|
|
}
|
| 168 |
|
|
printf("polygon %s.%d\n", surfname, ++nout);
|
| 169 |
|
|
printf("0\n0\n12\n");
|
| 170 |
|
|
pvect(p0->p);
|
| 171 |
|
|
pvect(p1->p);
|
| 172 |
|
|
pvect(p3->p);
|
| 173 |
|
|
pvect(p2->p);
|
| 174 |
|
|
return;
|
| 175 |
|
|
}
|
| 176 |
|
|
/* put out triangles? */
|
| 177 |
|
|
if (ok1) {
|
| 178 |
|
|
printf("\n%s ", modname);
|
| 179 |
|
|
if (axis != -1) {
|
| 180 |
|
|
printf("texfunc %s\n", texname);
|
| 181 |
|
|
printf(tsargs);
|
| 182 |
|
|
printf("0\n13\t%d\n", axis);
|
| 183 |
|
|
pvect(norm[0]);
|
| 184 |
|
|
pvect(norm[1]);
|
| 185 |
|
|
pvect(norm[2]);
|
| 186 |
|
|
fvsum(v1, norm[3], vc1, -1.0);
|
| 187 |
|
|
pvect(v1);
|
| 188 |
|
|
printf("\n%s ", texname);
|
| 189 |
|
|
}
|
| 190 |
|
|
printf("polygon %s.%d\n", surfname, ++nout);
|
| 191 |
|
|
printf("0\n0\n9\n");
|
| 192 |
|
|
pvect(p0->p);
|
| 193 |
|
|
pvect(p1->p);
|
| 194 |
|
|
pvect(p2->p);
|
| 195 |
|
|
}
|
| 196 |
|
|
if (ok2) {
|
| 197 |
|
|
printf("\n%s ", modname);
|
| 198 |
|
|
if (axis != -1) {
|
| 199 |
|
|
printf("texfunc %s\n", texname);
|
| 200 |
|
|
printf(tsargs);
|
| 201 |
|
|
printf("0\n13\t%d\n", axis);
|
| 202 |
|
|
pvect(norm[0]);
|
| 203 |
|
|
pvect(norm[1]);
|
| 204 |
|
|
pvect(norm[2]);
|
| 205 |
|
|
fvsum(v2, norm[3], vc2, -1.0);
|
| 206 |
|
|
pvect(v2);
|
| 207 |
|
|
printf("\n%s ", texname);
|
| 208 |
|
|
}
|
| 209 |
|
|
printf("polygon %s.%d\n", surfname, ++nout);
|
| 210 |
|
|
printf("0\n0\n9\n");
|
| 211 |
|
|
pvect(p2->p);
|
| 212 |
|
|
pvect(p1->p);
|
| 213 |
|
|
pvect(p3->p);
|
| 214 |
|
|
}
|
| 215 |
|
|
}
|
| 216 |
|
|
|
| 217 |
|
|
|
| 218 |
greg |
1.1 |
comprow(s, row, siz) /* compute row of values */
|
| 219 |
|
|
double s;
|
| 220 |
greg |
1.3 |
register POINT *row;
|
| 221 |
greg |
1.1 |
int siz;
|
| 222 |
|
|
{
|
| 223 |
greg |
1.4 |
double st[2];
|
| 224 |
greg |
1.8 |
int end;
|
| 225 |
greg |
1.4 |
register int i;
|
| 226 |
greg |
1.8 |
|
| 227 |
|
|
if (smooth) {
|
| 228 |
|
|
i = -1; /* compute one past each end */
|
| 229 |
|
|
end = siz+1;
|
| 230 |
|
|
} else {
|
| 231 |
|
|
if (s < -FTINY || s > 1.0+FTINY)
|
| 232 |
|
|
return;
|
| 233 |
|
|
i = 0;
|
| 234 |
|
|
end = siz;
|
| 235 |
|
|
}
|
| 236 |
greg |
1.1 |
st[0] = s;
|
| 237 |
greg |
1.8 |
while (i <= end) {
|
| 238 |
greg |
1.4 |
st[1] = (double)i/siz;
|
| 239 |
|
|
row[i].p[0] = funvalue(XNAME, 2, st);
|
| 240 |
|
|
row[i].p[1] = funvalue(YNAME, 2, st);
|
| 241 |
|
|
row[i].p[2] = funvalue(ZNAME, 2, st);
|
| 242 |
greg |
1.8 |
i++;
|
| 243 |
greg |
1.1 |
}
|
| 244 |
greg |
1.3 |
}
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
|
| 248 |
|
|
register POINT *r0, *r1, *r2;
|
| 249 |
|
|
int siz;
|
| 250 |
|
|
{
|
| 251 |
greg |
1.11 |
FVECT v1, v2;
|
| 252 |
greg |
1.4 |
register int i;
|
| 253 |
greg |
1.3 |
|
| 254 |
|
|
if (!smooth) /* not needed if no smoothing */
|
| 255 |
|
|
return;
|
| 256 |
|
|
/* compute middle points */
|
| 257 |
greg |
1.4 |
while (siz-- >= 0) {
|
| 258 |
greg |
1.11 |
fvsum(v1, r2[0].p, r0[0].p, -1.0);
|
| 259 |
|
|
fvsum(v2, r1[1].p, r1[-1].p, -1.0);
|
| 260 |
greg |
1.3 |
fcross(r1[0].n, v1, v2);
|
| 261 |
|
|
normalize(r1[0].n);
|
| 262 |
|
|
r0++; r1++; r2++;
|
| 263 |
|
|
}
|
| 264 |
|
|
}
|
| 265 |
|
|
|
| 266 |
|
|
|
| 267 |
|
|
int
|
| 268 |
|
|
norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
|
| 269 |
|
|
register FVECT resmat[4];
|
| 270 |
|
|
POINT *p0, *p1, *p2, *p3;
|
| 271 |
|
|
{
|
| 272 |
|
|
#define u ((ax+1)%3)
|
| 273 |
|
|
#define v ((ax+2)%3)
|
| 274 |
|
|
|
| 275 |
|
|
register int ax;
|
| 276 |
greg |
1.12 |
MAT4 eqnmat;
|
| 277 |
greg |
1.3 |
FVECT v1;
|
| 278 |
|
|
register int i, j;
|
| 279 |
|
|
|
| 280 |
|
|
if (!smooth) /* no interpolation if no smoothing */
|
| 281 |
|
|
return(-1);
|
| 282 |
|
|
/* find dominant axis */
|
| 283 |
|
|
VCOPY(v1, p0->n);
|
| 284 |
|
|
fvsum(v1, v1, p1->n, 1.0);
|
| 285 |
|
|
fvsum(v1, v1, p2->n, 1.0);
|
| 286 |
|
|
fvsum(v1, v1, p3->n, 1.0);
|
| 287 |
greg |
1.4 |
ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
|
| 288 |
|
|
ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
|
| 289 |
greg |
1.3 |
/* assign equation matrix */
|
| 290 |
|
|
eqnmat[0][0] = p0->p[u]*p0->p[v];
|
| 291 |
|
|
eqnmat[0][1] = p0->p[u];
|
| 292 |
|
|
eqnmat[0][2] = p0->p[v];
|
| 293 |
|
|
eqnmat[0][3] = 1.0;
|
| 294 |
|
|
eqnmat[1][0] = p1->p[u]*p1->p[v];
|
| 295 |
|
|
eqnmat[1][1] = p1->p[u];
|
| 296 |
|
|
eqnmat[1][2] = p1->p[v];
|
| 297 |
|
|
eqnmat[1][3] = 1.0;
|
| 298 |
|
|
eqnmat[2][0] = p2->p[u]*p2->p[v];
|
| 299 |
|
|
eqnmat[2][1] = p2->p[u];
|
| 300 |
|
|
eqnmat[2][2] = p2->p[v];
|
| 301 |
|
|
eqnmat[2][3] = 1.0;
|
| 302 |
|
|
eqnmat[3][0] = p3->p[u]*p3->p[v];
|
| 303 |
|
|
eqnmat[3][1] = p3->p[u];
|
| 304 |
|
|
eqnmat[3][2] = p3->p[v];
|
| 305 |
|
|
eqnmat[3][3] = 1.0;
|
| 306 |
|
|
/* invert matrix (solve system) */
|
| 307 |
greg |
1.4 |
if (!invmat(eqnmat, eqnmat))
|
| 308 |
greg |
1.3 |
return(-1); /* no solution */
|
| 309 |
|
|
/* compute result matrix */
|
| 310 |
|
|
for (j = 0; j < 4; j++)
|
| 311 |
|
|
for (i = 0; i < 3; i++)
|
| 312 |
greg |
1.4 |
resmat[j][i] = eqnmat[j][0]*p0->n[i] +
|
| 313 |
|
|
eqnmat[j][1]*p1->n[i] +
|
| 314 |
|
|
eqnmat[j][2]*p2->n[i] +
|
| 315 |
|
|
eqnmat[j][3]*p3->n[i];
|
| 316 |
greg |
1.3 |
return(ax);
|
| 317 |
|
|
|
| 318 |
|
|
#undef u
|
| 319 |
|
|
#undef v
|
| 320 |
|
|
}
|
| 321 |
|
|
|
| 322 |
|
|
|
| 323 |
|
|
/*
|
| 324 |
|
|
* invmat - computes the inverse of mat into inverse. Returns 1
|
| 325 |
|
|
* if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
|
| 326 |
|
|
* method.
|
| 327 |
|
|
*/
|
| 328 |
|
|
|
| 329 |
|
|
invmat(inverse,mat)
|
| 330 |
greg |
1.12 |
MAT4 inverse, mat;
|
| 331 |
greg |
1.3 |
{
|
| 332 |
|
|
#define SWAP(a,b,t) (t=a,a=b,b=t)
|
| 333 |
|
|
|
| 334 |
greg |
1.12 |
MAT4 m4tmp;
|
| 335 |
greg |
1.3 |
register int i,j,k;
|
| 336 |
|
|
register double temp;
|
| 337 |
|
|
|
| 338 |
greg |
1.12 |
copymat4(m4tmp, mat);
|
| 339 |
greg |
1.4 |
/* set inverse to identity */
|
| 340 |
|
|
for (i = 0; i < 4; i++)
|
| 341 |
|
|
for (j = 0; j < 4; j++)
|
| 342 |
|
|
inverse[i][j] = i==j ? 1.0 : 0.0;
|
| 343 |
greg |
1.3 |
|
| 344 |
|
|
for(i = 0; i < 4; i++) {
|
| 345 |
greg |
1.11 |
/* Look for row with largest pivot and swap rows */
|
| 346 |
greg |
1.4 |
temp = FTINY; j = -1;
|
| 347 |
|
|
for(k = i; k < 4; k++)
|
| 348 |
|
|
if(ABS(m4tmp[k][i]) > temp) {
|
| 349 |
|
|
temp = ABS(m4tmp[k][i]);
|
| 350 |
|
|
j = k;
|
| 351 |
|
|
}
|
| 352 |
greg |
1.11 |
if(j == -1) /* No replacing row -> no inverse */
|
| 353 |
greg |
1.4 |
return(0);
|
| 354 |
|
|
if (j != i)
|
| 355 |
|
|
for(k = 0; k < 4; k++) {
|
| 356 |
|
|
SWAP(m4tmp[i][k],m4tmp[j][k],temp);
|
| 357 |
|
|
SWAP(inverse[i][k],inverse[j][k],temp);
|
| 358 |
|
|
}
|
| 359 |
greg |
1.3 |
|
| 360 |
|
|
temp = m4tmp[i][i];
|
| 361 |
|
|
for(k = 0; k < 4; k++) {
|
| 362 |
|
|
m4tmp[i][k] /= temp;
|
| 363 |
|
|
inverse[i][k] /= temp;
|
| 364 |
|
|
}
|
| 365 |
|
|
for(j = 0; j < 4; j++) {
|
| 366 |
|
|
if(j != i) {
|
| 367 |
|
|
temp = m4tmp[j][i];
|
| 368 |
|
|
for(k = 0; k < 4; k++) {
|
| 369 |
|
|
m4tmp[j][k] -= m4tmp[i][k]*temp;
|
| 370 |
|
|
inverse[j][k] -= inverse[i][k]*temp;
|
| 371 |
|
|
}
|
| 372 |
|
|
}
|
| 373 |
|
|
}
|
| 374 |
|
|
}
|
| 375 |
|
|
return(1);
|
| 376 |
greg |
1.4 |
|
| 377 |
greg |
1.3 |
#undef SWAP
|
| 378 |
greg |
1.1 |
}
|
| 379 |
|
|
|
| 380 |
|
|
|
| 381 |
|
|
eputs(msg)
|
| 382 |
|
|
char *msg;
|
| 383 |
|
|
{
|
| 384 |
|
|
fputs(msg, stderr);
|
| 385 |
|
|
}
|
| 386 |
|
|
|
| 387 |
|
|
|
| 388 |
|
|
wputs(msg)
|
| 389 |
|
|
char *msg;
|
| 390 |
|
|
{
|
| 391 |
|
|
eputs(msg);
|
| 392 |
|
|
}
|
| 393 |
|
|
|
| 394 |
|
|
|
| 395 |
|
|
quit(code)
|
| 396 |
|
|
{
|
| 397 |
|
|
exit(code);
|
| 398 |
|
|
}
|
| 399 |
|
|
|
| 400 |
|
|
|
| 401 |
|
|
printhead(ac, av) /* print command header */
|
| 402 |
|
|
register int ac;
|
| 403 |
|
|
register char **av;
|
| 404 |
|
|
{
|
| 405 |
|
|
putchar('#');
|
| 406 |
|
|
while (ac--) {
|
| 407 |
|
|
putchar(' ');
|
| 408 |
|
|
fputs(*av++, stdout);
|
| 409 |
|
|
}
|
| 410 |
|
|
putchar('\n');
|
| 411 |
|
|
}
|
| 412 |
|
|
|
| 413 |
|
|
|
| 414 |
|
|
double
|
| 415 |
|
|
l_hermite()
|
| 416 |
|
|
{
|
| 417 |
|
|
double t;
|
| 418 |
|
|
|
| 419 |
|
|
t = argument(5);
|
| 420 |
|
|
return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
|
| 421 |
|
|
argument(2)*(-2.0*t+3.0)*t*t +
|
| 422 |
|
|
argument(3)*((t-2.0)*t+1.0)*t +
|
| 423 |
|
|
argument(4)*(t-1.0)*t*t );
|
| 424 |
greg |
1.6 |
}
|
| 425 |
|
|
|
| 426 |
|
|
|
| 427 |
|
|
double
|
| 428 |
|
|
l_bezier()
|
| 429 |
|
|
{
|
| 430 |
|
|
double t;
|
| 431 |
|
|
|
| 432 |
|
|
t = argument(5);
|
| 433 |
|
|
return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
|
| 434 |
|
|
argument(2) * 3.*t*(1.+t*(-2.+t)) +
|
| 435 |
|
|
argument(3) * 3.*t*t*(1.-t) +
|
| 436 |
|
|
argument(4) * t*t*t );
|
| 437 |
greg |
1.7 |
}
|
| 438 |
|
|
|
| 439 |
|
|
|
| 440 |
|
|
double
|
| 441 |
|
|
l_bspline()
|
| 442 |
|
|
{
|
| 443 |
|
|
double t;
|
| 444 |
|
|
|
| 445 |
|
|
t = argument(5);
|
| 446 |
|
|
return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
|
| 447 |
|
|
argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
|
| 448 |
|
|
argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
|
| 449 |
|
|
argument(4) * (1./6.*t*t*t) );
|
| 450 |
greg |
1.1 |
}
|