| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: genssky.c,v 2.10 2025/08/04 20:05:17 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/* Main function for generating spectral sky */
|
| 5 |
/* Cloudy sky computed as weight average of clear and cie overcast sky */
|
| 6 |
|
| 7 |
#include "atmos.h"
|
| 8 |
#include "copyright.h"
|
| 9 |
#include "color.h"
|
| 10 |
#include "paths.h"
|
| 11 |
#include "resolu.h"
|
| 12 |
#include "rtio.h"
|
| 13 |
#include <ctype.h>
|
| 14 |
#ifdef _WIN32
|
| 15 |
#include <windows.h>
|
| 16 |
#else
|
| 17 |
#include <errno.h>
|
| 18 |
#include <sys/stat.h>
|
| 19 |
#include <sys/types.h>
|
| 20 |
#endif
|
| 21 |
|
| 22 |
const double ARCTIC_LAT = 67.;
|
| 23 |
const double TROPIC_LAT = 23.;
|
| 24 |
const int SUMMER_START = 4;
|
| 25 |
const int SUMMER_END = 9;
|
| 26 |
const double GNORM = 0.777778;
|
| 27 |
|
| 28 |
const double D65EFF = 203.; /* standard illuminant D65 */
|
| 29 |
|
| 30 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */
|
| 31 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
|
| 32 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
|
| 33 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
|
| 34 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
|
| 35 |
|
| 36 |
/* European and North American zones */
|
| 37 |
struct
|
| 38 |
{
|
| 39 |
char zname[8]; /* time zone name (all caps) */
|
| 40 |
float zmer; /* standard meridian */
|
| 41 |
} tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105},
|
| 42 |
{"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75},
|
| 43 |
{"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45},
|
| 44 |
{"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15},
|
| 45 |
{"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45},
|
| 46 |
{"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75},
|
| 47 |
{"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150},
|
| 48 |
{"NZST", -180}, {"NZDT", -195}, {"", 0}};
|
| 49 |
|
| 50 |
static int
|
| 51 |
make_directory
|
| 52 |
(
|
| 53 |
const char *path
|
| 54 |
)
|
| 55 |
{
|
| 56 |
#ifdef _WIN32
|
| 57 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
|
| 58 |
return 1;
|
| 59 |
}
|
| 60 |
return 0;
|
| 61 |
|
| 62 |
#else
|
| 63 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) {
|
| 64 |
return 1;
|
| 65 |
}
|
| 66 |
return 0;
|
| 67 |
|
| 68 |
#endif
|
| 69 |
}
|
| 70 |
|
| 71 |
inline static float
|
| 72 |
deg2rad
|
| 73 |
(
|
| 74 |
float deg
|
| 75 |
)
|
| 76 |
{
|
| 77 |
return deg * (PI / 180.);
|
| 78 |
}
|
| 79 |
|
| 80 |
static int
|
| 81 |
cvthour
|
| 82 |
(
|
| 83 |
char *hs,
|
| 84 |
int *tsolar,
|
| 85 |
double *hour
|
| 86 |
)
|
| 87 |
{
|
| 88 |
char *cp = hs;
|
| 89 |
int i, j;
|
| 90 |
|
| 91 |
if ((*tsolar = *cp == '+')) {
|
| 92 |
cp++; /* solar time? */
|
| 93 |
}
|
| 94 |
while (isdigit(*cp)) {
|
| 95 |
cp++;
|
| 96 |
}
|
| 97 |
if (*cp == ':') {
|
| 98 |
*hour = atoi(hs) + atoi(++cp) / 60.0;
|
| 99 |
}else{
|
| 100 |
*hour = atof(hs);
|
| 101 |
if (*cp == '.') {
|
| 102 |
cp++;
|
| 103 |
}
|
| 104 |
}
|
| 105 |
while (isdigit(*cp)) {
|
| 106 |
cp++;
|
| 107 |
}
|
| 108 |
if (!*cp) {
|
| 109 |
return (0);
|
| 110 |
}
|
| 111 |
if (*tsolar || !isalpha(*cp)) {
|
| 112 |
fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
|
| 113 |
exit(1);
|
| 114 |
}
|
| 115 |
i = 0;
|
| 116 |
do {
|
| 117 |
for (j = 0; cp[j]; j++) {
|
| 118 |
if (toupper(cp[j]) != tzone[i].zname[j]) {
|
| 119 |
break;
|
| 120 |
}
|
| 121 |
}
|
| 122 |
if (!cp[j] && !tzone[i].zname[j]) {
|
| 123 |
s_meridian = tzone[i].zmer * (PI / 180);
|
| 124 |
return (1);
|
| 125 |
}
|
| 126 |
} while (tzone[i++].zname[0]);
|
| 127 |
|
| 128 |
fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
|
| 129 |
fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
|
| 130 |
for (i = 1; tzone[i].zname[0]; i++) {
|
| 131 |
fprintf(stderr, " %s", tzone[i].zname);
|
| 132 |
}
|
| 133 |
putc('\n', stderr);
|
| 134 |
exit(1);
|
| 135 |
}
|
| 136 |
|
| 137 |
static void
|
| 138 |
basename
|
| 139 |
(
|
| 140 |
const char *path,
|
| 141 |
char *output,
|
| 142 |
size_t outsize
|
| 143 |
)
|
| 144 |
{
|
| 145 |
const char *last_slash = strrchr(path, '/');
|
| 146 |
const char *last_backslash = strrchr(path, '\\');
|
| 147 |
const char *filename = path;
|
| 148 |
const char *last_dot;
|
| 149 |
|
| 150 |
if (last_slash && last_backslash) {
|
| 151 |
filename =
|
| 152 |
(last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1;
|
| 153 |
} else if (last_slash) {
|
| 154 |
filename = last_slash + 1;
|
| 155 |
} else if (last_backslash) {
|
| 156 |
filename = last_backslash + 1;
|
| 157 |
}
|
| 158 |
|
| 159 |
last_dot = strrchr(filename, '.');
|
| 160 |
if (last_dot) {
|
| 161 |
size_t length = last_dot - filename;
|
| 162 |
if (length < outsize) {
|
| 163 |
strncpy(output, filename, length);
|
| 164 |
output[length] = '\0';
|
| 165 |
} else {
|
| 166 |
strncpy(output, filename, outsize - 1);
|
| 167 |
output[outsize - 1] = '\0';
|
| 168 |
}
|
| 169 |
}
|
| 170 |
}
|
| 171 |
|
| 172 |
static char *
|
| 173 |
join_paths
|
| 174 |
(
|
| 175 |
const char *path1,
|
| 176 |
const char *path2
|
| 177 |
)
|
| 178 |
{
|
| 179 |
size_t len1 = strlen(path1);
|
| 180 |
size_t len2 = strlen(path2);
|
| 181 |
int need_separator = (path1[len1 - 1] != DIRSEP);
|
| 182 |
|
| 183 |
char *result = malloc(len1 + len2 + (need_separator ? 2 : 1));
|
| 184 |
if (!result) {
|
| 185 |
return NULL;
|
| 186 |
}
|
| 187 |
|
| 188 |
strcpy(result, path1);
|
| 189 |
if (need_separator) {
|
| 190 |
result[len1] = DIRSEP;
|
| 191 |
len1++;
|
| 192 |
}
|
| 193 |
strcpy(result + len1, path2);
|
| 194 |
|
| 195 |
return result;
|
| 196 |
}
|
| 197 |
|
| 198 |
static inline double
|
| 199 |
wmean2
|
| 200 |
(
|
| 201 |
const double a,
|
| 202 |
const double b,
|
| 203 |
const double x
|
| 204 |
)
|
| 205 |
{
|
| 206 |
return a * (1 - x) + b * x;
|
| 207 |
}
|
| 208 |
|
| 209 |
static inline double
|
| 210 |
wmean
|
| 211 |
(
|
| 212 |
const double a,
|
| 213 |
const double x,
|
| 214 |
const double b,
|
| 215 |
const double y
|
| 216 |
)
|
| 217 |
{
|
| 218 |
return (a * x + b * y) / (a + b);
|
| 219 |
}
|
| 220 |
|
| 221 |
static double
|
| 222 |
get_overcast_zenith_brightness
|
| 223 |
(
|
| 224 |
const double sundir[3]
|
| 225 |
)
|
| 226 |
{
|
| 227 |
double zenithbr;
|
| 228 |
if (sundir[2] < 0) {
|
| 229 |
zenithbr = 0;
|
| 230 |
} else {
|
| 231 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
|
| 232 |
}
|
| 233 |
return zenithbr;
|
| 234 |
}
|
| 235 |
|
| 236 |
/* from gensky.c */
|
| 237 |
static double
|
| 238 |
get_overcast_brightness
|
| 239 |
(
|
| 240 |
const double dz,
|
| 241 |
const double zenithbr
|
| 242 |
)
|
| 243 |
{
|
| 244 |
double groundbr = zenithbr * GNORM;
|
| 245 |
return wmean(
|
| 246 |
pow(dz + 1.01, 10),
|
| 247 |
zenithbr * (1 + 2 * dz) / 3,
|
| 248 |
pow(dz + 1.01, -10),
|
| 249 |
groundbr);
|
| 250 |
}
|
| 251 |
|
| 252 |
static void
|
| 253 |
write_header
|
| 254 |
(
|
| 255 |
const int argc,
|
| 256 |
char **argv,
|
| 257 |
const double cloud_cover,
|
| 258 |
const double grefl,
|
| 259 |
const int res
|
| 260 |
)
|
| 261 |
{
|
| 262 |
int i;
|
| 263 |
printf("# ");
|
| 264 |
for (i = 0; i < argc; i++) {
|
| 265 |
printf("%s ", argv[i]);
|
| 266 |
}
|
| 267 |
printf("\n");
|
| 268 |
printf(
|
| 269 |
"#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: "
|
| 270 |
"%d\n\n",
|
| 271 |
cloud_cover,
|
| 272 |
grefl,
|
| 273 |
res);
|
| 274 |
}
|
| 275 |
|
| 276 |
static void
|
| 277 |
write_rad
|
| 278 |
(
|
| 279 |
const double *sun_radiance,
|
| 280 |
const double intensity,
|
| 281 |
const FVECT sundir,
|
| 282 |
const char *ddir,
|
| 283 |
const char *skyfile
|
| 284 |
)
|
| 285 |
{
|
| 286 |
if (sundir[2] > 0) {
|
| 287 |
printf("void spectrum sunrad\n0\n0\n22 390 770 ");
|
| 288 |
int i;
|
| 289 |
for (i = 0; i < NSSAMP; ++i) {
|
| 290 |
printf("%.3f ", sun_radiance[i]);
|
| 291 |
}
|
| 292 |
printf(
|
| 293 |
"\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n",
|
| 294 |
intensity,
|
| 295 |
intensity,
|
| 296 |
intensity);
|
| 297 |
printf(
|
| 298 |
"solar source sun\n0\n0\n4 %f %f %f 0.533\n\n",
|
| 299 |
sundir[0],
|
| 300 |
sundir[1],
|
| 301 |
sundir[2]);
|
| 302 |
}
|
| 303 |
printf(
|
| 304 |
"void specpict skyfunc\n5 noop %s . 'Atan2(Dy,Dx)/PI+1' "
|
| 305 |
"'1-Acos(Dz)/PI'\n0\n0\n\n",
|
| 306 |
skyfile);
|
| 307 |
}
|
| 308 |
|
| 309 |
static void
|
| 310 |
write_hsr_header
|
| 311 |
(
|
| 312 |
FILE *fp,
|
| 313 |
RESOLU *res
|
| 314 |
)
|
| 315 |
{
|
| 316 |
newheader("RADIANCE", fp);
|
| 317 |
fputncomp(NSSAMP, fp);
|
| 318 |
fputwlsplit(WLPART, fp);
|
| 319 |
fputformat(SPECFMT, fp);
|
| 320 |
fputc('\n', fp);
|
| 321 |
fputsresolu(res, fp);
|
| 322 |
}
|
| 323 |
|
| 324 |
static void
|
| 325 |
reverse_array_float
|
| 326 |
(
|
| 327 |
float arr[],
|
| 328 |
int size
|
| 329 |
)
|
| 330 |
{
|
| 331 |
int start = 0;
|
| 332 |
int end = size - 1;
|
| 333 |
|
| 334 |
while (start < end) {
|
| 335 |
float temp = arr[start];
|
| 336 |
arr[start] = arr[end];
|
| 337 |
arr[end] = temp;
|
| 338 |
start++;
|
| 339 |
end--;
|
| 340 |
}
|
| 341 |
}
|
| 342 |
|
| 343 |
int
|
| 344 |
gen_spect_sky
|
| 345 |
(
|
| 346 |
DATARRAY *tau_clear,
|
| 347 |
DATARRAY *scat_clear,
|
| 348 |
DATARRAY *scat1m_clear,
|
| 349 |
DATARRAY *irrad_clear,
|
| 350 |
const double cloud_cover,
|
| 351 |
const FVECT sundir,
|
| 352 |
const double grefl,
|
| 353 |
const int res,
|
| 354 |
const char *outname,
|
| 355 |
const char *ddir,
|
| 356 |
const double dirnorm,
|
| 357 |
const double difhor
|
| 358 |
)
|
| 359 |
{
|
| 360 |
char skyfile[PATH_MAX];
|
| 361 |
if (!snprintf(
|
| 362 |
skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP, outname)) {
|
| 363 |
fprintf(stderr, "Error setting sky file name\n");
|
| 364 |
return 0;
|
| 365 |
}
|
| 366 |
;
|
| 367 |
int xres = res;
|
| 368 |
int yres = xres / 2;
|
| 369 |
RESOLU rs = {PIXSTANDARD, xres, yres};
|
| 370 |
FILE *skyfp = fopen(skyfile, "w");
|
| 371 |
write_hsr_header(skyfp, &rs);
|
| 372 |
|
| 373 |
CNDX[3] = NSSAMP;
|
| 374 |
|
| 375 |
FVECT view_point = {0, 0, ER + 10};
|
| 376 |
const double radius = VLEN(view_point);
|
| 377 |
const double sun_ct = fdot(view_point, sundir) / radius;
|
| 378 |
|
| 379 |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir);
|
| 380 |
double overcast_grndbr = overcast_zenithbr * GNORM;
|
| 381 |
|
| 382 |
double dif_ratio = 1;
|
| 383 |
if (difhor > 0) {
|
| 384 |
DATARRAY *indirect_irradiance_clear =
|
| 385 |
get_indirect_irradiance(irrad_clear, radius, sun_ct);
|
| 386 |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0;
|
| 387 |
double diffuse_irradiance = 0;
|
| 388 |
int l;
|
| 389 |
for (l = 0; l < NSSAMP; ++l) {
|
| 390 |
diffuse_irradiance +=
|
| 391 |
indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */
|
| 392 |
}
|
| 393 |
free(indirect_irradiance_clear);
|
| 394 |
diffuse_irradiance =
|
| 395 |
wmean2(diffuse_irradiance, overcast_ghi, cloud_cover);
|
| 396 |
if (diffuse_irradiance > 0) {
|
| 397 |
dif_ratio =
|
| 398 |
difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */
|
| 399 |
}
|
| 400 |
}
|
| 401 |
int i, j, k;
|
| 402 |
for (j = 0; j < yres; ++j) {
|
| 403 |
for (i = 0; i < xres; ++i) {
|
| 404 |
SCOLOR radiance = {0};
|
| 405 |
SCOLR sky_sclr = {0};
|
| 406 |
|
| 407 |
float px = i / (xres - 1.0);
|
| 408 |
float py = j / (yres - 1.0);
|
| 409 |
float lambda = ((1 - py) * PI) - (PI / 2.0);
|
| 410 |
float phi = (px * 2.0 * PI) - PI;
|
| 411 |
|
| 412 |
FVECT rdir = {
|
| 413 |
cos(lambda) * cos(phi), cos(lambda) * sin(phi), sin(lambda)
|
| 414 |
};
|
| 415 |
|
| 416 |
const double mu = fdot(view_point, rdir) / radius;
|
| 417 |
const double nu = fdot(rdir, sundir);
|
| 418 |
|
| 419 |
/* hit ground */
|
| 420 |
if (rdir[2] < 0) {
|
| 421 |
get_ground_radiance(
|
| 422 |
tau_clear,
|
| 423 |
scat_clear,
|
| 424 |
scat1m_clear,
|
| 425 |
irrad_clear,
|
| 426 |
view_point,
|
| 427 |
rdir,
|
| 428 |
radius,
|
| 429 |
mu,
|
| 430 |
sun_ct,
|
| 431 |
nu,
|
| 432 |
grefl,
|
| 433 |
sundir,
|
| 434 |
radiance);
|
| 435 |
} else {
|
| 436 |
get_sky_radiance(
|
| 437 |
scat_clear, scat1m_clear, radius, mu, sun_ct, nu, radiance);
|
| 438 |
}
|
| 439 |
|
| 440 |
for (k = 0; k < NSSAMP; ++k) {
|
| 441 |
radiance[k] *= WVLSPAN;
|
| 442 |
}
|
| 443 |
|
| 444 |
if (cloud_cover > 0) {
|
| 445 |
double skybr =
|
| 446 |
get_overcast_brightness(rdir[2], overcast_zenithbr);
|
| 447 |
if (rdir[2] < 0) {
|
| 448 |
for (k = 0; k < NSSAMP; ++k) {
|
| 449 |
radiance[k] = wmean2(
|
| 450 |
radiance[k],
|
| 451 |
overcast_grndbr * D6415[k],
|
| 452 |
cloud_cover);
|
| 453 |
}
|
| 454 |
} else {
|
| 455 |
for (k = 0; k < NSSAMP; ++k) {
|
| 456 |
radiance[k] =
|
| 457 |
wmean2(radiance[k], skybr * D6415[k], cloud_cover);
|
| 458 |
}
|
| 459 |
}
|
| 460 |
}
|
| 461 |
|
| 462 |
for (k = 0; k < NSSAMP; ++k) {
|
| 463 |
radiance[k] *= dif_ratio;
|
| 464 |
}
|
| 465 |
|
| 466 |
reverse_array_float(radiance, NSSAMP);
|
| 467 |
|
| 468 |
scolor2scolr(sky_sclr, radiance, NSSAMP);
|
| 469 |
putbinary(sky_sclr, LSCOLR, 1, skyfp);
|
| 470 |
}
|
| 471 |
}
|
| 472 |
fclose(skyfp);
|
| 473 |
|
| 474 |
/* Get solar radiance */
|
| 475 |
double sun_radiance[NSSAMP] = {0};
|
| 476 |
get_solar_radiance(
|
| 477 |
tau_clear,
|
| 478 |
scat_clear,
|
| 479 |
scat1m_clear,
|
| 480 |
sundir,
|
| 481 |
radius,
|
| 482 |
sun_ct,
|
| 483 |
sun_radiance);
|
| 484 |
if (cloud_cover > 0) {
|
| 485 |
double skybr = get_overcast_brightness(sundir[2], overcast_zenithbr);
|
| 486 |
int i;
|
| 487 |
for (i = 0; i < NSSAMP; ++i) {
|
| 488 |
sun_radiance[i] = wmean2(
|
| 489 |
sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
|
| 490 |
}
|
| 491 |
}
|
| 492 |
|
| 493 |
/* Normalize */
|
| 494 |
double sum = 0.0;
|
| 495 |
for (i = 0; i < NSSAMP; ++i) {
|
| 496 |
sum += sun_radiance[i];
|
| 497 |
}
|
| 498 |
double mean = sum / NSSAMP;
|
| 499 |
for (i = 0; i < NSSAMP; ++i) {
|
| 500 |
sun_radiance[i] /= mean;
|
| 501 |
}
|
| 502 |
double intensity = mean * WVLSPAN;
|
| 503 |
if (dirnorm > 0) {
|
| 504 |
intensity = dirnorm / SOLOMG / WHTEFFICACY;
|
| 505 |
}
|
| 506 |
|
| 507 |
write_rad(sun_radiance, intensity, sundir, ddir, skyfile);
|
| 508 |
return 1;
|
| 509 |
}
|
| 510 |
|
| 511 |
static DpPaths
|
| 512 |
get_dppaths
|
| 513 |
(
|
| 514 |
const char *dir,
|
| 515 |
const double aod,
|
| 516 |
const char *mname,
|
| 517 |
const char *tag
|
| 518 |
)
|
| 519 |
{
|
| 520 |
DpPaths paths;
|
| 521 |
|
| 522 |
snprintf(
|
| 523 |
paths.tau,
|
| 524 |
PATH_MAX,
|
| 525 |
"%s%ctau_%s_%s_%.2f.dat",
|
| 526 |
dir,
|
| 527 |
DIRSEP,
|
| 528 |
tag,
|
| 529 |
mname,
|
| 530 |
aod);
|
| 531 |
snprintf(
|
| 532 |
paths.scat,
|
| 533 |
PATH_MAX,
|
| 534 |
"%s%cscat_%s_%s_%.2f.dat",
|
| 535 |
dir,
|
| 536 |
DIRSEP,
|
| 537 |
tag,
|
| 538 |
mname,
|
| 539 |
aod);
|
| 540 |
snprintf(
|
| 541 |
paths.scat1m,
|
| 542 |
PATH_MAX,
|
| 543 |
"%s%cscat1m_%s_%s_%.2f.dat",
|
| 544 |
dir,
|
| 545 |
DIRSEP,
|
| 546 |
tag,
|
| 547 |
mname,
|
| 548 |
aod);
|
| 549 |
snprintf(
|
| 550 |
paths.irrad,
|
| 551 |
PATH_MAX,
|
| 552 |
"%s%cirrad_%s_%s_%.2f.dat",
|
| 553 |
dir,
|
| 554 |
DIRSEP,
|
| 555 |
tag,
|
| 556 |
mname,
|
| 557 |
aod);
|
| 558 |
|
| 559 |
return paths;
|
| 560 |
}
|
| 561 |
|
| 562 |
static void
|
| 563 |
set_rayleigh_density_profile
|
| 564 |
(
|
| 565 |
Atmosphere *atmos,
|
| 566 |
char *tag,
|
| 567 |
const int is_summer,
|
| 568 |
const double s_latitude
|
| 569 |
)
|
| 570 |
{
|
| 571 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
|
| 572 |
tag[0] = 's';
|
| 573 |
if (is_summer) {
|
| 574 |
tag[1] = 's';
|
| 575 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
|
| 576 |
atmos->beta_r0 = BR0_SS;
|
| 577 |
} else {
|
| 578 |
tag[1] = 'w';
|
| 579 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
|
| 580 |
atmos->beta_r0 = BR0_SW;
|
| 581 |
}
|
| 582 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
|
| 583 |
tag[0] = 'm';
|
| 584 |
if (is_summer) {
|
| 585 |
tag[1] = 's';
|
| 586 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
|
| 587 |
atmos->beta_r0 = BR0_MS;
|
| 588 |
} else {
|
| 589 |
tag[1] = 'w';
|
| 590 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
|
| 591 |
atmos->beta_r0 = BR0_MW;
|
| 592 |
}
|
| 593 |
} else {
|
| 594 |
tag[0] = 't';
|
| 595 |
tag[1] = 'r';
|
| 596 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
|
| 597 |
atmos->beta_r0 = BR0_T;
|
| 598 |
}
|
| 599 |
tag[2] = '\0';
|
| 600 |
}
|
| 601 |
|
| 602 |
static Atmosphere
|
| 603 |
init_atmos
|
| 604 |
(
|
| 605 |
const double aod,
|
| 606 |
const double grefl
|
| 607 |
)
|
| 608 |
{
|
| 609 |
Atmosphere atmos = {
|
| 610 |
.ozone_density =
|
| 611 |
{.layers =
|
| 612 |
{
|
| 613 |
{.width = 25000.0,
|
| 614 |
.exp_term = 0.0,
|
| 615 |
.exp_scale = 0.0,
|
| 616 |
.linear_term = 1.0 / 15000.0,
|
| 617 |
.constant_term = -2.0 / 3.0},
|
| 618 |
{.width = AH,
|
| 619 |
.exp_term = 0.0,
|
| 620 |
.exp_scale = 0.0,
|
| 621 |
.linear_term = -1.0 / 15000.0,
|
| 622 |
.constant_term = 8.0 / 3.0},
|
| 623 |
}},
|
| 624 |
.rayleigh_density =
|
| 625 |
{.layers =
|
| 626 |
{
|
| 627 |
{.width = AH,
|
| 628 |
.exp_term = 1.0,
|
| 629 |
.exp_scale = -1.0 / HR_MS,
|
| 630 |
.linear_term = 0.0,
|
| 631 |
.constant_term = 0.0},
|
| 632 |
}},
|
| 633 |
.beta_r0 = BR0_MS,
|
| 634 |
.beta_scale = aod / AOD0_CA,
|
| 635 |
.beta_m = NULL,
|
| 636 |
.grefl = grefl
|
| 637 |
};
|
| 638 |
return atmos;
|
| 639 |
}
|
| 640 |
|
| 641 |
int
|
| 642 |
main
|
| 643 |
(
|
| 644 |
int argc,
|
| 645 |
char *argv[]
|
| 646 |
)
|
| 647 |
{
|
| 648 |
int month, day;
|
| 649 |
double hour;
|
| 650 |
FVECT sundir;
|
| 651 |
int num_threads = 1;
|
| 652 |
int sorder = 4;
|
| 653 |
int year = 0;
|
| 654 |
int tsolar = 0;
|
| 655 |
int got_meridian = 0;
|
| 656 |
double grefl = 0.2;
|
| 657 |
double ccover = 0.0;
|
| 658 |
int res = 64;
|
| 659 |
double aod = AOD0_CA;
|
| 660 |
char *outname = "out";
|
| 661 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
|
| 662 |
char mie_name[20] = "mie_ca";
|
| 663 |
char lstag[3];
|
| 664 |
char *ddir = ".";
|
| 665 |
int i;
|
| 666 |
double dirnorm = 0; /* direct normal illuminance */
|
| 667 |
double difhor = 0; /* diffuse horizontal illuminance */
|
| 668 |
|
| 669 |
fixargv0(argv[0]);
|
| 670 |
if (argc == 2 && !strcmp(argv[1], "-defaults")) {
|
| 671 |
printf("-i %d\t\t\t\t#scattering order\n", sorder);
|
| 672 |
printf("-g %f\t\t\t#ground reflectance\n", grefl);
|
| 673 |
printf("-c %f\t\t\t#cloud cover\n", ccover);
|
| 674 |
printf("-r %d\t\t\t\t#image resolution\n", res);
|
| 675 |
printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA);
|
| 676 |
printf("-f %s\t\t\t\t#output name (-f)\n", outname);
|
| 677 |
printf("-p %s\t\t\t\t#atmos data directory\n", ddir);
|
| 678 |
exit(0);
|
| 679 |
}
|
| 680 |
|
| 681 |
if (argc < 4) {
|
| 682 |
fprintf(
|
| 683 |
stderr,
|
| 684 |
"Usage: %s month day hour -y year -a lat -o lon -m tz -d aod "
|
| 685 |
"-r "
|
| 686 |
"res -n nproc -c ccover -l mie -L dirnorm_illum difhor_illum "
|
| 687 |
"-g grefl -f outpath\n",
|
| 688 |
argv[0]);
|
| 689 |
return 1;
|
| 690 |
}
|
| 691 |
|
| 692 |
month = atoi(argv[1]);
|
| 693 |
if (month < 1 || month > 12) {
|
| 694 |
fprintf(stderr, "bad month");
|
| 695 |
exit(1);
|
| 696 |
}
|
| 697 |
day = atoi(argv[2]);
|
| 698 |
if (day < 1 || day > 31) {
|
| 699 |
fprintf(stderr, "bad month");
|
| 700 |
exit(1);
|
| 701 |
}
|
| 702 |
got_meridian = cvthour(argv[3], &tsolar, &hour);
|
| 703 |
|
| 704 |
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
|
| 705 |
fprintf(stderr, "Cannot compute solar angle\n");
|
| 706 |
exit(1);
|
| 707 |
}
|
| 708 |
|
| 709 |
for (i = 4; i < argc; i++) {
|
| 710 |
if (argv[i][0] == '-') {
|
| 711 |
switch (argv[i][1]) {
|
| 712 |
case 'a':
|
| 713 |
s_latitude = atof(argv[++i]) * (PI / 180.0);
|
| 714 |
break;
|
| 715 |
case 'c':
|
| 716 |
ccover = atof(argv[++i]);
|
| 717 |
break;
|
| 718 |
case 'd':
|
| 719 |
aod = atof(argv[++i]);
|
| 720 |
break;
|
| 721 |
case 'f':
|
| 722 |
outname = argv[++i];
|
| 723 |
break;
|
| 724 |
case 'g':
|
| 725 |
grefl = atof(argv[++i]);
|
| 726 |
break;
|
| 727 |
case 'i':
|
| 728 |
sorder = atoi(argv[++i]);
|
| 729 |
break;
|
| 730 |
case 'l':
|
| 731 |
mie_path = argv[++i];
|
| 732 |
basename(mie_path, mie_name, sizeof(mie_name));
|
| 733 |
break;
|
| 734 |
case 'm':
|
| 735 |
if (got_meridian) {
|
| 736 |
++i;
|
| 737 |
break;
|
| 738 |
}
|
| 739 |
s_meridian = atof(argv[++i]) * (PI / 180.0);
|
| 740 |
break;
|
| 741 |
case 'n':
|
| 742 |
num_threads = atoi(argv[++i]);
|
| 743 |
break;
|
| 744 |
case 'o':
|
| 745 |
s_longitude = atof(argv[++i]) * (PI / 180.0);
|
| 746 |
break;
|
| 747 |
case 'L':
|
| 748 |
dirnorm = atof(argv[++i]);
|
| 749 |
difhor = atof(argv[++i]);
|
| 750 |
break;
|
| 751 |
case 'p':
|
| 752 |
ddir = argv[++i];
|
| 753 |
break;
|
| 754 |
case 'r':
|
| 755 |
res = atoi(argv[++i]);
|
| 756 |
break;
|
| 757 |
case 'y':
|
| 758 |
year = atoi(argv[++i]);
|
| 759 |
break;
|
| 760 |
default:
|
| 761 |
fprintf(stderr, "Unknown option %s\n", argv[i]);
|
| 762 |
exit(1);
|
| 763 |
}
|
| 764 |
}
|
| 765 |
}
|
| 766 |
if (year && (year < 1950) | (year > 2050)) {
|
| 767 |
fprintf(
|
| 768 |
stderr,
|
| 769 |
"%s: warning - year should be in range 1950-2050\n",
|
| 770 |
progname);
|
| 771 |
}
|
| 772 |
if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180) {
|
| 773 |
fprintf(
|
| 774 |
stderr,
|
| 775 |
"%s: warning - %.1f hours btwn. standard meridian and "
|
| 776 |
"longitude\n",
|
| 777 |
progname,
|
| 778 |
(s_longitude - s_meridian) * 12 / PI);
|
| 779 |
}
|
| 780 |
|
| 781 |
Atmosphere clear_atmos = init_atmos(aod, grefl);
|
| 782 |
|
| 783 |
int is_summer = (month >= SUMMER_START && month <= SUMMER_END);
|
| 784 |
if (s_latitude < 0) {
|
| 785 |
is_summer = !is_summer;
|
| 786 |
}
|
| 787 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
|
| 788 |
|
| 789 |
/* Load mie density data */
|
| 790 |
DATARRAY *mie_dp = getdata(mie_path);
|
| 791 |
if (mie_dp == NULL) {
|
| 792 |
fprintf(stderr, "Error reading mie data\n");
|
| 793 |
return 1;
|
| 794 |
}
|
| 795 |
clear_atmos.beta_m = mie_dp;
|
| 796 |
|
| 797 |
char gsdir[PATH_MAX];
|
| 798 |
size_t siz = strlen(ddir);
|
| 799 |
if (ISDIRSEP(ddir[siz - 1])) {
|
| 800 |
ddir[siz - 1] = '\0';
|
| 801 |
}
|
| 802 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
|
| 803 |
if (!make_directory(gsdir)) {
|
| 804 |
fprintf(stderr, "Failed creating atmos_data directory");
|
| 805 |
exit(1);
|
| 806 |
}
|
| 807 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
|
| 808 |
|
| 809 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
|
| 810 |
getpath(clear_paths.scat, ".", R_OK) == NULL ||
|
| 811 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
|
| 812 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) {
|
| 813 |
printf("# Pre-computing...\n");
|
| 814 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
|
| 815 |
fprintf(stderr, "Pre-compute failed\n");
|
| 816 |
return 1;
|
| 817 |
}
|
| 818 |
}
|
| 819 |
|
| 820 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
|
| 821 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
|
| 822 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
|
| 823 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
|
| 824 |
|
| 825 |
write_header(argc, argv, ccover, grefl, res);
|
| 826 |
|
| 827 |
if (!gen_spect_sky(
|
| 828 |
tau_clear_dp,
|
| 829 |
scat_clear_dp,
|
| 830 |
scat1m_clear_dp,
|
| 831 |
irrad_clear_dp,
|
| 832 |
ccover,
|
| 833 |
sundir,
|
| 834 |
grefl,
|
| 835 |
res,
|
| 836 |
outname,
|
| 837 |
ddir,
|
| 838 |
dirnorm,
|
| 839 |
difhor)) {
|
| 840 |
fprintf(stderr, "gen_spect_sky failed\n");
|
| 841 |
exit(1);
|
| 842 |
}
|
| 843 |
|
| 844 |
freedata(mie_dp);
|
| 845 |
freedata(tau_clear_dp);
|
| 846 |
freedata(scat_clear_dp);
|
| 847 |
freedata(irrad_clear_dp);
|
| 848 |
freedata(scat1m_clear_dp);
|
| 849 |
|
| 850 |
return 0;
|
| 851 |
}
|