1 |
#include "color.h" |
2 |
#ifndef lint |
3 |
static const char RCSid[] = |
4 |
"$Id: genssky.c,v 2.7 2025/04/10 23:30:58 greg Exp $"; |
5 |
#endif |
6 |
/* Main function for generating spectral sky */ |
7 |
/* Cloudy sky computed as weight average of clear and cie overcast sky */ |
8 |
|
9 |
#include "copyright.h" |
10 |
#include "paths.h" |
11 |
#include "atmos.h" |
12 |
#include "resolu.h" |
13 |
#include "rtio.h" |
14 |
#include <ctype.h> |
15 |
#ifdef _WIN32 |
16 |
#include <windows.h> |
17 |
#else |
18 |
#include <errno.h> |
19 |
#include <sys/stat.h> |
20 |
#include <sys/types.h> |
21 |
#endif |
22 |
|
23 |
const double ARCTIC_LAT = 67.; |
24 |
const double TROPIC_LAT = 23.; |
25 |
const int SUMMER_START = 4; |
26 |
const int SUMMER_END = 9; |
27 |
const double GNORM = 0.777778; |
28 |
|
29 |
const double D65EFF = 203.; /* standard illuminant D65 */ |
30 |
|
31 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */ |
32 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
33 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
34 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
35 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
36 |
|
37 |
/* European and North American zones */ |
38 |
struct { |
39 |
char zname[8]; /* time zone name (all caps) */ |
40 |
float zmer; /* standard meridian */ |
41 |
} tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105}, |
42 |
{"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75}, |
43 |
{"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45}, |
44 |
{"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15}, |
45 |
{"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45}, |
46 |
{"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75}, |
47 |
{"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150}, |
48 |
{"NZST", -180}, {"NZDT", -195}, {"", 0}}; |
49 |
|
50 |
static int make_directory(const char *path) { |
51 |
#ifdef _WIN32 |
52 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
53 |
return 1; |
54 |
} |
55 |
return 0; |
56 |
#else |
57 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
58 |
return 1; |
59 |
} |
60 |
return 0; |
61 |
#endif |
62 |
} |
63 |
|
64 |
inline static float deg2rad(float deg) { return deg * (PI / 180.); } |
65 |
|
66 |
static int cvthour(char *hs, int *tsolar, double *hour) { |
67 |
char *cp = hs; |
68 |
int i, j; |
69 |
|
70 |
if ((*tsolar = *cp == '+')) |
71 |
cp++; /* solar time? */ |
72 |
while (isdigit(*cp)) |
73 |
cp++; |
74 |
if (*cp == ':') |
75 |
*hour = atoi(hs) + atoi(++cp) / 60.0; |
76 |
else { |
77 |
*hour = atof(hs); |
78 |
if (*cp == '.') |
79 |
cp++; |
80 |
} |
81 |
while (isdigit(*cp)) |
82 |
cp++; |
83 |
if (!*cp) |
84 |
return (0); |
85 |
if (*tsolar || !isalpha(*cp)) { |
86 |
fprintf(stderr, "%s: bad time format: %s\n", progname, hs); |
87 |
exit(1); |
88 |
} |
89 |
i = 0; |
90 |
do { |
91 |
for (j = 0; cp[j]; j++) |
92 |
if (toupper(cp[j]) != tzone[i].zname[j]) |
93 |
break; |
94 |
if (!cp[j] && !tzone[i].zname[j]) { |
95 |
s_meridian = tzone[i].zmer * (PI / 180); |
96 |
return (1); |
97 |
} |
98 |
} while (tzone[i++].zname[0]); |
99 |
|
100 |
fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp); |
101 |
fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname); |
102 |
for (i = 1; tzone[i].zname[0]; i++) |
103 |
fprintf(stderr, " %s", tzone[i].zname); |
104 |
putc('\n', stderr); |
105 |
exit(1); |
106 |
} |
107 |
|
108 |
static void basename(const char *path, char *output, size_t outsize) { |
109 |
const char *last_slash = strrchr(path, '/'); |
110 |
const char *last_backslash = strrchr(path, '\\'); |
111 |
const char *filename = path; |
112 |
const char *last_dot; |
113 |
|
114 |
if (last_slash && last_backslash) { |
115 |
filename = |
116 |
(last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1; |
117 |
} else if (last_slash) { |
118 |
filename = last_slash + 1; |
119 |
} else if (last_backslash) { |
120 |
filename = last_backslash + 1; |
121 |
} |
122 |
|
123 |
last_dot = strrchr(filename, '.'); |
124 |
if (last_dot) { |
125 |
size_t length = last_dot - filename; |
126 |
if (length < outsize) { |
127 |
strncpy(output, filename, length); |
128 |
output[length] = '\0'; |
129 |
} else { |
130 |
strncpy(output, filename, outsize - 1); |
131 |
output[outsize - 1] = '\0'; |
132 |
} |
133 |
} |
134 |
} |
135 |
|
136 |
static char *join_paths(const char *path1, const char *path2) { |
137 |
size_t len1 = strlen(path1); |
138 |
size_t len2 = strlen(path2); |
139 |
int need_separator = (path1[len1 - 1] != DIRSEP); |
140 |
|
141 |
char *result = malloc(len1 + len2 + (need_separator ? 2 : 1)); |
142 |
if (!result) |
143 |
return NULL; |
144 |
|
145 |
strcpy(result, path1); |
146 |
if (need_separator) { |
147 |
result[len1] = DIRSEP; |
148 |
len1++; |
149 |
} |
150 |
strcpy(result + len1, path2); |
151 |
|
152 |
return result; |
153 |
} |
154 |
|
155 |
static inline double wmean2(const double a, const double b, const double x) { |
156 |
return a * (1 - x) + b * x; |
157 |
} |
158 |
|
159 |
static inline double wmean(const double a, const double x, const double b, |
160 |
const double y) { |
161 |
return (a * x + b * y) / (a + b); |
162 |
} |
163 |
|
164 |
static double get_overcast_zenith_brightness(const double sundir[3]) { |
165 |
double zenithbr; |
166 |
if (sundir[2] < 0) { |
167 |
zenithbr = 0; |
168 |
} else { |
169 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
170 |
} |
171 |
return zenithbr; |
172 |
} |
173 |
|
174 |
/* from gensky.c */ |
175 |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
176 |
double groundbr = zenithbr * GNORM; |
177 |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
178 |
pow(dz + 1.01, -10), groundbr); |
179 |
} |
180 |
|
181 |
static void write_header(const int argc, char **argv, const double cloud_cover, |
182 |
const double grefl, const int res) { |
183 |
int i; |
184 |
printf("# "); |
185 |
for (i = 0; i < argc; i++) { |
186 |
printf("%s ", argv[i]); |
187 |
} |
188 |
printf("\n"); |
189 |
printf( |
190 |
"#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n", |
191 |
cloud_cover, grefl, res); |
192 |
} |
193 |
|
194 |
static void write_rad(const double *sun_radiance, const double intensity, |
195 |
const FVECT sundir, const char *ddir, |
196 |
const char *skyfile) { |
197 |
if (sundir[2] > 0) { |
198 |
printf("void spectrum sunrad\n0\n0\n22 380 780 "); |
199 |
int i; |
200 |
for (i = 0; i < NSSAMP; ++i) { |
201 |
printf("%.3f ", sun_radiance[i]); |
202 |
} |
203 |
printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity, |
204 |
intensity, intensity); |
205 |
printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1], |
206 |
sundir[2]); |
207 |
} |
208 |
printf("void specpict skyfunc\n5 noop %s . 'Atan2(Dy,Dx)/PI+1' " |
209 |
"'1-Acos(Dz)/PI'\n0\n0\n\n", |
210 |
skyfile); |
211 |
} |
212 |
|
213 |
static void write_hsr_header(FILE *fp, RESOLU *res) { |
214 |
float wvsplit[4] = {380, 480, 588, 780}; |
215 |
newheader("RADIANCE", fp); |
216 |
fputncomp(NSSAMP, fp); |
217 |
fputwlsplit(wvsplit, fp); |
218 |
fputformat(SPECFMT, fp); |
219 |
fputc('\n', fp); |
220 |
fputsresolu(res, fp); |
221 |
} |
222 |
|
223 |
static inline float frac(float x) { return x - floor(x); } |
224 |
|
225 |
int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear, |
226 |
DATARRAY *scat1m_clear, DATARRAY *irrad_clear, |
227 |
const double cloud_cover, const FVECT sundir, |
228 |
const double grefl, const int res, const char *outname, |
229 |
const char *ddir, const double dirnorm, const double difhor) { |
230 |
char skyfile[PATH_MAX]; |
231 |
if (!snprintf(skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP, |
232 |
outname)) { |
233 |
fprintf(stderr, "Error setting sky file name\n"); |
234 |
return 0; |
235 |
}; |
236 |
int xres = res; |
237 |
int yres = xres / 2; |
238 |
RESOLU rs = {PIXSTANDARD, xres, yres}; |
239 |
FILE *skyfp = fopen(skyfile, "w"); |
240 |
write_hsr_header(skyfp, &rs); |
241 |
|
242 |
CNDX[3] = NSSAMP; |
243 |
|
244 |
FVECT view_point = {0, 0, ER + 10}; |
245 |
const double radius = VLEN(view_point); |
246 |
const double sun_ct = fdot(view_point, sundir) / radius; |
247 |
|
248 |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
249 |
double overcast_grndbr = overcast_zenithbr * GNORM; |
250 |
|
251 |
double dif_ratio = 1; |
252 |
if (difhor > 0) { |
253 |
DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad_clear, radius, sun_ct); |
254 |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
255 |
double diffuse_irradiance = 0; |
256 |
int l; |
257 |
for (l = 0; l < NSSAMP; ++l) { |
258 |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
259 |
} |
260 |
free(indirect_irradiance_clear); |
261 |
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, cloud_cover); |
262 |
if (diffuse_irradiance > 0) { |
263 |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
264 |
} |
265 |
} |
266 |
int i, j, k; |
267 |
for (j = 0; j < yres; ++j) { |
268 |
for (i = 0; i < xres; ++i) { |
269 |
SCOLOR radiance = {0}; |
270 |
SCOLR sky_sclr = {0}; |
271 |
|
272 |
float px = i / (xres - 1.0); |
273 |
float py = j / (yres - 1.0); |
274 |
float lambda = ((1 - py) * PI) - (PI / 2.0); |
275 |
float phi = (px * 2.0 * PI) - PI; |
276 |
|
277 |
FVECT rdir = {cos(lambda) * cos(phi), cos(lambda) * sin(phi), |
278 |
sin(lambda)}; |
279 |
|
280 |
const double mu = fdot(view_point, rdir) / radius; |
281 |
const double nu = fdot(rdir, sundir); |
282 |
|
283 |
/* hit ground */ |
284 |
if (rdir[2] < 0) { |
285 |
get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear, |
286 |
view_point, rdir, radius, mu, sun_ct, nu, grefl, |
287 |
sundir, radiance); |
288 |
} else { |
289 |
get_sky_radiance(scat_clear, scat1m_clear, radius, mu, sun_ct, nu, |
290 |
radiance); |
291 |
} |
292 |
|
293 |
for (k = 0; k < NSSAMP; ++k) { |
294 |
radiance[k] *= WVLSPAN; |
295 |
} |
296 |
|
297 |
if (cloud_cover > 0) { |
298 |
double skybr = get_overcast_brightness(rdir[2], overcast_zenithbr); |
299 |
if (rdir[2] < 0) { |
300 |
for (k = 0; k < NSSAMP; ++k) { |
301 |
radiance[k] = wmean2(radiance[k], overcast_grndbr * D6415[k], cloud_cover); |
302 |
} |
303 |
} else { |
304 |
for (k = 0; k < NSSAMP; ++k) { |
305 |
radiance[k] = wmean2(radiance[k], skybr * D6415[k], cloud_cover); |
306 |
} |
307 |
} |
308 |
} |
309 |
|
310 |
for (k = 0; k < NSSAMP; ++k) { |
311 |
radiance[k] *= dif_ratio; |
312 |
} |
313 |
|
314 |
scolor2scolr(sky_sclr, radiance, NSSAMP); |
315 |
putbinary(sky_sclr, LSCOLR, 1, skyfp); |
316 |
} |
317 |
} |
318 |
fclose(skyfp); |
319 |
|
320 |
/* Get solar radiance */ |
321 |
double sun_radiance[NSSAMP] = {0}; |
322 |
get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius, |
323 |
sun_ct, sun_radiance); |
324 |
if (cloud_cover > 0) { |
325 |
double skybr = get_overcast_brightness(sundir[2], overcast_zenithbr); |
326 |
int i; |
327 |
for (i = 0; i < NSSAMP; ++i) { |
328 |
sun_radiance[i] = |
329 |
wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover); |
330 |
} |
331 |
} |
332 |
|
333 |
/* Normalize */ |
334 |
double sum = 0.0; |
335 |
for (i = 0; i < NSSAMP; ++i) { |
336 |
sum += sun_radiance[i]; |
337 |
} |
338 |
double mean = sum / NSSAMP; |
339 |
for (i = 0; i < NSSAMP; ++i) { |
340 |
sun_radiance[i] /= mean; |
341 |
} |
342 |
double intensity = mean * WVLSPAN; |
343 |
if (dirnorm > 0) { |
344 |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
345 |
} |
346 |
|
347 |
write_rad(sun_radiance, intensity, sundir, ddir, skyfile); |
348 |
return 1; |
349 |
} |
350 |
|
351 |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, |
352 |
const char *tag) { |
353 |
DpPaths paths; |
354 |
|
355 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
356 |
mname, aod); |
357 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
358 |
mname, aod); |
359 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, |
360 |
tag, mname, aod); |
361 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
362 |
mname, aod); |
363 |
|
364 |
return paths; |
365 |
} |
366 |
|
367 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, |
368 |
const int is_summer, |
369 |
const double s_latitude) { |
370 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
371 |
tag[0] = 's'; |
372 |
if (is_summer) { |
373 |
tag[1] = 's'; |
374 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
375 |
atmos->beta_r0 = BR0_SS; |
376 |
} else { |
377 |
tag[1] = 'w'; |
378 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
379 |
atmos->beta_r0 = BR0_SW; |
380 |
} |
381 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
382 |
tag[0] = 'm'; |
383 |
if (is_summer) { |
384 |
tag[1] = 's'; |
385 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
386 |
atmos->beta_r0 = BR0_MS; |
387 |
} else { |
388 |
tag[1] = 'w'; |
389 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
390 |
atmos->beta_r0 = BR0_MW; |
391 |
} |
392 |
} else { |
393 |
tag[0] = 't'; |
394 |
tag[1] = 'r'; |
395 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
396 |
atmos->beta_r0 = BR0_T; |
397 |
} |
398 |
tag[2] = '\0'; |
399 |
} |
400 |
|
401 |
static Atmosphere init_atmos(const double aod, const double grefl) { |
402 |
Atmosphere atmos = {.ozone_density = {.layers = |
403 |
{ |
404 |
{.width = 25000.0, |
405 |
.exp_term = 0.0, |
406 |
.exp_scale = 0.0, |
407 |
.linear_term = 1.0 / 15000.0, |
408 |
.constant_term = -2.0 / 3.0}, |
409 |
{.width = AH, |
410 |
.exp_term = 0.0, |
411 |
.exp_scale = 0.0, |
412 |
.linear_term = -1.0 / 15000.0, |
413 |
.constant_term = 8.0 / 3.0}, |
414 |
}}, |
415 |
.rayleigh_density = {.layers = |
416 |
{ |
417 |
{.width = AH, |
418 |
.exp_term = 1.0, |
419 |
.exp_scale = -1.0 / HR_MS, |
420 |
.linear_term = 0.0, |
421 |
.constant_term = 0.0}, |
422 |
}}, |
423 |
.beta_r0 = BR0_MS, |
424 |
.beta_scale = aod / AOD0_CA, |
425 |
.beta_m = NULL, |
426 |
.grefl = grefl}; |
427 |
return atmos; |
428 |
} |
429 |
|
430 |
int main(int argc, char *argv[]) { |
431 |
int month, day; |
432 |
double hour; |
433 |
FVECT sundir; |
434 |
int num_threads = 1; |
435 |
int sorder = 4; |
436 |
int year = 0; |
437 |
int tsolar = 0; |
438 |
int got_meridian = 0; |
439 |
double grefl = 0.2; |
440 |
double ccover = 0.0; |
441 |
int res = 64; |
442 |
double aod = AOD0_CA; |
443 |
char *outname = "out"; |
444 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
445 |
char mie_name[20] = "mie_ca"; |
446 |
char lstag[3]; |
447 |
char *ddir = "."; |
448 |
int i; |
449 |
double dirnorm = 0; /* direct normal illuminance */ |
450 |
double difhor = 0; /* diffuse horizontal illuminance */ |
451 |
|
452 |
fixargv0(argv[0]); |
453 |
if (argc == 2 && !strcmp(argv[1], "-defaults")) { |
454 |
printf("-i %d\t\t\t\t#scattering order\n", sorder); |
455 |
printf("-g %f\t\t\t#ground reflectance\n", grefl); |
456 |
printf("-c %f\t\t\t#cloud cover\n", ccover); |
457 |
printf("-r %d\t\t\t\t#image resolution\n", res); |
458 |
printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA); |
459 |
printf("-f %s\t\t\t\t#output name (-f)\n", outname); |
460 |
printf("-p %s\t\t\t\t#atmos data directory\n", ddir); |
461 |
exit(0); |
462 |
} |
463 |
|
464 |
if (argc < 4) { |
465 |
fprintf(stderr, |
466 |
"Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r " |
467 |
"res -n nproc -c ccover -l mie -L dirnorm_illum difhor_illum " |
468 |
"-g grefl -f outpath\n", |
469 |
argv[0]); |
470 |
return 0; |
471 |
} |
472 |
|
473 |
month = atoi(argv[1]); |
474 |
if (month < 1 || month > 12) { |
475 |
fprintf(stderr, "bad month"); |
476 |
exit(1); |
477 |
} |
478 |
day = atoi(argv[2]); |
479 |
if (day < 1 || day > 31) { |
480 |
fprintf(stderr, "bad month"); |
481 |
exit(1); |
482 |
} |
483 |
got_meridian = cvthour(argv[3], &tsolar, &hour); |
484 |
|
485 |
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) { |
486 |
fprintf(stderr, "Cannot compute solar angle\n"); |
487 |
exit(1); |
488 |
} |
489 |
|
490 |
for (i = 4; i < argc; i++) { |
491 |
if (argv[i][0] == '-') { |
492 |
switch (argv[i][1]) { |
493 |
case 'a': |
494 |
s_latitude = atof(argv[++i]) * (PI / 180.0); |
495 |
break; |
496 |
case 'c': |
497 |
ccover = atof(argv[++i]); |
498 |
break; |
499 |
case 'd': |
500 |
aod = atof(argv[++i]); |
501 |
break; |
502 |
case 'f': |
503 |
outname = argv[++i]; |
504 |
break; |
505 |
case 'g': |
506 |
grefl = atof(argv[++i]); |
507 |
break; |
508 |
case 'i': |
509 |
sorder = atoi(argv[++i]); |
510 |
break; |
511 |
case 'l': |
512 |
mie_path = argv[++i]; |
513 |
basename(mie_path, mie_name, sizeof(mie_name)); |
514 |
break; |
515 |
case 'm': |
516 |
if (got_meridian) { |
517 |
++i; |
518 |
break; |
519 |
} |
520 |
s_meridian = atof(argv[++i]) * (PI / 180.0); |
521 |
break; |
522 |
case 'n': |
523 |
num_threads = atoi(argv[++i]); |
524 |
break; |
525 |
case 'o': |
526 |
s_longitude = atof(argv[++i]) * (PI / 180.0); |
527 |
break; |
528 |
case 'L': |
529 |
dirnorm = atof(argv[++i]); |
530 |
difhor = atof(argv[++i]); |
531 |
break; |
532 |
case 'p': |
533 |
ddir = argv[++i]; |
534 |
break; |
535 |
case 'r': |
536 |
res = atoi(argv[++i]); |
537 |
break; |
538 |
case 'y': |
539 |
year = atoi(argv[++i]); |
540 |
break; |
541 |
default: |
542 |
fprintf(stderr, "Unknown option %s\n", argv[i]); |
543 |
exit(1); |
544 |
} |
545 |
} |
546 |
} |
547 |
if (year && (year < 1950) | (year > 2050)) |
548 |
fprintf(stderr, "%s: warning - year should be in range 1950-2050\n", |
549 |
progname); |
550 |
if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180) |
551 |
fprintf(stderr, |
552 |
"%s: warning - %.1f hours btwn. standard meridian and longitude\n", |
553 |
progname, (s_longitude - s_meridian) * 12 / PI); |
554 |
|
555 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
556 |
|
557 |
int is_summer = (month >= SUMMER_START && month <= SUMMER_END); |
558 |
if (s_latitude < 0) { |
559 |
is_summer = !is_summer; |
560 |
} |
561 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
562 |
|
563 |
/* Load mie density data */ |
564 |
DATARRAY *mie_dp = getdata(mie_path); |
565 |
if (mie_dp == NULL) { |
566 |
fprintf(stderr, "Error reading mie data\n"); |
567 |
return 0; |
568 |
} |
569 |
clear_atmos.beta_m = mie_dp; |
570 |
|
571 |
char gsdir[PATH_MAX]; |
572 |
size_t siz = strlen(ddir); |
573 |
if (ISDIRSEP(ddir[siz - 1])) |
574 |
ddir[siz - 1] = '\0'; |
575 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
576 |
if (!make_directory(gsdir)) { |
577 |
fprintf(stderr, "Failed creating atmos_data directory"); |
578 |
exit(1); |
579 |
} |
580 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
581 |
|
582 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
583 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
584 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
585 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
586 |
printf("# Pre-computing...\n"); |
587 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
588 |
fprintf(stderr, "Pre-compute failed\n"); |
589 |
return 0; |
590 |
} |
591 |
} |
592 |
|
593 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
594 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
595 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
596 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
597 |
|
598 |
write_header(argc, argv, ccover, grefl, res); |
599 |
|
600 |
if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, |
601 |
irrad_clear_dp, ccover, sundir, grefl, res, outname, ddir, |
602 |
dirnorm, difhor)) { |
603 |
fprintf(stderr, "gen_spect_sky failed\n"); |
604 |
exit(1); |
605 |
} |
606 |
|
607 |
freedata(mie_dp); |
608 |
freedata(tau_clear_dp); |
609 |
freedata(scat_clear_dp); |
610 |
freedata(irrad_clear_dp); |
611 |
freedata(scat1m_clear_dp); |
612 |
|
613 |
return 1; |
614 |
} |