1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: genssky.c,v 2.8 2025/06/07 05:09:45 greg Exp $"; |
3 |
#endif |
4 |
/* Main function for generating spectral sky */ |
5 |
/* Cloudy sky computed as weight average of clear and cie overcast sky */ |
6 |
|
7 |
#include "atmos.h" |
8 |
#include "copyright.h" |
9 |
#include "color.h" |
10 |
#include "paths.h" |
11 |
#include "resolu.h" |
12 |
#include "rtio.h" |
13 |
#include <ctype.h> |
14 |
#ifdef _WIN32 |
15 |
#include <windows.h> |
16 |
#else |
17 |
#include <errno.h> |
18 |
#include <sys/stat.h> |
19 |
#include <sys/types.h> |
20 |
#endif |
21 |
|
22 |
const double ARCTIC_LAT = 67.; |
23 |
const double TROPIC_LAT = 23.; |
24 |
const int SUMMER_START = 4; |
25 |
const int SUMMER_END = 9; |
26 |
const double GNORM = 0.777778; |
27 |
|
28 |
const double D65EFF = 203.; /* standard illuminant D65 */ |
29 |
|
30 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */ |
31 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
32 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
33 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
34 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
35 |
|
36 |
/* European and North American zones */ |
37 |
struct |
38 |
{ |
39 |
char zname[8]; /* time zone name (all caps) */ |
40 |
float zmer; /* standard meridian */ |
41 |
} tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105}, |
42 |
{"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75}, |
43 |
{"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45}, |
44 |
{"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15}, |
45 |
{"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45}, |
46 |
{"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75}, |
47 |
{"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150}, |
48 |
{"NZST", -180}, {"NZDT", -195}, {"", 0}}; |
49 |
|
50 |
static int |
51 |
make_directory |
52 |
( |
53 |
const char *path |
54 |
) |
55 |
{ |
56 |
#ifdef _WIN32 |
57 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
58 |
return 1; |
59 |
} |
60 |
return 0; |
61 |
|
62 |
#else |
63 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
64 |
return 1; |
65 |
} |
66 |
return 0; |
67 |
|
68 |
#endif |
69 |
} |
70 |
|
71 |
inline static float |
72 |
deg2rad |
73 |
( |
74 |
float deg |
75 |
) |
76 |
{ |
77 |
return deg * (PI / 180.); |
78 |
} |
79 |
|
80 |
static int |
81 |
cvthour |
82 |
( |
83 |
char *hs, |
84 |
int *tsolar, |
85 |
double *hour |
86 |
) |
87 |
{ |
88 |
char *cp = hs; |
89 |
int i, j; |
90 |
|
91 |
if ((*tsolar = *cp == '+')) { |
92 |
cp++; /* solar time? */ |
93 |
} |
94 |
while (isdigit(*cp)) { |
95 |
cp++; |
96 |
} |
97 |
if (*cp == ':') { |
98 |
*hour = atoi(hs) + atoi(++cp) / 60.0; |
99 |
}else{ |
100 |
*hour = atof(hs); |
101 |
if (*cp == '.') { |
102 |
cp++; |
103 |
} |
104 |
} |
105 |
while (isdigit(*cp)) { |
106 |
cp++; |
107 |
} |
108 |
if (!*cp) { |
109 |
return (0); |
110 |
} |
111 |
if (*tsolar || !isalpha(*cp)) { |
112 |
fprintf(stderr, "%s: bad time format: %s\n", progname, hs); |
113 |
exit(1); |
114 |
} |
115 |
i = 0; |
116 |
do { |
117 |
for (j = 0; cp[j]; j++) { |
118 |
if (toupper(cp[j]) != tzone[i].zname[j]) { |
119 |
break; |
120 |
} |
121 |
} |
122 |
if (!cp[j] && !tzone[i].zname[j]) { |
123 |
s_meridian = tzone[i].zmer * (PI / 180); |
124 |
return (1); |
125 |
} |
126 |
} while (tzone[i++].zname[0]); |
127 |
|
128 |
fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp); |
129 |
fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname); |
130 |
for (i = 1; tzone[i].zname[0]; i++) { |
131 |
fprintf(stderr, " %s", tzone[i].zname); |
132 |
} |
133 |
putc('\n', stderr); |
134 |
exit(1); |
135 |
} |
136 |
|
137 |
static void |
138 |
basename |
139 |
( |
140 |
const char *path, |
141 |
char *output, |
142 |
size_t outsize |
143 |
) |
144 |
{ |
145 |
const char *last_slash = strrchr(path, '/'); |
146 |
const char *last_backslash = strrchr(path, '\\'); |
147 |
const char *filename = path; |
148 |
const char *last_dot; |
149 |
|
150 |
if (last_slash && last_backslash) { |
151 |
filename = |
152 |
(last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1; |
153 |
} else if (last_slash) { |
154 |
filename = last_slash + 1; |
155 |
} else if (last_backslash) { |
156 |
filename = last_backslash + 1; |
157 |
} |
158 |
|
159 |
last_dot = strrchr(filename, '.'); |
160 |
if (last_dot) { |
161 |
size_t length = last_dot - filename; |
162 |
if (length < outsize) { |
163 |
strncpy(output, filename, length); |
164 |
output[length] = '\0'; |
165 |
} else { |
166 |
strncpy(output, filename, outsize - 1); |
167 |
output[outsize - 1] = '\0'; |
168 |
} |
169 |
} |
170 |
} |
171 |
|
172 |
static char * |
173 |
join_paths |
174 |
( |
175 |
const char *path1, |
176 |
const char *path2 |
177 |
) |
178 |
{ |
179 |
size_t len1 = strlen(path1); |
180 |
size_t len2 = strlen(path2); |
181 |
int need_separator = (path1[len1 - 1] != DIRSEP); |
182 |
|
183 |
char *result = malloc(len1 + len2 + (need_separator ? 2 : 1)); |
184 |
if (!result) { |
185 |
return NULL; |
186 |
} |
187 |
|
188 |
strcpy(result, path1); |
189 |
if (need_separator) { |
190 |
result[len1] = DIRSEP; |
191 |
len1++; |
192 |
} |
193 |
strcpy(result + len1, path2); |
194 |
|
195 |
return result; |
196 |
} |
197 |
|
198 |
static inline double |
199 |
wmean2 |
200 |
( |
201 |
const double a, |
202 |
const double b, |
203 |
const double x |
204 |
) |
205 |
{ |
206 |
return a * (1 - x) + b * x; |
207 |
} |
208 |
|
209 |
static inline double |
210 |
wmean |
211 |
( |
212 |
const double a, |
213 |
const double x, |
214 |
const double b, |
215 |
const double y |
216 |
) |
217 |
{ |
218 |
return (a * x + b * y) / (a + b); |
219 |
} |
220 |
|
221 |
static double |
222 |
get_overcast_zenith_brightness |
223 |
( |
224 |
const double sundir[3] |
225 |
) |
226 |
{ |
227 |
double zenithbr; |
228 |
if (sundir[2] < 0) { |
229 |
zenithbr = 0; |
230 |
} else { |
231 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
232 |
} |
233 |
return zenithbr; |
234 |
} |
235 |
|
236 |
/* from gensky.c */ |
237 |
static double |
238 |
get_overcast_brightness |
239 |
( |
240 |
const double dz, |
241 |
const double zenithbr |
242 |
) |
243 |
{ |
244 |
double groundbr = zenithbr * GNORM; |
245 |
return wmean( |
246 |
pow(dz + 1.01, 10), |
247 |
zenithbr * (1 + 2 * dz) / 3, |
248 |
pow(dz + 1.01, -10), |
249 |
groundbr); |
250 |
} |
251 |
|
252 |
static void |
253 |
write_header |
254 |
( |
255 |
const int argc, |
256 |
char **argv, |
257 |
const double cloud_cover, |
258 |
const double grefl, |
259 |
const int res |
260 |
) |
261 |
{ |
262 |
int i; |
263 |
printf("# "); |
264 |
for (i = 0; i < argc; i++) { |
265 |
printf("%s ", argv[i]); |
266 |
} |
267 |
printf("\n"); |
268 |
printf( |
269 |
"#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: " |
270 |
"%d\n\n", |
271 |
cloud_cover, |
272 |
grefl, |
273 |
res); |
274 |
} |
275 |
|
276 |
static void |
277 |
write_rad |
278 |
( |
279 |
const double *sun_radiance, |
280 |
const double intensity, |
281 |
const FVECT sundir, |
282 |
const char *ddir, |
283 |
const char *skyfile |
284 |
) |
285 |
{ |
286 |
if (sundir[2] > 0) { |
287 |
printf("void spectrum sunrad\n0\n0\n22 380 780 "); |
288 |
int i; |
289 |
for (i = 0; i < NSSAMP; ++i) { |
290 |
printf("%.3f ", sun_radiance[i]); |
291 |
} |
292 |
printf( |
293 |
"\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", |
294 |
intensity, |
295 |
intensity, |
296 |
intensity); |
297 |
printf( |
298 |
"solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", |
299 |
sundir[0], |
300 |
sundir[1], |
301 |
sundir[2]); |
302 |
} |
303 |
printf( |
304 |
"void specpict skyfunc\n5 noop %s . 'Atan2(Dy,Dx)/PI+1' " |
305 |
"'1-Acos(Dz)/PI'\n0\n0\n\n", |
306 |
skyfile); |
307 |
} |
308 |
|
309 |
static void |
310 |
write_hsr_header |
311 |
( |
312 |
FILE *fp, |
313 |
RESOLU *res |
314 |
) |
315 |
{ |
316 |
newheader("RADIANCE", fp); |
317 |
fputncomp(NSSAMP, fp); |
318 |
fputwlsplit(WLPART, fp); |
319 |
fputformat(SPECFMT, fp); |
320 |
fputc('\n', fp); |
321 |
fputsresolu(res, fp); |
322 |
} |
323 |
|
324 |
static void |
325 |
reverse_array_float |
326 |
( |
327 |
float arr[], |
328 |
int size |
329 |
) |
330 |
{ |
331 |
int start = 0; |
332 |
int end = size - 1; |
333 |
|
334 |
while (start < end) { |
335 |
float temp = arr[start]; |
336 |
arr[start] = arr[end]; |
337 |
arr[end] = temp; |
338 |
start++; |
339 |
end--; |
340 |
} |
341 |
} |
342 |
|
343 |
int |
344 |
gen_spect_sky |
345 |
( |
346 |
DATARRAY *tau_clear, |
347 |
DATARRAY *scat_clear, |
348 |
DATARRAY *scat1m_clear, |
349 |
DATARRAY *irrad_clear, |
350 |
const double cloud_cover, |
351 |
const FVECT sundir, |
352 |
const double grefl, |
353 |
const int res, |
354 |
const char *outname, |
355 |
const char *ddir, |
356 |
const double dirnorm, |
357 |
const double difhor |
358 |
) |
359 |
{ |
360 |
char skyfile[PATH_MAX]; |
361 |
if (!snprintf( |
362 |
skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP, outname)) { |
363 |
fprintf(stderr, "Error setting sky file name\n"); |
364 |
return 0; |
365 |
} |
366 |
; |
367 |
int xres = res; |
368 |
int yres = xres / 2; |
369 |
RESOLU rs = {PIXSTANDARD, xres, yres}; |
370 |
FILE *skyfp = fopen(skyfile, "w"); |
371 |
write_hsr_header(skyfp, &rs); |
372 |
|
373 |
CNDX[3] = NSSAMP; |
374 |
|
375 |
FVECT view_point = {0, 0, ER + 10}; |
376 |
const double radius = VLEN(view_point); |
377 |
const double sun_ct = fdot(view_point, sundir) / radius; |
378 |
|
379 |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
380 |
double overcast_grndbr = overcast_zenithbr * GNORM; |
381 |
|
382 |
double dif_ratio = 1; |
383 |
if (difhor > 0) { |
384 |
DATARRAY *indirect_irradiance_clear = |
385 |
get_indirect_irradiance(irrad_clear, radius, sun_ct); |
386 |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
387 |
double diffuse_irradiance = 0; |
388 |
int l; |
389 |
for (l = 0; l < NSSAMP; ++l) { |
390 |
diffuse_irradiance += |
391 |
indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
392 |
} |
393 |
free(indirect_irradiance_clear); |
394 |
diffuse_irradiance = |
395 |
wmean2(diffuse_irradiance, overcast_ghi, cloud_cover); |
396 |
if (diffuse_irradiance > 0) { |
397 |
dif_ratio = |
398 |
difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
399 |
} |
400 |
} |
401 |
int i, j, k; |
402 |
for (j = 0; j < yres; ++j) { |
403 |
for (i = 0; i < xres; ++i) { |
404 |
SCOLOR radiance = {0}; |
405 |
SCOLR sky_sclr = {0}; |
406 |
|
407 |
float px = i / (xres - 1.0); |
408 |
float py = j / (yres - 1.0); |
409 |
float lambda = ((1 - py) * PI) - (PI / 2.0); |
410 |
float phi = (px * 2.0 * PI) - PI; |
411 |
|
412 |
FVECT rdir = { |
413 |
cos(lambda) * cos(phi), cos(lambda) * sin(phi), sin(lambda) |
414 |
}; |
415 |
|
416 |
const double mu = fdot(view_point, rdir) / radius; |
417 |
const double nu = fdot(rdir, sundir); |
418 |
|
419 |
/* hit ground */ |
420 |
if (rdir[2] < 0) { |
421 |
get_ground_radiance( |
422 |
tau_clear, |
423 |
scat_clear, |
424 |
scat1m_clear, |
425 |
irrad_clear, |
426 |
view_point, |
427 |
rdir, |
428 |
radius, |
429 |
mu, |
430 |
sun_ct, |
431 |
nu, |
432 |
grefl, |
433 |
sundir, |
434 |
radiance); |
435 |
} else { |
436 |
get_sky_radiance( |
437 |
scat_clear, scat1m_clear, radius, mu, sun_ct, nu, radiance); |
438 |
} |
439 |
|
440 |
for (k = 0; k < NSSAMP; ++k) { |
441 |
radiance[k] *= WVLSPAN; |
442 |
} |
443 |
|
444 |
if (cloud_cover > 0) { |
445 |
double skybr = |
446 |
get_overcast_brightness(rdir[2], overcast_zenithbr); |
447 |
if (rdir[2] < 0) { |
448 |
for (k = 0; k < NSSAMP; ++k) { |
449 |
radiance[k] = wmean2( |
450 |
radiance[k], |
451 |
overcast_grndbr * D6415[k], |
452 |
cloud_cover); |
453 |
} |
454 |
} else { |
455 |
for (k = 0; k < NSSAMP; ++k) { |
456 |
radiance[k] = |
457 |
wmean2(radiance[k], skybr * D6415[k], cloud_cover); |
458 |
} |
459 |
} |
460 |
} |
461 |
|
462 |
for (k = 0; k < NSSAMP; ++k) { |
463 |
radiance[k] *= dif_ratio; |
464 |
} |
465 |
|
466 |
reverse_array_float(radiance, NSSAMP); |
467 |
|
468 |
scolor2scolr(sky_sclr, radiance, NSSAMP); |
469 |
putbinary(sky_sclr, LSCOLR, 1, skyfp); |
470 |
} |
471 |
} |
472 |
fclose(skyfp); |
473 |
|
474 |
/* Get solar radiance */ |
475 |
double sun_radiance[NSSAMP] = {0}; |
476 |
get_solar_radiance( |
477 |
tau_clear, |
478 |
scat_clear, |
479 |
scat1m_clear, |
480 |
sundir, |
481 |
radius, |
482 |
sun_ct, |
483 |
sun_radiance); |
484 |
if (cloud_cover > 0) { |
485 |
double skybr = get_overcast_brightness(sundir[2], overcast_zenithbr); |
486 |
int i; |
487 |
for (i = 0; i < NSSAMP; ++i) { |
488 |
sun_radiance[i] = wmean2( |
489 |
sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover); |
490 |
} |
491 |
} |
492 |
|
493 |
/* Normalize */ |
494 |
double sum = 0.0; |
495 |
for (i = 0; i < NSSAMP; ++i) { |
496 |
sum += sun_radiance[i]; |
497 |
} |
498 |
double mean = sum / NSSAMP; |
499 |
for (i = 0; i < NSSAMP; ++i) { |
500 |
sun_radiance[i] /= mean; |
501 |
} |
502 |
double intensity = mean * WVLSPAN; |
503 |
if (dirnorm > 0) { |
504 |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
505 |
} |
506 |
|
507 |
write_rad(sun_radiance, intensity, sundir, ddir, skyfile); |
508 |
return 1; |
509 |
} |
510 |
|
511 |
static DpPaths |
512 |
get_dppaths |
513 |
( |
514 |
const char *dir, |
515 |
const double aod, |
516 |
const char *mname, |
517 |
const char *tag |
518 |
) |
519 |
{ |
520 |
DpPaths paths; |
521 |
|
522 |
snprintf( |
523 |
paths.tau, |
524 |
PATH_MAX, |
525 |
"%s%ctau_%s_%s_%.2f.dat", |
526 |
dir, |
527 |
DIRSEP, |
528 |
tag, |
529 |
mname, |
530 |
aod); |
531 |
snprintf( |
532 |
paths.scat, |
533 |
PATH_MAX, |
534 |
"%s%cscat_%s_%s_%.2f.dat", |
535 |
dir, |
536 |
DIRSEP, |
537 |
tag, |
538 |
mname, |
539 |
aod); |
540 |
snprintf( |
541 |
paths.scat1m, |
542 |
PATH_MAX, |
543 |
"%s%cscat1m_%s_%s_%.2f.dat", |
544 |
dir, |
545 |
DIRSEP, |
546 |
tag, |
547 |
mname, |
548 |
aod); |
549 |
snprintf( |
550 |
paths.irrad, |
551 |
PATH_MAX, |
552 |
"%s%cirrad_%s_%s_%.2f.dat", |
553 |
dir, |
554 |
DIRSEP, |
555 |
tag, |
556 |
mname, |
557 |
aod); |
558 |
|
559 |
return paths; |
560 |
} |
561 |
|
562 |
static void |
563 |
set_rayleigh_density_profile |
564 |
( |
565 |
Atmosphere *atmos, |
566 |
char *tag, |
567 |
const int is_summer, |
568 |
const double s_latitude |
569 |
) |
570 |
{ |
571 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
572 |
tag[0] = 's'; |
573 |
if (is_summer) { |
574 |
tag[1] = 's'; |
575 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
576 |
atmos->beta_r0 = BR0_SS; |
577 |
} else { |
578 |
tag[1] = 'w'; |
579 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
580 |
atmos->beta_r0 = BR0_SW; |
581 |
} |
582 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
583 |
tag[0] = 'm'; |
584 |
if (is_summer) { |
585 |
tag[1] = 's'; |
586 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
587 |
atmos->beta_r0 = BR0_MS; |
588 |
} else { |
589 |
tag[1] = 'w'; |
590 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
591 |
atmos->beta_r0 = BR0_MW; |
592 |
} |
593 |
} else { |
594 |
tag[0] = 't'; |
595 |
tag[1] = 'r'; |
596 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
597 |
atmos->beta_r0 = BR0_T; |
598 |
} |
599 |
tag[2] = '\0'; |
600 |
} |
601 |
|
602 |
static Atmosphere |
603 |
init_atmos |
604 |
( |
605 |
const double aod, |
606 |
const double grefl |
607 |
) |
608 |
{ |
609 |
Atmosphere atmos = { |
610 |
.ozone_density = |
611 |
{.layers = |
612 |
{ |
613 |
{.width = 25000.0, |
614 |
.exp_term = 0.0, |
615 |
.exp_scale = 0.0, |
616 |
.linear_term = 1.0 / 15000.0, |
617 |
.constant_term = -2.0 / 3.0}, |
618 |
{.width = AH, |
619 |
.exp_term = 0.0, |
620 |
.exp_scale = 0.0, |
621 |
.linear_term = -1.0 / 15000.0, |
622 |
.constant_term = 8.0 / 3.0}, |
623 |
}}, |
624 |
.rayleigh_density = |
625 |
{.layers = |
626 |
{ |
627 |
{.width = AH, |
628 |
.exp_term = 1.0, |
629 |
.exp_scale = -1.0 / HR_MS, |
630 |
.linear_term = 0.0, |
631 |
.constant_term = 0.0}, |
632 |
}}, |
633 |
.beta_r0 = BR0_MS, |
634 |
.beta_scale = aod / AOD0_CA, |
635 |
.beta_m = NULL, |
636 |
.grefl = grefl |
637 |
}; |
638 |
return atmos; |
639 |
} |
640 |
|
641 |
int |
642 |
main |
643 |
( |
644 |
int argc, |
645 |
char *argv[] |
646 |
) |
647 |
{ |
648 |
int month, day; |
649 |
double hour; |
650 |
FVECT sundir; |
651 |
int num_threads = 1; |
652 |
int sorder = 4; |
653 |
int year = 0; |
654 |
int tsolar = 0; |
655 |
int got_meridian = 0; |
656 |
double grefl = 0.2; |
657 |
double ccover = 0.0; |
658 |
int res = 64; |
659 |
double aod = AOD0_CA; |
660 |
char *outname = "out"; |
661 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
662 |
char mie_name[20] = "mie_ca"; |
663 |
char lstag[3]; |
664 |
char *ddir = "."; |
665 |
int i; |
666 |
double dirnorm = 0; /* direct normal illuminance */ |
667 |
double difhor = 0; /* diffuse horizontal illuminance */ |
668 |
|
669 |
fixargv0(argv[0]); |
670 |
if (argc == 2 && !strcmp(argv[1], "-defaults")) { |
671 |
printf("-i %d\t\t\t\t#scattering order\n", sorder); |
672 |
printf("-g %f\t\t\t#ground reflectance\n", grefl); |
673 |
printf("-c %f\t\t\t#cloud cover\n", ccover); |
674 |
printf("-r %d\t\t\t\t#image resolution\n", res); |
675 |
printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA); |
676 |
printf("-f %s\t\t\t\t#output name (-f)\n", outname); |
677 |
printf("-p %s\t\t\t\t#atmos data directory\n", ddir); |
678 |
exit(0); |
679 |
} |
680 |
|
681 |
if (argc < 4) { |
682 |
fprintf( |
683 |
stderr, |
684 |
"Usage: %s month day hour -y year -a lat -o lon -m tz -d aod " |
685 |
"-r " |
686 |
"res -n nproc -c ccover -l mie -L dirnorm_illum difhor_illum " |
687 |
"-g grefl -f outpath\n", |
688 |
argv[0]); |
689 |
return 0; |
690 |
} |
691 |
|
692 |
month = atoi(argv[1]); |
693 |
if (month < 1 || month > 12) { |
694 |
fprintf(stderr, "bad month"); |
695 |
exit(1); |
696 |
} |
697 |
day = atoi(argv[2]); |
698 |
if (day < 1 || day > 31) { |
699 |
fprintf(stderr, "bad month"); |
700 |
exit(1); |
701 |
} |
702 |
got_meridian = cvthour(argv[3], &tsolar, &hour); |
703 |
|
704 |
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) { |
705 |
fprintf(stderr, "Cannot compute solar angle\n"); |
706 |
exit(1); |
707 |
} |
708 |
|
709 |
for (i = 4; i < argc; i++) { |
710 |
if (argv[i][0] == '-') { |
711 |
switch (argv[i][1]) { |
712 |
case 'a': |
713 |
s_latitude = atof(argv[++i]) * (PI / 180.0); |
714 |
break; |
715 |
case 'c': |
716 |
ccover = atof(argv[++i]); |
717 |
break; |
718 |
case 'd': |
719 |
aod = atof(argv[++i]); |
720 |
break; |
721 |
case 'f': |
722 |
outname = argv[++i]; |
723 |
break; |
724 |
case 'g': |
725 |
grefl = atof(argv[++i]); |
726 |
break; |
727 |
case 'i': |
728 |
sorder = atoi(argv[++i]); |
729 |
break; |
730 |
case 'l': |
731 |
mie_path = argv[++i]; |
732 |
basename(mie_path, mie_name, sizeof(mie_name)); |
733 |
break; |
734 |
case 'm': |
735 |
if (got_meridian) { |
736 |
++i; |
737 |
break; |
738 |
} |
739 |
s_meridian = atof(argv[++i]) * (PI / 180.0); |
740 |
break; |
741 |
case 'n': |
742 |
num_threads = atoi(argv[++i]); |
743 |
break; |
744 |
case 'o': |
745 |
s_longitude = atof(argv[++i]) * (PI / 180.0); |
746 |
break; |
747 |
case 'L': |
748 |
dirnorm = atof(argv[++i]); |
749 |
difhor = atof(argv[++i]); |
750 |
break; |
751 |
case 'p': |
752 |
ddir = argv[++i]; |
753 |
break; |
754 |
case 'r': |
755 |
res = atoi(argv[++i]); |
756 |
break; |
757 |
case 'y': |
758 |
year = atoi(argv[++i]); |
759 |
break; |
760 |
default: |
761 |
fprintf(stderr, "Unknown option %s\n", argv[i]); |
762 |
exit(1); |
763 |
} |
764 |
} |
765 |
} |
766 |
if (year && (year < 1950) | (year > 2050)) { |
767 |
fprintf( |
768 |
stderr, |
769 |
"%s: warning - year should be in range 1950-2050\n", |
770 |
progname); |
771 |
} |
772 |
if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180) { |
773 |
fprintf( |
774 |
stderr, |
775 |
"%s: warning - %.1f hours btwn. standard meridian and " |
776 |
"longitude\n", |
777 |
progname, |
778 |
(s_longitude - s_meridian) * 12 / PI); |
779 |
} |
780 |
|
781 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
782 |
|
783 |
int is_summer = (month >= SUMMER_START && month <= SUMMER_END); |
784 |
if (s_latitude < 0) { |
785 |
is_summer = !is_summer; |
786 |
} |
787 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
788 |
|
789 |
/* Load mie density data */ |
790 |
DATARRAY *mie_dp = getdata(mie_path); |
791 |
if (mie_dp == NULL) { |
792 |
fprintf(stderr, "Error reading mie data\n"); |
793 |
return 0; |
794 |
} |
795 |
clear_atmos.beta_m = mie_dp; |
796 |
|
797 |
char gsdir[PATH_MAX]; |
798 |
size_t siz = strlen(ddir); |
799 |
if (ISDIRSEP(ddir[siz - 1])) { |
800 |
ddir[siz - 1] = '\0'; |
801 |
} |
802 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
803 |
if (!make_directory(gsdir)) { |
804 |
fprintf(stderr, "Failed creating atmos_data directory"); |
805 |
exit(1); |
806 |
} |
807 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
808 |
|
809 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
810 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
811 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
812 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
813 |
printf("# Pre-computing...\n"); |
814 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
815 |
fprintf(stderr, "Pre-compute failed\n"); |
816 |
return 0; |
817 |
} |
818 |
} |
819 |
|
820 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
821 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
822 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
823 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
824 |
|
825 |
write_header(argc, argv, ccover, grefl, res); |
826 |
|
827 |
if (!gen_spect_sky( |
828 |
tau_clear_dp, |
829 |
scat_clear_dp, |
830 |
scat1m_clear_dp, |
831 |
irrad_clear_dp, |
832 |
ccover, |
833 |
sundir, |
834 |
grefl, |
835 |
res, |
836 |
outname, |
837 |
ddir, |
838 |
dirnorm, |
839 |
difhor)) { |
840 |
fprintf(stderr, "gen_spect_sky failed\n"); |
841 |
exit(1); |
842 |
} |
843 |
|
844 |
freedata(mie_dp); |
845 |
freedata(tau_clear_dp); |
846 |
freedata(scat_clear_dp); |
847 |
freedata(irrad_clear_dp); |
848 |
freedata(scat1m_clear_dp); |
849 |
|
850 |
return 1; |
851 |
} |