| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id$";
|
| 3 |
#endif
|
| 4 |
/* Main function for generating spectral sky */
|
| 5 |
/* Cloudy sky computed as weight average of clear and cie overcast sky */
|
| 6 |
|
| 7 |
#include "atmos.h"
|
| 8 |
#include "copyright.h"
|
| 9 |
#include "resolu.h"
|
| 10 |
#include "rtio.h"
|
| 11 |
#include "view.h"
|
| 12 |
#include <ctype.h>
|
| 13 |
#ifdef _WIN32
|
| 14 |
#include <windows.h>
|
| 15 |
#else
|
| 16 |
#include <errno.h>
|
| 17 |
#include <sys/stat.h>
|
| 18 |
#include <sys/types.h>
|
| 19 |
#endif
|
| 20 |
|
| 21 |
char *progname;
|
| 22 |
|
| 23 |
const double ARCTIC_LAT = 67.;
|
| 24 |
const double TROPIC_LAT = 23.;
|
| 25 |
const int SUMMER_START = 4;
|
| 26 |
const int SUMMER_END = 9;
|
| 27 |
const double GNORM = 0.777778;
|
| 28 |
|
| 29 |
const double D65EFF = 203.; /* standard illuminant D65 */
|
| 30 |
|
| 31 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */
|
| 32 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
|
| 33 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
|
| 34 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
|
| 35 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
|
| 36 |
|
| 37 |
/* European and North American zones */
|
| 38 |
struct {
|
| 39 |
char zname[8]; /* time zone name (all caps) */
|
| 40 |
float zmer; /* standard meridian */
|
| 41 |
} tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105},
|
| 42 |
{"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75},
|
| 43 |
{"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45},
|
| 44 |
{"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15},
|
| 45 |
{"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45},
|
| 46 |
{"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75},
|
| 47 |
{"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150},
|
| 48 |
{"NZST", -180}, {"NZDT", -195}, {"", 0}};
|
| 49 |
|
| 50 |
static int make_directory(const char *path) {
|
| 51 |
#ifdef _WIN32
|
| 52 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
|
| 53 |
return 1;
|
| 54 |
}
|
| 55 |
return 0;
|
| 56 |
#else
|
| 57 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) {
|
| 58 |
return 1;
|
| 59 |
}
|
| 60 |
return 0;
|
| 61 |
#endif
|
| 62 |
}
|
| 63 |
|
| 64 |
static int cvthour(char *hs, int *tsolar, double *hour) {
|
| 65 |
char *cp = hs;
|
| 66 |
int i, j;
|
| 67 |
|
| 68 |
if ((*tsolar = *cp == '+'))
|
| 69 |
cp++; /* solar time? */
|
| 70 |
while (isdigit(*cp))
|
| 71 |
cp++;
|
| 72 |
if (*cp == ':')
|
| 73 |
*hour = atoi(hs) + atoi(++cp) / 60.0;
|
| 74 |
else {
|
| 75 |
*hour = atof(hs);
|
| 76 |
if (*cp == '.')
|
| 77 |
cp++;
|
| 78 |
}
|
| 79 |
while (isdigit(*cp))
|
| 80 |
cp++;
|
| 81 |
if (!*cp)
|
| 82 |
return (0);
|
| 83 |
if (*tsolar || !isalpha(*cp)) {
|
| 84 |
fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
|
| 85 |
exit(1);
|
| 86 |
}
|
| 87 |
i = 0;
|
| 88 |
do {
|
| 89 |
for (j = 0; cp[j]; j++)
|
| 90 |
if (toupper(cp[j]) != tzone[i].zname[j])
|
| 91 |
break;
|
| 92 |
if (!cp[j] && !tzone[i].zname[j]) {
|
| 93 |
s_meridian = tzone[i].zmer * (PI / 180);
|
| 94 |
return (1);
|
| 95 |
}
|
| 96 |
} while (tzone[i++].zname[0]);
|
| 97 |
|
| 98 |
fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
|
| 99 |
fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
|
| 100 |
for (i = 1; tzone[i].zname[0]; i++)
|
| 101 |
fprintf(stderr, " %s", tzone[i].zname);
|
| 102 |
putc('\n', stderr);
|
| 103 |
exit(1);
|
| 104 |
}
|
| 105 |
|
| 106 |
static void basename(const char *path, char *output, size_t outsize) {
|
| 107 |
const char *last_slash = strrchr(path, '/');
|
| 108 |
const char *last_backslash = strrchr(path, '\\');
|
| 109 |
const char *filename = path;
|
| 110 |
const char *last_dot;
|
| 111 |
|
| 112 |
if (last_slash && last_backslash) {
|
| 113 |
filename =
|
| 114 |
(last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1;
|
| 115 |
} else if (last_slash) {
|
| 116 |
filename = last_slash + 1;
|
| 117 |
} else if (last_backslash) {
|
| 118 |
filename = last_backslash + 1;
|
| 119 |
}
|
| 120 |
|
| 121 |
last_dot = strrchr(filename, '.');
|
| 122 |
if (last_dot) {
|
| 123 |
size_t length = last_dot - filename;
|
| 124 |
if (length < outsize) {
|
| 125 |
strncpy(output, filename, length);
|
| 126 |
output[length] = '\0';
|
| 127 |
} else {
|
| 128 |
strncpy(output, filename, outsize - 1);
|
| 129 |
output[outsize - 1] = '\0';
|
| 130 |
}
|
| 131 |
}
|
| 132 |
}
|
| 133 |
|
| 134 |
char *join_paths(const char *path1, const char *path2) {
|
| 135 |
size_t len1 = strlen(path1);
|
| 136 |
size_t len2 = strlen(path2);
|
| 137 |
int need_separator = (path1[len1 - 1] != DIRSEP);
|
| 138 |
|
| 139 |
char *result = malloc(len1 + len2 + (need_separator ? 2 : 1));
|
| 140 |
if (!result)
|
| 141 |
return NULL;
|
| 142 |
|
| 143 |
strcpy(result, path1);
|
| 144 |
if (need_separator) {
|
| 145 |
result[len1] = DIRSEP;
|
| 146 |
len1++;
|
| 147 |
}
|
| 148 |
strcpy(result + len1, path2);
|
| 149 |
|
| 150 |
return result;
|
| 151 |
}
|
| 152 |
|
| 153 |
static inline double wmean2(const double a, const double b, const double x) {
|
| 154 |
return a * (1 - x) + b * x;
|
| 155 |
}
|
| 156 |
|
| 157 |
static inline double wmean(const double a, const double x, const double b,
|
| 158 |
const double y) {
|
| 159 |
return (a * x + b * y) / (a + b);
|
| 160 |
}
|
| 161 |
|
| 162 |
static double get_zenith_brightness(const double sundir[3]) {
|
| 163 |
double zenithbr;
|
| 164 |
if (sundir[2] < 0) {
|
| 165 |
zenithbr = 0;
|
| 166 |
} else {
|
| 167 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
|
| 168 |
}
|
| 169 |
return zenithbr;
|
| 170 |
}
|
| 171 |
|
| 172 |
/* from gensky.c */
|
| 173 |
static double get_overcast_brightness(const double dz, const double zenithbr) {
|
| 174 |
double groundbr = zenithbr * GNORM;
|
| 175 |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
|
| 176 |
pow(dz + 1.01, -10), groundbr);
|
| 177 |
}
|
| 178 |
|
| 179 |
static void write_header(const int argc, char **argv, const double cloud_cover,
|
| 180 |
const double grefl, const int res) {
|
| 181 |
printf("# ");
|
| 182 |
for (int i = 0; i < argc; i++) {
|
| 183 |
printf("%s ", argv[i]);
|
| 184 |
}
|
| 185 |
printf("\n");
|
| 186 |
printf("#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n",
|
| 187 |
cloud_cover, grefl, res);
|
| 188 |
}
|
| 189 |
|
| 190 |
static void write_rad(const double *sun_radiance, const FVECT sundir,
|
| 191 |
const char skyfile[PATH_MAX],
|
| 192 |
const char grndfile[PATH_MAX]) {
|
| 193 |
if (sundir[2] > 0) {
|
| 194 |
printf("void spectrum sunrad\n0\n0\n22 380 780 ");
|
| 195 |
/* Normalize to one */
|
| 196 |
double sum = 0.0;
|
| 197 |
for (int i = 0; i < NSSAMP; ++i) {
|
| 198 |
sum += sun_radiance[i];
|
| 199 |
}
|
| 200 |
double mean = sum / NSSAMP;
|
| 201 |
for (int i = 0; i < NSSAMP; ++i) {
|
| 202 |
printf("%.3f ", sun_radiance[i] / mean);
|
| 203 |
}
|
| 204 |
double intensity = mean * WVLSPAN;
|
| 205 |
printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity,
|
| 206 |
intensity, intensity);
|
| 207 |
printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1],
|
| 208 |
sundir[2]);
|
| 209 |
}
|
| 210 |
printf("void specpict skymap\n8 noop %s fisheye.cal fish_u fish_v -rx 90 "
|
| 211 |
"-mx\n0\n0\n\n",
|
| 212 |
skyfile);
|
| 213 |
|
| 214 |
printf("void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 "
|
| 215 |
"-my\n0\n0\n\n",
|
| 216 |
grndfile);
|
| 217 |
printf("void mixfunc skyfunc\n4 skymap grndmap if(Dz,1,0) .\n0\n0\n");
|
| 218 |
}
|
| 219 |
|
| 220 |
static void write_hsr_header(FILE *fp, RESOLU *res) {
|
| 221 |
float wvsplit[4] = {380, 480, 588,
|
| 222 |
780}; /* RGB wavelength limits+partitions (nm) */
|
| 223 |
newheader("RADIANCE", fp);
|
| 224 |
fputncomp(NSSAMP, fp);
|
| 225 |
fputwlsplit(wvsplit, fp);
|
| 226 |
fputformat(SPECFMT, fp);
|
| 227 |
fputc('\n', fp);
|
| 228 |
fputsresolu(res, fp);
|
| 229 |
}
|
| 230 |
|
| 231 |
int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
|
| 232 |
DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
|
| 233 |
const double cloud_cover, const FVECT sundir,
|
| 234 |
const double grefl, const int res, const char *outname) {
|
| 235 |
char skyfile[PATH_MAX];
|
| 236 |
char grndfile[PATH_MAX];
|
| 237 |
if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) {
|
| 238 |
fprintf(stderr, "Error setting sky file name\n");
|
| 239 |
return 0;
|
| 240 |
};
|
| 241 |
if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) {
|
| 242 |
fprintf(stderr, "Error setting ground file name\n");
|
| 243 |
return 0;
|
| 244 |
}
|
| 245 |
RESOLU rs = {PIXSTANDARD, res, res};
|
| 246 |
FILE *skyfp = fopen(skyfile, "w");
|
| 247 |
FILE *grndfp = fopen(grndfile, "w");
|
| 248 |
write_hsr_header(grndfp, &rs);
|
| 249 |
write_hsr_header(skyfp, &rs);
|
| 250 |
VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1.,
|
| 251 |
180., 180., 0., 0., 0.,
|
| 252 |
0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.};
|
| 253 |
VIEW grndview = {
|
| 254 |
VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0.,
|
| 255 |
0., 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.};
|
| 256 |
setview(&skyview);
|
| 257 |
setview(&grndview);
|
| 258 |
|
| 259 |
CNDX[3] = NSSAMP;
|
| 260 |
|
| 261 |
FVECT view_point = {0, 0, ER};
|
| 262 |
const double radius = VLEN(view_point);
|
| 263 |
const double sun_ct = fdot(view_point, sundir) / radius;
|
| 264 |
for (unsigned int j = 0; j < res; ++j) {
|
| 265 |
for (unsigned int i = 0; i < res; ++i) {
|
| 266 |
RREAL loc[2];
|
| 267 |
FVECT rorg = {0};
|
| 268 |
FVECT rdir_sky = {0};
|
| 269 |
FVECT rdir_grnd = {0};
|
| 270 |
SCOLOR sky_radiance = {0};
|
| 271 |
SCOLOR ground_radiance = {0};
|
| 272 |
SCOLR sky_sclr = {0};
|
| 273 |
SCOLR ground_sclr = {0};
|
| 274 |
|
| 275 |
pix2loc(loc, &rs, i, j);
|
| 276 |
viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]);
|
| 277 |
viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]);
|
| 278 |
|
| 279 |
const double mu_sky = fdot(view_point, rdir_sky) / radius;
|
| 280 |
const double nu_sky = fdot(rdir_sky, sundir);
|
| 281 |
|
| 282 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
|
| 283 |
const double nu_grnd = fdot(rdir_grnd, sundir);
|
| 284 |
|
| 285 |
get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky,
|
| 286 |
sky_radiance);
|
| 287 |
get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
|
| 288 |
view_point, rdir_grnd, radius, mu_grnd, sun_ct,
|
| 289 |
nu_grnd, grefl, sundir, ground_radiance);
|
| 290 |
|
| 291 |
for (int k = 0; k < NSSAMP; ++k) {
|
| 292 |
sky_radiance[k] *= WVLSPAN;
|
| 293 |
ground_radiance[k] *= WVLSPAN;
|
| 294 |
}
|
| 295 |
|
| 296 |
if (cloud_cover > 0) {
|
| 297 |
double zenithbr = get_zenith_brightness(sundir);
|
| 298 |
double grndbr = zenithbr * GNORM;
|
| 299 |
double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
|
| 300 |
for (int k = 0; k < NSSAMP; ++k) {
|
| 301 |
sky_radiance[k] =
|
| 302 |
wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover);
|
| 303 |
ground_radiance[k] =
|
| 304 |
wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover);
|
| 305 |
}
|
| 306 |
}
|
| 307 |
|
| 308 |
scolor2scolr(sky_sclr, sky_radiance, 20);
|
| 309 |
putbinary(sky_sclr, LSCOLR, 1, skyfp);
|
| 310 |
|
| 311 |
scolor2scolr(ground_sclr, ground_radiance, 20);
|
| 312 |
putbinary(ground_sclr, LSCOLR, 1, grndfp);
|
| 313 |
}
|
| 314 |
}
|
| 315 |
fclose(skyfp);
|
| 316 |
fclose(grndfp);
|
| 317 |
|
| 318 |
/* Get solar radiance */
|
| 319 |
double sun_radiance[NSSAMP] = {0};
|
| 320 |
get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
|
| 321 |
sun_ct, sun_radiance);
|
| 322 |
if (cloud_cover > 0) {
|
| 323 |
double zenithbr = get_zenith_brightness(sundir);
|
| 324 |
double skybr = get_overcast_brightness(sundir[2], zenithbr);
|
| 325 |
for (int i = 0; i < NSSAMP; ++i) {
|
| 326 |
sun_radiance[i] =
|
| 327 |
wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
|
| 328 |
}
|
| 329 |
}
|
| 330 |
|
| 331 |
write_rad(sun_radiance, sundir, skyfile, grndfile);
|
| 332 |
return 1;
|
| 333 |
}
|
| 334 |
|
| 335 |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
|
| 336 |
const char *tag) {
|
| 337 |
DpPaths paths;
|
| 338 |
|
| 339 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
|
| 340 |
mname, aod);
|
| 341 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
|
| 342 |
mname, aod);
|
| 343 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
|
| 344 |
tag, mname, aod);
|
| 345 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
|
| 346 |
mname, aod);
|
| 347 |
|
| 348 |
return paths;
|
| 349 |
}
|
| 350 |
|
| 351 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
|
| 352 |
const int is_summer,
|
| 353 |
const double s_latitude) {
|
| 354 |
/* Set rayleigh density profile */
|
| 355 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
|
| 356 |
tag[0] = 's';
|
| 357 |
if (is_summer) {
|
| 358 |
tag[1] = 's';
|
| 359 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
|
| 360 |
atmos->beta_r0 = BR0_SS;
|
| 361 |
} else {
|
| 362 |
tag[1] = 'w';
|
| 363 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
|
| 364 |
atmos->beta_r0 = BR0_SW;
|
| 365 |
}
|
| 366 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
|
| 367 |
tag[0] = 'm';
|
| 368 |
if (is_summer) {
|
| 369 |
tag[1] = 's';
|
| 370 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
|
| 371 |
atmos->beta_r0 = BR0_MS;
|
| 372 |
} else {
|
| 373 |
tag[1] = 'w';
|
| 374 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
|
| 375 |
atmos->beta_r0 = BR0_MW;
|
| 376 |
}
|
| 377 |
} else {
|
| 378 |
tag[0] = 't';
|
| 379 |
tag[1] = 'r';
|
| 380 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
|
| 381 |
atmos->beta_r0 = BR0_T;
|
| 382 |
}
|
| 383 |
tag[2] = '\0';
|
| 384 |
}
|
| 385 |
|
| 386 |
static Atmosphere init_atmos(const double aod, const double grefl) {
|
| 387 |
Atmosphere atmos = {.ozone_density = {.layers =
|
| 388 |
{
|
| 389 |
{.width = 25000.0,
|
| 390 |
.exp_term = 0.0,
|
| 391 |
.exp_scale = 0.0,
|
| 392 |
.linear_term = 1.0 / 15000.0,
|
| 393 |
.constant_term = -2.0 / 3.0},
|
| 394 |
{.width = AH,
|
| 395 |
.exp_term = 0.0,
|
| 396 |
.exp_scale = 0.0,
|
| 397 |
.linear_term = -1.0 / 15000.0,
|
| 398 |
.constant_term = 8.0 / 3.0},
|
| 399 |
}},
|
| 400 |
.rayleigh_density = {.layers =
|
| 401 |
{
|
| 402 |
{.width = AH,
|
| 403 |
.exp_term = 1.0,
|
| 404 |
.exp_scale = -1.0 / HR_MS,
|
| 405 |
.linear_term = 0.0,
|
| 406 |
.constant_term = 0.0},
|
| 407 |
}},
|
| 408 |
.beta_r0 = BR0_MS,
|
| 409 |
.beta_scale = aod / AOD0_CA,
|
| 410 |
.beta_m = NULL,
|
| 411 |
.grefl = grefl};
|
| 412 |
return atmos;
|
| 413 |
}
|
| 414 |
|
| 415 |
int main(int argc, char *argv[]) {
|
| 416 |
progname = argv[0];
|
| 417 |
int month, day;
|
| 418 |
double hour;
|
| 419 |
FVECT sundir;
|
| 420 |
int num_threads = 1;
|
| 421 |
int sorder = 4;
|
| 422 |
int year = 0;
|
| 423 |
int tsolar = 0;
|
| 424 |
int got_meridian = 0;
|
| 425 |
double grefl = 0.2;
|
| 426 |
double ccover = 0.0;
|
| 427 |
int res = 128;
|
| 428 |
double aod = AOD0_CA;
|
| 429 |
char *outname = "out";
|
| 430 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
|
| 431 |
char mie_name[20] = "mie_ca";
|
| 432 |
char lstag[3];
|
| 433 |
char *ddir = ".";
|
| 434 |
|
| 435 |
if (!strcmp(argv[1], "-defaults")) {
|
| 436 |
printf("-i %d\t\t\t\t#scattering order\n", sorder);
|
| 437 |
printf("-g %f\t\t\t#ground reflectance\n", grefl);
|
| 438 |
printf("-c %f\t\t\t#cloud cover\n", ccover);
|
| 439 |
printf("-r %d\t\t\t\t#image resolution\n", res);
|
| 440 |
printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA);
|
| 441 |
printf("-f %s\t\t\t\t#output name (-f)\n", outname);
|
| 442 |
printf("-p %s\t\t\t\t#atmos data directory\n", ddir);
|
| 443 |
exit(1);
|
| 444 |
}
|
| 445 |
|
| 446 |
if (argc < 4) {
|
| 447 |
fprintf(stderr,
|
| 448 |
"Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r "
|
| 449 |
"res -n nproc -c ccover -l mie -g grefl -f outpath\n",
|
| 450 |
argv[0]);
|
| 451 |
return 0;
|
| 452 |
}
|
| 453 |
|
| 454 |
month = atoi(argv[1]);
|
| 455 |
if (month < 1 || month > 12) {
|
| 456 |
fprintf(stderr, "bad month");
|
| 457 |
exit(1);
|
| 458 |
}
|
| 459 |
day = atoi(argv[2]);
|
| 460 |
if (day < 1 || day > 31) {
|
| 461 |
fprintf(stderr, "bad month");
|
| 462 |
exit(1);
|
| 463 |
}
|
| 464 |
got_meridian = cvthour(argv[3], &tsolar, &hour);
|
| 465 |
|
| 466 |
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
|
| 467 |
fprintf(stderr, "Cannot compute solar angle\n");
|
| 468 |
exit(1);
|
| 469 |
}
|
| 470 |
|
| 471 |
for (int i = 4; i < argc; i++) {
|
| 472 |
if (argv[i][0] == '-') {
|
| 473 |
switch (argv[i][1]) {
|
| 474 |
case 'a':
|
| 475 |
s_latitude = atof(argv[++i]) * (PI / 180.0);
|
| 476 |
break;
|
| 477 |
case 'c':
|
| 478 |
ccover = atof(argv[++i]);
|
| 479 |
break;
|
| 480 |
case 'd':
|
| 481 |
aod = atof(argv[++i]);
|
| 482 |
break;
|
| 483 |
case 'f':
|
| 484 |
outname = argv[++i];
|
| 485 |
break;
|
| 486 |
case 'g':
|
| 487 |
grefl = atof(argv[++i]);
|
| 488 |
break;
|
| 489 |
case 'i':
|
| 490 |
sorder = atoi(argv[++i]);
|
| 491 |
break;
|
| 492 |
case 'l':
|
| 493 |
mie_path = argv[++i];
|
| 494 |
basename(mie_path, mie_name, sizeof(mie_name));
|
| 495 |
break;
|
| 496 |
case 'm':
|
| 497 |
if (got_meridian) {
|
| 498 |
++i;
|
| 499 |
break;
|
| 500 |
}
|
| 501 |
s_meridian = atof(argv[++i]) * (PI / 180.0);
|
| 502 |
break;
|
| 503 |
case 'n':
|
| 504 |
num_threads = atoi(argv[++i]);
|
| 505 |
break;
|
| 506 |
case 'o':
|
| 507 |
s_longitude = atof(argv[++i]) * (PI / 180.0);
|
| 508 |
break;
|
| 509 |
case 'p':
|
| 510 |
ddir = argv[++i];
|
| 511 |
break;
|
| 512 |
case 'r':
|
| 513 |
res = atoi(argv[++i]);
|
| 514 |
break;
|
| 515 |
case 'y':
|
| 516 |
year = atoi(argv[++i]);
|
| 517 |
break;
|
| 518 |
default:
|
| 519 |
fprintf(stderr, "Unknown option %s\n", argv[i]);
|
| 520 |
exit(1);
|
| 521 |
}
|
| 522 |
}
|
| 523 |
}
|
| 524 |
if (year && (year < 1950) | (year > 2050))
|
| 525 |
fprintf(stderr, "%s: warning - year should be in range 1950-2050\n",
|
| 526 |
progname);
|
| 527 |
if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180)
|
| 528 |
fprintf(stderr,
|
| 529 |
"%s: warning - %.1f hours btwn. standard meridian and longitude\n",
|
| 530 |
progname, (s_longitude - s_meridian) * 12 / PI);
|
| 531 |
|
| 532 |
Atmosphere clear_atmos = init_atmos(aod, grefl);
|
| 533 |
|
| 534 |
int is_summer = (month >= SUMMER_START && month <= SUMMER_END);
|
| 535 |
if (s_latitude < 0) {
|
| 536 |
is_summer = !is_summer;
|
| 537 |
}
|
| 538 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
|
| 539 |
|
| 540 |
/* Load mie density data */
|
| 541 |
DATARRAY *mie_dp = getdata(mie_path);
|
| 542 |
if (mie_dp == NULL) {
|
| 543 |
fprintf(stderr, "Error reading mie data\n");
|
| 544 |
return 0;
|
| 545 |
}
|
| 546 |
clear_atmos.beta_m = mie_dp;
|
| 547 |
|
| 548 |
char gsdir[PATH_MAX];
|
| 549 |
size_t siz = strlen(ddir);
|
| 550 |
if (ISDIRSEP(ddir[siz-1]))
|
| 551 |
ddir[siz-1] = '\0';
|
| 552 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
|
| 553 |
printf("gsdir: %s\n", gsdir);
|
| 554 |
if (!make_directory(gsdir)) {
|
| 555 |
fprintf(stderr, "Failed creating atmos_data directory");
|
| 556 |
exit(1);
|
| 557 |
}
|
| 558 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
|
| 559 |
|
| 560 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
|
| 561 |
getpath(clear_paths.scat, ".", R_OK) == NULL ||
|
| 562 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
|
| 563 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) {
|
| 564 |
printf("# Pre-computing...\n");
|
| 565 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
|
| 566 |
fprintf(stderr, "Pre-compute failed\n");
|
| 567 |
return 0;
|
| 568 |
}
|
| 569 |
}
|
| 570 |
|
| 571 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
|
| 572 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
|
| 573 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
|
| 574 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
|
| 575 |
|
| 576 |
write_header(argc, argv, ccover, grefl, res);
|
| 577 |
|
| 578 |
if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
|
| 579 |
irrad_clear_dp, ccover, sundir, grefl, res, outname)) {
|
| 580 |
fprintf(stderr, "gen_spect_sky failed\n");
|
| 581 |
exit(1);
|
| 582 |
}
|
| 583 |
|
| 584 |
freedata(mie_dp);
|
| 585 |
freedata(tau_clear_dp);
|
| 586 |
freedata(scat_clear_dp);
|
| 587 |
freedata(irrad_clear_dp);
|
| 588 |
freedata(scat1m_clear_dp);
|
| 589 |
|
| 590 |
return 1;
|
| 591 |
}
|