ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/genssky.c
Revision: 2.1
Committed: Fri Jul 5 18:04:36 2024 UTC (10 months ago) by greg
Content type: text/plain
Branch: MAIN
Log Message:
feat(genssky): Taoning Wang added utility for generating spectral skies

File Contents

# Content
1 // Main function for generating spectral sky
2 // Cloudy sky computed as weight average of clear and cie overcast sky
3
4 #include "copyright.h"
5 #include "atmos.h"
6 #include "resolu.h"
7 #include "view.h"
8
9
10 char *progname;
11
12 const double ARCTIC_LAT = 67.;
13 const double TROPIC_LAT = 23.;
14 const int SUMMER_START = 4;
15 const int SUMMER_END = 9;
16 const double GNORM = 0.777778;
17
18 const double D65EFF = 203.; /* standard illuminant D65 */
19
20 // Mean normalized relative daylight spectra where CCT = 6415K for overcast;
21 const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
22 1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
23 1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
24 0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
25
26 static inline double wmean2(const double a, const double b, const double x) {
27 return a * (1 - x) + b * x;
28 }
29
30 static inline double wmean(const double a, const double x, const double b,
31 const double y) {
32 return (a * x + b * y) / (a + b);
33 }
34
35 static double get_zenith_brightness(const double sundir[3]) {
36 double zenithbr;
37 if (sundir[2] < 0) {
38 zenithbr = 0;
39 } else {
40 zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
41 }
42 return zenithbr;
43 }
44
45 // from gensky.c
46 static double get_overcast_brightness(const double dz, const double zenithbr) {
47 double groundbr = zenithbr * GNORM;
48 return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
49 pow(dz + 1.01, -10), groundbr);
50 }
51
52 static void write_rad_file(FILE *fp, const double *sun_radiance,
53 const FVECT sundir, const char skyfile[PATH_MAX],
54 const char grndfile[PATH_MAX]) {
55 if (sundir[2] > 0) {
56 fprintf(fp, "void spectrum sunrad\n0\n0\n22 380 780 ");
57 for (int i = 0; i < NSSAMP; ++i) {
58 fprintf(fp, "%.1f ", sun_radiance[i] * WVLSPAN);
59 }
60 fprintf(fp, "\n\nsunrad light solar\n0\n0\n3 1 1 1\n\n");
61 fprintf(fp, "solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0],
62 sundir[1], sundir[2]);
63 }
64 fprintf(fp,
65 "void specpict skyfunc\n8 noop %s fisheye.cal fish_u fish_v -rx 90 "
66 "-mx\n0\n0\n\n",
67 skyfile);
68 fprintf(fp, "skyfunc glow sky_glow\n0\n0\n4 1 1 1 0\n\n");
69 fprintf(fp, "sky_glow source sky\n0\n0\n4 0 0 1 180\n\n");
70
71 fprintf(fp,
72 "void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 "
73 "-my\n0\n0\n\n",
74 grndfile);
75 fprintf(fp, "grndmap glow ground_glow\n0\n0\n4 1 1 1 0\n\n");
76 fprintf(fp, "ground_glow source ground_source\n0\n0\n4 0 0 -1 180\n\n");
77 }
78
79 static void write_hsr_header(FILE *fp, RESOLU *res) {
80 float wvsplit[4] = {380, 480, 588,
81 780}; // RGB wavelength limits+partitions (nm)
82 newheader("RADIANCE", fp);
83 fputncomp(NSSAMP, fp);
84 fputwlsplit(wvsplit, fp);
85 fputformat(SPECFMT, fp);
86 fputc('\n', fp);
87 fputsresolu(res, fp);
88 }
89
90 int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
91 DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
92 const double cloud_cover, const FVECT sundir,
93 const double grefl, const int res, const char *outname) {
94
95 char radfile[PATH_MAX];
96 char skyfile[PATH_MAX];
97 char grndfile[PATH_MAX];
98 if (!snprintf(radfile, sizeof(radfile), "%s.rad", outname)) {
99 fprintf(stderr, "Error setting rad file name\n");
100 return 0;
101 };
102 if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) {
103 fprintf(stderr, "Error setting sky file name\n");
104 return 0;
105 };
106 if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) {
107 fprintf(stderr, "Error setting ground file name\n");
108 return 0;
109 }
110 RESOLU rs = {PIXSTANDARD, res, res};
111 FILE *skyfp = fopen(skyfile, "w");
112 FILE *grndfp = fopen(grndfile, "w");
113 write_hsr_header(grndfp, &rs);
114 write_hsr_header(skyfp, &rs);
115 VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1.,
116 180., 180., 0., 0., 0.,
117 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.};
118 VIEW grndview = {
119 VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0.,
120 0., 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.};
121 setview(&skyview);
122 setview(&grndview);
123
124 CNDX[3] = NSSAMP;
125
126 FVECT view_point = {0, 0, ER};
127 const double radius = VLEN(view_point);
128 const double sun_ct = fdot(view_point, sundir) / radius;
129 for (unsigned int j = 0; j < res; ++j) {
130 for (unsigned int i = 0; i < res; ++i) {
131 RREAL loc[2];
132 FVECT rorg = {0};
133 FVECT rdir_sky = {0};
134 FVECT rdir_grnd = {0};
135 SCOLOR sky_radiance = {0};
136 SCOLOR ground_radiance = {0};
137 SCOLR sky_sclr = {0};
138 SCOLR ground_sclr = {0};
139
140 pix2loc(loc, &rs, i, j);
141 viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]);
142 viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]);
143
144 const double mu_sky = fdot(view_point, rdir_sky) / radius;
145 const double nu_sky = fdot(rdir_sky, sundir);
146
147 const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
148 const double nu_grnd = fdot(rdir_grnd, sundir);
149
150 get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky,
151 sky_radiance);
152 get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
153 view_point, rdir_grnd, radius, mu_grnd, sun_ct,
154 nu_grnd, grefl, sundir, ground_radiance);
155
156 for (int k = 0; k < NSSAMP; ++k) {
157 sky_radiance[k] *= WVLSPAN;
158 ground_radiance[k] *= WVLSPAN;
159 }
160
161 if (cloud_cover > 0) {
162 double zenithbr = get_zenith_brightness(sundir);
163 double grndbr = zenithbr * GNORM;
164 double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
165 for (int k = 0; k < NSSAMP; ++k) {
166 sky_radiance[k] =
167 wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover);
168 ground_radiance[k] =
169 wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover);
170 }
171 }
172
173 scolor2scolr(sky_sclr, sky_radiance, 20);
174 putbinary(sky_sclr, LSCOLR, 1, skyfp);
175
176 scolor2scolr(ground_sclr, ground_radiance, 20);
177 putbinary(ground_sclr, LSCOLR, 1, grndfp);
178 }
179 }
180 fclose(skyfp);
181 fclose(grndfp);
182
183 // Get solar radiance
184 double sun_radiance[NSSAMP] = {0};
185 get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
186 sun_ct, sun_radiance);
187 if (cloud_cover > 0) {
188 double zenithbr = get_zenith_brightness(sundir);
189 double skybr = get_overcast_brightness(sundir[2], zenithbr);
190 for (int i = 0; i < NSSAMP; ++i) {
191 sun_radiance[i] =
192 wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
193 }
194 }
195
196 FILE *rfp = fopen(radfile, "w");
197 write_rad_file(rfp, sun_radiance, sundir, skyfile, grndfile);
198 fclose(rfp);
199 return 1;
200 }
201
202 static DpPaths get_dppaths(const double aod, const char *tag) {
203 DpPaths paths;
204
205 snprintf(paths.tau, PATH_MAX, "tau_%s_%.2f.dat", tag, aod);
206 snprintf(paths.scat, PATH_MAX, "scat_%s_%.2f.dat", tag, aod);
207 snprintf(paths.scat1m, PATH_MAX, "scat1m_%s_%.2f.dat", tag, aod);
208 snprintf(paths.irrad, PATH_MAX, "irrad_%s_%.2f.dat", tag, aod);
209
210 return paths;
211 }
212
213 static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, const int is_summer,
214 const double s_latitude) {
215 // Set rayleigh density profile
216 if (fabs(s_latitude*180.0 / PI) > ARCTIC_LAT) {
217 tag[0] = 's';
218 if (is_summer) {
219 tag[1] = 's';
220 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
221 atmos->beta_r0 = BR0_SS;
222 } else {
223 tag[1] = 'w';
224 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
225 atmos->beta_r0 = BR0_SW;
226 }
227 } else if (fabs(s_latitude*180.0/PI) > TROPIC_LAT) {
228 tag[0] = 'm';
229 if (is_summer) {
230 tag[1] = 's';
231 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
232 atmos->beta_r0 = BR0_MS;
233 } else {
234 tag[1] = 'w';
235 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
236 atmos->beta_r0 = BR0_MW;
237 }
238 } else {
239 tag[0] = 't';
240 tag[1] = 'r';
241 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
242 atmos->beta_r0 = BR0_T;
243 }
244 tag[2] = '\0';
245 }
246
247 static Atmosphere init_atmos(const double aod, const double grefl) {
248 Atmosphere atmos = {
249 .ozone_density = {.layers =
250 {
251 {.width = 25000.0,
252 .exp_term = 0.0,
253 .exp_scale = 0.0,
254 .linear_term = 1.0 / 15000.0,
255 .constant_term = -2.0 / 3.0},
256 {.width = AH,
257 .exp_term = 0.0,
258 .exp_scale = 0.0,
259 .linear_term = -1.0 / 15000.0,
260 .constant_term = 8.0 / 3.0},
261 }},
262 .rayleigh_density = {.layers =
263 {
264 {.width = AH,
265 .exp_term = 1.0,
266 .exp_scale = -1.0 / HR_MS,
267 .linear_term = 0.0,
268 .constant_term = 0.0},
269 }},
270 .beta_r0 = BR0_MS,
271 .beta_scale = aod / AOD0_CA,
272 .beta_m = NULL,
273 .grefl = grefl
274 };
275 return atmos;
276 }
277
278 int main(int argc, char *argv[]) {
279 progname = argv[0];
280 int month, day;
281 double hour;
282 FVECT sundir;
283 int num_threads = 1;
284 int sorder = 4;
285 int year = 0;
286 int tsolar = 0;
287 double grefl = 0.2;
288 double ccover = 0.0;
289 int res = 128;
290 double aod = AOD0_CA;
291 char *outname = "out";
292 char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
293 char lstag[3];
294
295 if (argc < 4) {
296 fprintf(stderr, "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r res -n nproc -c ccover -l mie -g grefl -f outpath\n",
297 argv[0]);
298 return 0;
299 }
300
301 month = atoi(argv[1]);
302 day = atoi(argv[2]);
303 hour = atof(argv[3]);
304
305 if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
306 fprintf(stderr, "Cannot compute solar angle\n");
307 exit(1);
308 }
309
310 for (int i = 4; i < argc; i++) {
311 if (argv[i][0] == '-') {
312 switch (argv[i][1]) {
313 case 'a':
314 s_latitude = atof(argv[++i]) * (PI / 180.0);
315 break;
316 case 'g':
317 grefl = atof(argv[++i]);
318 break;
319 case 'c':
320 ccover = atof(argv[++i]);
321 break;
322 case 'd':
323 aod = atof(argv[++i]);
324 break;
325 case 'i':
326 sorder = atoi(argv[++i]);
327 break;
328 case 'l':
329 mie_path = argv[++i];
330 break;
331 case 'm':
332 s_meridian = atof(argv[++i]) * (PI / 180.0);
333 break;
334 case 'o':
335 s_longitude = atof(argv[++i]) * (PI / 180.0);
336 break;
337 case 'n':
338 num_threads = atoi(argv[++i]);
339 break;
340 case 'y':
341 year = atoi(argv[++i]);
342 break;
343 case 'f':
344 outname = argv[++i];
345 break;
346 case 'r':
347 res = atoi(argv[++i]);
348 break;
349 default:
350 fprintf(stderr, "Unknown option %s\n", argv[i]);
351 exit(1);
352 }
353 }
354 }
355
356 Atmosphere clear_atmos = init_atmos(aod, grefl);
357
358 int is_summer = (month >= SUMMER_START && month <= SUMMER_END);
359 if (s_latitude < 0) {
360 is_summer = !is_summer;
361 }
362 set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
363
364 // Load mie density data
365 DATARRAY *mie_dp = getdata(mie_path);
366 if (mie_dp == NULL) {
367 fprintf(stderr, "Error reading mie data\n");
368 return 0;
369 }
370 clear_atmos.beta_m = mie_dp;
371
372 DpPaths clear_paths = get_dppaths(aod, lstag);
373
374 if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
375 getpath(clear_paths.scat, ".", R_OK) == NULL ||
376 getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
377 getpath(clear_paths.irrad, ".", R_OK) == NULL) {
378 printf("# Precomputing...\n");
379 if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
380 fprintf(stderr, "Precompute failed\n");
381 return 0;
382 }
383 }
384
385 DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
386 DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
387 DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
388 DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
389
390 if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
391 irrad_clear_dp, ccover, sundir, grefl, res, outname)) {
392 fprintf(stderr, "gen_spect_sky failed\n");
393 exit(1);
394 }
395
396 freedata(mie_dp);
397 freedata(tau_clear_dp);
398 freedata(scat_clear_dp);
399 freedata(irrad_clear_dp);
400 freedata(scat1m_clear_dp);
401
402 return 1;
403 }