1 |
// Main function for generating spectral sky |
2 |
// Cloudy sky computed as weight average of clear and cie overcast sky |
3 |
|
4 |
#include "copyright.h" |
5 |
#include "atmos.h" |
6 |
#include "resolu.h" |
7 |
#include "view.h" |
8 |
|
9 |
|
10 |
char *progname; |
11 |
|
12 |
const double ARCTIC_LAT = 67.; |
13 |
const double TROPIC_LAT = 23.; |
14 |
const int SUMMER_START = 4; |
15 |
const int SUMMER_END = 9; |
16 |
const double GNORM = 0.777778; |
17 |
|
18 |
const double D65EFF = 203.; /* standard illuminant D65 */ |
19 |
|
20 |
// Mean normalized relative daylight spectra where CCT = 6415K for overcast; |
21 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
22 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
23 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
24 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
25 |
|
26 |
static inline double wmean2(const double a, const double b, const double x) { |
27 |
return a * (1 - x) + b * x; |
28 |
} |
29 |
|
30 |
static inline double wmean(const double a, const double x, const double b, |
31 |
const double y) { |
32 |
return (a * x + b * y) / (a + b); |
33 |
} |
34 |
|
35 |
static double get_zenith_brightness(const double sundir[3]) { |
36 |
double zenithbr; |
37 |
if (sundir[2] < 0) { |
38 |
zenithbr = 0; |
39 |
} else { |
40 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
41 |
} |
42 |
return zenithbr; |
43 |
} |
44 |
|
45 |
// from gensky.c |
46 |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
47 |
double groundbr = zenithbr * GNORM; |
48 |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
49 |
pow(dz + 1.01, -10), groundbr); |
50 |
} |
51 |
|
52 |
static void write_rad_file(FILE *fp, const double *sun_radiance, |
53 |
const FVECT sundir, const char skyfile[PATH_MAX], |
54 |
const char grndfile[PATH_MAX]) { |
55 |
if (sundir[2] > 0) { |
56 |
fprintf(fp, "void spectrum sunrad\n0\n0\n22 380 780 "); |
57 |
for (int i = 0; i < NSSAMP; ++i) { |
58 |
fprintf(fp, "%.1f ", sun_radiance[i] * WVLSPAN); |
59 |
} |
60 |
fprintf(fp, "\n\nsunrad light solar\n0\n0\n3 1 1 1\n\n"); |
61 |
fprintf(fp, "solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], |
62 |
sundir[1], sundir[2]); |
63 |
} |
64 |
fprintf(fp, |
65 |
"void specpict skyfunc\n8 noop %s fisheye.cal fish_u fish_v -rx 90 " |
66 |
"-mx\n0\n0\n\n", |
67 |
skyfile); |
68 |
fprintf(fp, "skyfunc glow sky_glow\n0\n0\n4 1 1 1 0\n\n"); |
69 |
fprintf(fp, "sky_glow source sky\n0\n0\n4 0 0 1 180\n\n"); |
70 |
|
71 |
fprintf(fp, |
72 |
"void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 " |
73 |
"-my\n0\n0\n\n", |
74 |
grndfile); |
75 |
fprintf(fp, "grndmap glow ground_glow\n0\n0\n4 1 1 1 0\n\n"); |
76 |
fprintf(fp, "ground_glow source ground_source\n0\n0\n4 0 0 -1 180\n\n"); |
77 |
} |
78 |
|
79 |
static void write_hsr_header(FILE *fp, RESOLU *res) { |
80 |
float wvsplit[4] = {380, 480, 588, |
81 |
780}; // RGB wavelength limits+partitions (nm) |
82 |
newheader("RADIANCE", fp); |
83 |
fputncomp(NSSAMP, fp); |
84 |
fputwlsplit(wvsplit, fp); |
85 |
fputformat(SPECFMT, fp); |
86 |
fputc('\n', fp); |
87 |
fputsresolu(res, fp); |
88 |
} |
89 |
|
90 |
int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear, |
91 |
DATARRAY *scat1m_clear, DATARRAY *irrad_clear, |
92 |
const double cloud_cover, const FVECT sundir, |
93 |
const double grefl, const int res, const char *outname) { |
94 |
|
95 |
char radfile[PATH_MAX]; |
96 |
char skyfile[PATH_MAX]; |
97 |
char grndfile[PATH_MAX]; |
98 |
if (!snprintf(radfile, sizeof(radfile), "%s.rad", outname)) { |
99 |
fprintf(stderr, "Error setting rad file name\n"); |
100 |
return 0; |
101 |
}; |
102 |
if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) { |
103 |
fprintf(stderr, "Error setting sky file name\n"); |
104 |
return 0; |
105 |
}; |
106 |
if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) { |
107 |
fprintf(stderr, "Error setting ground file name\n"); |
108 |
return 0; |
109 |
} |
110 |
RESOLU rs = {PIXSTANDARD, res, res}; |
111 |
FILE *skyfp = fopen(skyfile, "w"); |
112 |
FILE *grndfp = fopen(grndfile, "w"); |
113 |
write_hsr_header(grndfp, &rs); |
114 |
write_hsr_header(skyfp, &rs); |
115 |
VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1., |
116 |
180., 180., 0., 0., 0., |
117 |
0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.}; |
118 |
VIEW grndview = { |
119 |
VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0., |
120 |
0., 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.}; |
121 |
setview(&skyview); |
122 |
setview(&grndview); |
123 |
|
124 |
CNDX[3] = NSSAMP; |
125 |
|
126 |
FVECT view_point = {0, 0, ER}; |
127 |
const double radius = VLEN(view_point); |
128 |
const double sun_ct = fdot(view_point, sundir) / radius; |
129 |
for (unsigned int j = 0; j < res; ++j) { |
130 |
for (unsigned int i = 0; i < res; ++i) { |
131 |
RREAL loc[2]; |
132 |
FVECT rorg = {0}; |
133 |
FVECT rdir_sky = {0}; |
134 |
FVECT rdir_grnd = {0}; |
135 |
SCOLOR sky_radiance = {0}; |
136 |
SCOLOR ground_radiance = {0}; |
137 |
SCOLR sky_sclr = {0}; |
138 |
SCOLR ground_sclr = {0}; |
139 |
|
140 |
pix2loc(loc, &rs, i, j); |
141 |
viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]); |
142 |
viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]); |
143 |
|
144 |
const double mu_sky = fdot(view_point, rdir_sky) / radius; |
145 |
const double nu_sky = fdot(rdir_sky, sundir); |
146 |
|
147 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
148 |
const double nu_grnd = fdot(rdir_grnd, sundir); |
149 |
|
150 |
get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky, |
151 |
sky_radiance); |
152 |
get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear, |
153 |
view_point, rdir_grnd, radius, mu_grnd, sun_ct, |
154 |
nu_grnd, grefl, sundir, ground_radiance); |
155 |
|
156 |
for (int k = 0; k < NSSAMP; ++k) { |
157 |
sky_radiance[k] *= WVLSPAN; |
158 |
ground_radiance[k] *= WVLSPAN; |
159 |
} |
160 |
|
161 |
if (cloud_cover > 0) { |
162 |
double zenithbr = get_zenith_brightness(sundir); |
163 |
double grndbr = zenithbr * GNORM; |
164 |
double skybr = get_overcast_brightness(rdir_sky[2], zenithbr); |
165 |
for (int k = 0; k < NSSAMP; ++k) { |
166 |
sky_radiance[k] = |
167 |
wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover); |
168 |
ground_radiance[k] = |
169 |
wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover); |
170 |
} |
171 |
} |
172 |
|
173 |
scolor2scolr(sky_sclr, sky_radiance, 20); |
174 |
putbinary(sky_sclr, LSCOLR, 1, skyfp); |
175 |
|
176 |
scolor2scolr(ground_sclr, ground_radiance, 20); |
177 |
putbinary(ground_sclr, LSCOLR, 1, grndfp); |
178 |
} |
179 |
} |
180 |
fclose(skyfp); |
181 |
fclose(grndfp); |
182 |
|
183 |
// Get solar radiance |
184 |
double sun_radiance[NSSAMP] = {0}; |
185 |
get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius, |
186 |
sun_ct, sun_radiance); |
187 |
if (cloud_cover > 0) { |
188 |
double zenithbr = get_zenith_brightness(sundir); |
189 |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
190 |
for (int i = 0; i < NSSAMP; ++i) { |
191 |
sun_radiance[i] = |
192 |
wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover); |
193 |
} |
194 |
} |
195 |
|
196 |
FILE *rfp = fopen(radfile, "w"); |
197 |
write_rad_file(rfp, sun_radiance, sundir, skyfile, grndfile); |
198 |
fclose(rfp); |
199 |
return 1; |
200 |
} |
201 |
|
202 |
static DpPaths get_dppaths(const double aod, const char *tag) { |
203 |
DpPaths paths; |
204 |
|
205 |
snprintf(paths.tau, PATH_MAX, "tau_%s_%.2f.dat", tag, aod); |
206 |
snprintf(paths.scat, PATH_MAX, "scat_%s_%.2f.dat", tag, aod); |
207 |
snprintf(paths.scat1m, PATH_MAX, "scat1m_%s_%.2f.dat", tag, aod); |
208 |
snprintf(paths.irrad, PATH_MAX, "irrad_%s_%.2f.dat", tag, aod); |
209 |
|
210 |
return paths; |
211 |
} |
212 |
|
213 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, const int is_summer, |
214 |
const double s_latitude) { |
215 |
// Set rayleigh density profile |
216 |
if (fabs(s_latitude*180.0 / PI) > ARCTIC_LAT) { |
217 |
tag[0] = 's'; |
218 |
if (is_summer) { |
219 |
tag[1] = 's'; |
220 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
221 |
atmos->beta_r0 = BR0_SS; |
222 |
} else { |
223 |
tag[1] = 'w'; |
224 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
225 |
atmos->beta_r0 = BR0_SW; |
226 |
} |
227 |
} else if (fabs(s_latitude*180.0/PI) > TROPIC_LAT) { |
228 |
tag[0] = 'm'; |
229 |
if (is_summer) { |
230 |
tag[1] = 's'; |
231 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
232 |
atmos->beta_r0 = BR0_MS; |
233 |
} else { |
234 |
tag[1] = 'w'; |
235 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
236 |
atmos->beta_r0 = BR0_MW; |
237 |
} |
238 |
} else { |
239 |
tag[0] = 't'; |
240 |
tag[1] = 'r'; |
241 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
242 |
atmos->beta_r0 = BR0_T; |
243 |
} |
244 |
tag[2] = '\0'; |
245 |
} |
246 |
|
247 |
static Atmosphere init_atmos(const double aod, const double grefl) { |
248 |
Atmosphere atmos = { |
249 |
.ozone_density = {.layers = |
250 |
{ |
251 |
{.width = 25000.0, |
252 |
.exp_term = 0.0, |
253 |
.exp_scale = 0.0, |
254 |
.linear_term = 1.0 / 15000.0, |
255 |
.constant_term = -2.0 / 3.0}, |
256 |
{.width = AH, |
257 |
.exp_term = 0.0, |
258 |
.exp_scale = 0.0, |
259 |
.linear_term = -1.0 / 15000.0, |
260 |
.constant_term = 8.0 / 3.0}, |
261 |
}}, |
262 |
.rayleigh_density = {.layers = |
263 |
{ |
264 |
{.width = AH, |
265 |
.exp_term = 1.0, |
266 |
.exp_scale = -1.0 / HR_MS, |
267 |
.linear_term = 0.0, |
268 |
.constant_term = 0.0}, |
269 |
}}, |
270 |
.beta_r0 = BR0_MS, |
271 |
.beta_scale = aod / AOD0_CA, |
272 |
.beta_m = NULL, |
273 |
.grefl = grefl |
274 |
}; |
275 |
return atmos; |
276 |
} |
277 |
|
278 |
int main(int argc, char *argv[]) { |
279 |
progname = argv[0]; |
280 |
int month, day; |
281 |
double hour; |
282 |
FVECT sundir; |
283 |
int num_threads = 1; |
284 |
int sorder = 4; |
285 |
int year = 0; |
286 |
int tsolar = 0; |
287 |
double grefl = 0.2; |
288 |
double ccover = 0.0; |
289 |
int res = 128; |
290 |
double aod = AOD0_CA; |
291 |
char *outname = "out"; |
292 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
293 |
char lstag[3]; |
294 |
|
295 |
if (argc < 4) { |
296 |
fprintf(stderr, "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r res -n nproc -c ccover -l mie -g grefl -f outpath\n", |
297 |
argv[0]); |
298 |
return 0; |
299 |
} |
300 |
|
301 |
month = atoi(argv[1]); |
302 |
day = atoi(argv[2]); |
303 |
hour = atof(argv[3]); |
304 |
|
305 |
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) { |
306 |
fprintf(stderr, "Cannot compute solar angle\n"); |
307 |
exit(1); |
308 |
} |
309 |
|
310 |
for (int i = 4; i < argc; i++) { |
311 |
if (argv[i][0] == '-') { |
312 |
switch (argv[i][1]) { |
313 |
case 'a': |
314 |
s_latitude = atof(argv[++i]) * (PI / 180.0); |
315 |
break; |
316 |
case 'g': |
317 |
grefl = atof(argv[++i]); |
318 |
break; |
319 |
case 'c': |
320 |
ccover = atof(argv[++i]); |
321 |
break; |
322 |
case 'd': |
323 |
aod = atof(argv[++i]); |
324 |
break; |
325 |
case 'i': |
326 |
sorder = atoi(argv[++i]); |
327 |
break; |
328 |
case 'l': |
329 |
mie_path = argv[++i]; |
330 |
break; |
331 |
case 'm': |
332 |
s_meridian = atof(argv[++i]) * (PI / 180.0); |
333 |
break; |
334 |
case 'o': |
335 |
s_longitude = atof(argv[++i]) * (PI / 180.0); |
336 |
break; |
337 |
case 'n': |
338 |
num_threads = atoi(argv[++i]); |
339 |
break; |
340 |
case 'y': |
341 |
year = atoi(argv[++i]); |
342 |
break; |
343 |
case 'f': |
344 |
outname = argv[++i]; |
345 |
break; |
346 |
case 'r': |
347 |
res = atoi(argv[++i]); |
348 |
break; |
349 |
default: |
350 |
fprintf(stderr, "Unknown option %s\n", argv[i]); |
351 |
exit(1); |
352 |
} |
353 |
} |
354 |
} |
355 |
|
356 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
357 |
|
358 |
int is_summer = (month >= SUMMER_START && month <= SUMMER_END); |
359 |
if (s_latitude < 0) { |
360 |
is_summer = !is_summer; |
361 |
} |
362 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
363 |
|
364 |
// Load mie density data |
365 |
DATARRAY *mie_dp = getdata(mie_path); |
366 |
if (mie_dp == NULL) { |
367 |
fprintf(stderr, "Error reading mie data\n"); |
368 |
return 0; |
369 |
} |
370 |
clear_atmos.beta_m = mie_dp; |
371 |
|
372 |
DpPaths clear_paths = get_dppaths(aod, lstag); |
373 |
|
374 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
375 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
376 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
377 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
378 |
printf("# Precomputing...\n"); |
379 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
380 |
fprintf(stderr, "Precompute failed\n"); |
381 |
return 0; |
382 |
} |
383 |
} |
384 |
|
385 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
386 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
387 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
388 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
389 |
|
390 |
if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, |
391 |
irrad_clear_dp, ccover, sundir, grefl, res, outname)) { |
392 |
fprintf(stderr, "gen_spect_sky failed\n"); |
393 |
exit(1); |
394 |
} |
395 |
|
396 |
freedata(mie_dp); |
397 |
freedata(tau_clear_dp); |
398 |
freedata(scat_clear_dp); |
399 |
freedata(irrad_clear_dp); |
400 |
freedata(scat1m_clear_dp); |
401 |
|
402 |
return 1; |
403 |
} |