ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/genssky.c
(Generate patch)

Comparing ray/src/gen/genssky.c (file contents):
Revision 2.2 by greg, Fri Jul 19 23:38:28 2024 UTC vs.
Revision 2.7 by greg, Thu Apr 10 23:30:58 2025 UTC

# Line 1 | Line 1
1 + #include "color.h"
2   #ifndef lint
3 < static const char RCSid[] = "$Id$";
3 > static const char RCSid[] =
4 >    "$Id$";
5   #endif
6   /* Main function for generating spectral sky */
7   /* Cloudy sky computed as weight average of clear and cie overcast sky */
# Line 8 | Line 10 | static const char RCSid[] = "$Id$";
10   #include "copyright.h"
11   #include "resolu.h"
12   #include "rtio.h"
11 #include "view.h"
13   #include <ctype.h>
14   #ifdef _WIN32
15   #include <windows.h>
# Line 61 | Line 62 | static int make_directory(const char *path) {
62   #endif
63   }
64  
65 + inline static float deg2rad(float deg) { return deg * (PI / 180.); }
66 +
67   static int cvthour(char *hs, int *tsolar, double *hour) {
68    char *cp = hs;
69    int i, j;
# Line 131 | Line 134 | static void basename(const char *path, char *output, s
134    }
135   }
136  
137 < char *join_paths(const char *path1, const char *path2) {
137 > static char *join_paths(const char *path1, const char *path2) {
138    size_t len1 = strlen(path1);
139    size_t len2 = strlen(path2);
140    int need_separator = (path1[len1 - 1] != DIRSEP);
# Line 159 | Line 162 | static inline double wmean(const double a, const doubl
162    return (a * x + b * y) / (a + b);
163   }
164  
165 < static double get_zenith_brightness(const double sundir[3]) {
165 > static double get_overcast_zenith_brightness(const double sundir[3]) {
166    double zenithbr;
167    if (sundir[2] < 0) {
168      zenithbr = 0;
# Line 178 | Line 181 | static double get_overcast_brightness(const double dz,
181  
182   static void write_header(const int argc, char **argv, const double cloud_cover,
183                           const double grefl, const int res) {
184 +  int i;
185    printf("# ");
186 <  for (int i = 0; i < argc; i++) {
186 >  for (i = 0; i < argc; i++) {
187      printf("%s ", argv[i]);
188    }
189    printf("\n");
190 <  printf("#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n",
191 <         cloud_cover, grefl, res);
190 >  printf(
191 >      "#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n",
192 >      cloud_cover, grefl, res);
193   }
194  
195 < static void write_rad(const double *sun_radiance, const FVECT sundir,
196 <                      const char skyfile[PATH_MAX],
197 <                      const char grndfile[PATH_MAX]) {
195 > static void write_rad(const double *sun_radiance, const double intensity,
196 >                      const FVECT sundir, const char *ddir,
197 >                      const char *skyfile) {
198    if (sundir[2] > 0) {
199      printf("void spectrum sunrad\n0\n0\n22 380 780 ");
200 <    /* Normalize to one */
201 <    double sum = 0.0;
202 <    for (int i = 0; i < NSSAMP; ++i) {
198 <      sum += sun_radiance[i];
200 >    int i;
201 >    for (i = 0; i < NSSAMP; ++i) {
202 >      printf("%.3f ", sun_radiance[i]);
203      }
200    double mean = sum / NSSAMP;
201    for (int i = 0; i < NSSAMP; ++i) {
202      printf("%.3f ", sun_radiance[i] / mean);
203    }
204    double intensity = mean * WVLSPAN;
204      printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity,
205             intensity, intensity);
206      printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1],
207             sundir[2]);
208    }
209 <  printf("void specpict skymap\n8 noop %s fisheye.cal fish_u fish_v -rx 90 "
210 <         "-mx\n0\n0\n\n",
209 >  printf("void specpict skyfunc\n5 noop %s . 'Atan2(Dy,Dx)/PI+1' "
210 >         "'1-Acos(Dz)/PI'\n0\n0\n\n",
211           skyfile);
213
214  printf("void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 "
215         "-my\n0\n0\n\n",
216         grndfile);
217  printf("void mixfunc skyfunc\n4 skymap grndmap if(Dz,1,0) .\n0\n0\n");
212   }
213  
214   static void write_hsr_header(FILE *fp, RESOLU *res) {
215 <  float wvsplit[4] = {380, 480, 588,
222 <                      780}; /* RGB wavelength limits+partitions (nm) */
215 >  float wvsplit[4] = {380, 480, 588, 780};
216    newheader("RADIANCE", fp);
217    fputncomp(NSSAMP, fp);
218    fputwlsplit(wvsplit, fp);
# Line 228 | Line 221 | static void write_hsr_header(FILE *fp, RESOLU *res) {
221    fputsresolu(res, fp);
222   }
223  
224 + static inline float frac(float x) { return x - floor(x); }
225 +
226   int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
227                    DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
228                    const double cloud_cover, const FVECT sundir,
229 <                  const double grefl, const int res, const char *outname) {
229 >                  const double grefl, const int res, const char *outname,
230 >                  const char *ddir, const double dirnorm, const double difhor) {
231    char skyfile[PATH_MAX];
232 <  char grndfile[PATH_MAX];
233 <  if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) {
232 >  if (!snprintf(skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP,
233 >                outname)) {
234      fprintf(stderr, "Error setting sky file name\n");
235      return 0;
236    };
237 <  if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) {
238 <    fprintf(stderr, "Error setting ground file name\n");
239 <    return 0;
244 <  }
245 <  RESOLU rs = {PIXSTANDARD, res, res};
237 >  int xres = res;
238 >  int yres = xres / 2;
239 >  RESOLU rs = {PIXSTANDARD, xres, yres};
240    FILE *skyfp = fopen(skyfile, "w");
247  FILE *grndfp = fopen(grndfile, "w");
248  write_hsr_header(grndfp, &rs);
241    write_hsr_header(skyfp, &rs);
250  VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1.,
251                  180.,   180.,         0.,           0.,           0.,
252                  0.,     {0., 0., 0.}, {0., 0., 0.}, 0.,           0.};
253  VIEW grndview = {
254      VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0.,
255      0.,     0.,           {0., 0., 0.},  {0., 0., 0.}, 0., 0.};
256  setview(&skyview);
257  setview(&grndview);
242  
243    CNDX[3] = NSSAMP;
244  
245 <  FVECT view_point = {0, 0, ER};
245 >  FVECT view_point = {0, 0, ER + 10};
246    const double radius = VLEN(view_point);
247    const double sun_ct = fdot(view_point, sundir) / radius;
248 <  for (unsigned int j = 0; j < res; ++j) {
249 <    for (unsigned int i = 0; i < res; ++i) {
250 <      RREAL loc[2];
251 <      FVECT rorg = {0};
252 <      FVECT rdir_sky = {0};
253 <      FVECT rdir_grnd = {0};
254 <      SCOLOR sky_radiance = {0};
255 <      SCOLOR ground_radiance = {0};
248 >
249 >  double overcast_zenithbr = get_overcast_zenith_brightness(sundir);
250 >  double overcast_grndbr = overcast_zenithbr * GNORM;
251 >
252 >  double dif_ratio = 1;
253 >  if (difhor > 0) {
254 >    DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad_clear, radius, sun_ct);
255 >    double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0;
256 >    double diffuse_irradiance = 0;
257 >    int l;
258 >    for (l = 0; l < NSSAMP; ++l) {
259 >      diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20;  /* 20nm interval */
260 >    }
261 >    free(indirect_irradiance_clear);
262 >    diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, cloud_cover);
263 >    if (diffuse_irradiance > 0) {
264 >        dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15;       /* fudge */
265 >    }
266 >  }
267 >  int i, j, k;
268 >  for (j = 0; j < yres; ++j) {
269 >    for (i = 0; i < xres; ++i) {
270 >      SCOLOR radiance = {0};
271        SCOLR sky_sclr = {0};
273      SCOLR ground_sclr = {0};
272  
273 <      pix2loc(loc, &rs, i, j);
274 <      viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]);
275 <      viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]);
273 >      float px = i / (xres - 1.0);
274 >      float py = j / (yres - 1.0);
275 >      float lambda = ((1 - py) * PI) - (PI / 2.0);
276 >      float phi = (px * 2.0 * PI) - PI;
277  
278 <      const double mu_sky = fdot(view_point, rdir_sky) / radius;
279 <      const double nu_sky = fdot(rdir_sky, sundir);
278 >      FVECT rdir = {cos(lambda) * cos(phi), cos(lambda) * sin(phi),
279 >                    sin(lambda)};
280  
281 <      const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
282 <      const double nu_grnd = fdot(rdir_grnd, sundir);
281 >      const double mu = fdot(view_point, rdir) / radius;
282 >      const double nu = fdot(rdir, sundir);
283  
284 <      get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky,
285 <                       sky_radiance);
286 <      get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
287 <                          view_point, rdir_grnd, radius, mu_grnd, sun_ct,
288 <                          nu_grnd, grefl, sundir, ground_radiance);
284 >      /* hit ground */
285 >      if (rdir[2] < 0) {
286 >        get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
287 >                            view_point, rdir, radius, mu, sun_ct, nu, grefl,
288 >                            sundir, radiance);
289 >      } else {
290 >        get_sky_radiance(scat_clear, scat1m_clear, radius, mu, sun_ct, nu,
291 >                         radiance);
292 >      }
293  
294 <      for (int k = 0; k < NSSAMP; ++k) {
295 <        sky_radiance[k] *= WVLSPAN;
293 <        ground_radiance[k] *= WVLSPAN;
294 >      for (k = 0; k < NSSAMP; ++k) {
295 >        radiance[k] *= WVLSPAN;
296        }
297  
298        if (cloud_cover > 0) {
299 <        double zenithbr = get_zenith_brightness(sundir);
300 <        double grndbr = zenithbr * GNORM;
301 <        double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
302 <        for (int k = 0; k < NSSAMP; ++k) {
303 <          sky_radiance[k] =
304 <              wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover);
305 <          ground_radiance[k] =
306 <              wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover);
299 >        double skybr = get_overcast_brightness(rdir[2], overcast_zenithbr);
300 >        if (rdir[2] < 0) {
301 >          for (k = 0; k < NSSAMP; ++k) {
302 >            radiance[k] = wmean2(radiance[k], overcast_grndbr * D6415[k], cloud_cover);
303 >          }
304 >        } else {
305 >          for (k = 0; k < NSSAMP; ++k) {
306 >            radiance[k] = wmean2(radiance[k], skybr * D6415[k], cloud_cover);
307 >          }
308          }
309        }
310  
311 <      scolor2scolr(sky_sclr, sky_radiance, 20);
312 <      putbinary(sky_sclr, LSCOLR, 1, skyfp);
311 >      for (k = 0; k < NSSAMP; ++k) {
312 >        radiance[k] *= dif_ratio;
313 >      }
314  
315 <      scolor2scolr(ground_sclr, ground_radiance, 20);
316 <      putbinary(ground_sclr, LSCOLR, 1, grndfp);
315 >      scolor2scolr(sky_sclr, radiance, NSSAMP);
316 >      putbinary(sky_sclr, LSCOLR, 1, skyfp);
317      }
318    }
319    fclose(skyfp);
316  fclose(grndfp);
320  
321    /* Get solar radiance */
322    double sun_radiance[NSSAMP] = {0};
323    get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
324                       sun_ct, sun_radiance);
325    if (cloud_cover > 0) {
326 <    double zenithbr = get_zenith_brightness(sundir);
327 <    double skybr = get_overcast_brightness(sundir[2], zenithbr);
328 <    for (int i = 0; i < NSSAMP; ++i) {
326 >    double skybr = get_overcast_brightness(sundir[2], overcast_zenithbr);
327 >    int i;
328 >    for (i = 0; i < NSSAMP; ++i) {
329        sun_radiance[i] =
330            wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
331      }
332    }
333  
334 <  write_rad(sun_radiance, sundir, skyfile, grndfile);
334 >  /* Normalize */
335 >  double sum = 0.0;
336 >  for (i = 0; i < NSSAMP; ++i) {
337 >    sum += sun_radiance[i];
338 >  }
339 >  double mean = sum / NSSAMP;
340 >  for (i = 0; i < NSSAMP; ++i) {
341 >    sun_radiance[i] /= mean;
342 >  }
343 >  double intensity = mean * WVLSPAN;
344 >  if (dirnorm > 0) {
345 >    intensity = dirnorm / SOLOMG / WHTEFFICACY;
346 >  }
347 >
348 >  write_rad(sun_radiance, intensity, sundir, ddir, skyfile);
349    return 1;
350   }
351  
# Line 351 | Line 368 | static DpPaths get_dppaths(const char *dir, const doub
368   static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
369                                           const int is_summer,
370                                           const double s_latitude) {
354  /* Set rayleigh density profile */
371    if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
372      tag[0] = 's';
373      if (is_summer) {
# Line 424 | Line 440 | int main(int argc, char *argv[]) {
440    int got_meridian = 0;
441    double grefl = 0.2;
442    double ccover = 0.0;
443 <  int res = 128;
443 >  int res = 64;
444    double aod = AOD0_CA;
445    char *outname = "out";
446    char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
447    char mie_name[20] = "mie_ca";
448    char lstag[3];
449    char *ddir = ".";
450 +  int i;
451 +  double dirnorm = 0; /* direct normal illuminance */
452 +  double difhor = 0;  /* diffuse horizontal illuminance */
453  
454 <  if (!strcmp(argv[1], "-defaults")) {
454 >  if (argc == 2 && !strcmp(argv[1], "-defaults")) {
455      printf("-i %d\t\t\t\t#scattering order\n", sorder);
456      printf("-g %f\t\t\t#ground reflectance\n", grefl);
457      printf("-c %f\t\t\t#cloud cover\n", ccover);
# Line 440 | Line 459 | int main(int argc, char *argv[]) {
459      printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA);
460      printf("-f %s\t\t\t\t#output name (-f)\n", outname);
461      printf("-p %s\t\t\t\t#atmos data directory\n", ddir);
462 <    exit(1);
462 >    exit(0);
463    }
464  
465    if (argc < 4) {
466      fprintf(stderr,
467              "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r "
468 <            "res -n nproc -c ccover -l mie -g grefl -f outpath\n",
468 >            "res -n nproc -c ccover -l mie -L dirnorm_illum difhor_illum "
469 >            "-g grefl -f outpath\n",
470              argv[0]);
471      return 0;
472    }
# Line 468 | Line 488 | int main(int argc, char *argv[]) {
488      exit(1);
489    }
490  
491 <  for (int i = 4; i < argc; i++) {
491 >  for (i = 4; i < argc; i++) {
492      if (argv[i][0] == '-') {
493        switch (argv[i][1]) {
494        case 'a':
# Line 506 | Line 526 | int main(int argc, char *argv[]) {
526        case 'o':
527          s_longitude = atof(argv[++i]) * (PI / 180.0);
528          break;
529 +      case 'L':
530 +        dirnorm = atof(argv[++i]);
531 +        difhor = atof(argv[++i]);
532 +        break;
533        case 'p':
534          ddir = argv[++i];
535          break;
# Line 547 | Line 571 | int main(int argc, char *argv[]) {
571  
572    char gsdir[PATH_MAX];
573    size_t siz = strlen(ddir);
574 <  if (ISDIRSEP(ddir[siz-1]))
575 <    ddir[siz-1] = '\0';
574 >  if (ISDIRSEP(ddir[siz - 1]))
575 >    ddir[siz - 1] = '\0';
576    snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
553  printf("gsdir: %s\n", gsdir);
577    if (!make_directory(gsdir)) {
578      fprintf(stderr, "Failed creating atmos_data directory");
579      exit(1);
# Line 576 | Line 599 | int main(int argc, char *argv[]) {
599    write_header(argc, argv, ccover, grefl, res);
600  
601    if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
602 <                     irrad_clear_dp, ccover, sundir, grefl, res, outname)) {
602 >                     irrad_clear_dp, ccover, sundir, grefl, res, outname, ddir,
603 >                     dirnorm, difhor)) {
604      fprintf(stderr, "gen_spect_sky failed\n");
605      exit(1);
606    }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines