// Main function for generating spectral sky // Cloudy sky computed as weight average of clear and cie overcast sky #include "copyright.h" #include "atmos.h" #include "resolu.h" #include "view.h" char *progname; const double ARCTIC_LAT = 67.; const double TROPIC_LAT = 23.; const int SUMMER_START = 4; const int SUMMER_END = 9; const double GNORM = 0.777778; const double D65EFF = 203.; /* standard illuminant D65 */ // Mean normalized relative daylight spectra where CCT = 6415K for overcast; const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, 1.27258, 1.26276, 1.26352, 1.22201, 1.13246, 1.0434, 1.05547, 0.98212, 0.94445, 0.9722, 0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; static inline double wmean2(const double a, const double b, const double x) { return a * (1 - x) + b * x; } static inline double wmean(const double a, const double x, const double b, const double y) { return (a * x + b * y) / (a + b); } static double get_zenith_brightness(const double sundir[3]) { double zenithbr; if (sundir[2] < 0) { zenithbr = 0; } else { zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; } return zenithbr; } // from gensky.c static double get_overcast_brightness(const double dz, const double zenithbr) { double groundbr = zenithbr * GNORM; return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, pow(dz + 1.01, -10), groundbr); } static void write_rad_file(FILE *fp, const double *sun_radiance, const FVECT sundir, const char skyfile[PATH_MAX], const char grndfile[PATH_MAX]) { if (sundir[2] > 0) { fprintf(fp, "void spectrum sunrad\n0\n0\n22 380 780 "); for (int i = 0; i < NSSAMP; ++i) { fprintf(fp, "%.1f ", sun_radiance[i] * WVLSPAN); } fprintf(fp, "\n\nsunrad light solar\n0\n0\n3 1 1 1\n\n"); fprintf(fp, "solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1], sundir[2]); } fprintf(fp, "void specpict skyfunc\n8 noop %s fisheye.cal fish_u fish_v -rx 90 " "-mx\n0\n0\n\n", skyfile); fprintf(fp, "skyfunc glow sky_glow\n0\n0\n4 1 1 1 0\n\n"); fprintf(fp, "sky_glow source sky\n0\n0\n4 0 0 1 180\n\n"); fprintf(fp, "void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 " "-my\n0\n0\n\n", grndfile); fprintf(fp, "grndmap glow ground_glow\n0\n0\n4 1 1 1 0\n\n"); fprintf(fp, "ground_glow source ground_source\n0\n0\n4 0 0 -1 180\n\n"); } static void write_hsr_header(FILE *fp, RESOLU *res) { float wvsplit[4] = {380, 480, 588, 780}; // RGB wavelength limits+partitions (nm) newheader("RADIANCE", fp); fputncomp(NSSAMP, fp); fputwlsplit(wvsplit, fp); fputformat(SPECFMT, fp); fputc('\n', fp); fputsresolu(res, fp); } int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear, DATARRAY *scat1m_clear, DATARRAY *irrad_clear, const double cloud_cover, const FVECT sundir, const double grefl, const int res, const char *outname) { char radfile[PATH_MAX]; char skyfile[PATH_MAX]; char grndfile[PATH_MAX]; if (!snprintf(radfile, sizeof(radfile), "%s.rad", outname)) { fprintf(stderr, "Error setting rad file name\n"); return 0; }; if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) { fprintf(stderr, "Error setting sky file name\n"); return 0; }; if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) { fprintf(stderr, "Error setting ground file name\n"); return 0; } RESOLU rs = {PIXSTANDARD, res, res}; FILE *skyfp = fopen(skyfile, "w"); FILE *grndfp = fopen(grndfile, "w"); write_hsr_header(grndfp, &rs); write_hsr_header(skyfp, &rs); VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1., 180., 180., 0., 0., 0., 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.}; VIEW grndview = { VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0., 0., 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.}; setview(&skyview); setview(&grndview); CNDX[3] = NSSAMP; FVECT view_point = {0, 0, ER}; const double radius = VLEN(view_point); const double sun_ct = fdot(view_point, sundir) / radius; for (unsigned int j = 0; j < res; ++j) { for (unsigned int i = 0; i < res; ++i) { RREAL loc[2]; FVECT rorg = {0}; FVECT rdir_sky = {0}; FVECT rdir_grnd = {0}; SCOLOR sky_radiance = {0}; SCOLOR ground_radiance = {0}; SCOLR sky_sclr = {0}; SCOLR ground_sclr = {0}; pix2loc(loc, &rs, i, j); viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]); viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]); const double mu_sky = fdot(view_point, rdir_sky) / radius; const double nu_sky = fdot(rdir_sky, sundir); const double mu_grnd = fdot(view_point, rdir_grnd) / radius; const double nu_grnd = fdot(rdir_grnd, sundir); get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky, sky_radiance); get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear, view_point, rdir_grnd, radius, mu_grnd, sun_ct, nu_grnd, grefl, sundir, ground_radiance); for (int k = 0; k < NSSAMP; ++k) { sky_radiance[k] *= WVLSPAN; ground_radiance[k] *= WVLSPAN; } if (cloud_cover > 0) { double zenithbr = get_zenith_brightness(sundir); double grndbr = zenithbr * GNORM; double skybr = get_overcast_brightness(rdir_sky[2], zenithbr); for (int k = 0; k < NSSAMP; ++k) { sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover); ground_radiance[k] = wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover); } } scolor2scolr(sky_sclr, sky_radiance, 20); putbinary(sky_sclr, LSCOLR, 1, skyfp); scolor2scolr(ground_sclr, ground_radiance, 20); putbinary(ground_sclr, LSCOLR, 1, grndfp); } } fclose(skyfp); fclose(grndfp); // Get solar radiance double sun_radiance[NSSAMP] = {0}; get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius, sun_ct, sun_radiance); if (cloud_cover > 0) { double zenithbr = get_zenith_brightness(sundir); double skybr = get_overcast_brightness(sundir[2], zenithbr); for (int i = 0; i < NSSAMP; ++i) { sun_radiance[i] = wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover); } } FILE *rfp = fopen(radfile, "w"); write_rad_file(rfp, sun_radiance, sundir, skyfile, grndfile); fclose(rfp); return 1; } static DpPaths get_dppaths(const double aod, const char *tag) { DpPaths paths; snprintf(paths.tau, PATH_MAX, "tau_%s_%.2f.dat", tag, aod); snprintf(paths.scat, PATH_MAX, "scat_%s_%.2f.dat", tag, aod); snprintf(paths.scat1m, PATH_MAX, "scat1m_%s_%.2f.dat", tag, aod); snprintf(paths.irrad, PATH_MAX, "irrad_%s_%.2f.dat", tag, aod); return paths; } static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, const int is_summer, const double s_latitude) { // Set rayleigh density profile if (fabs(s_latitude*180.0 / PI) > ARCTIC_LAT) { tag[0] = 's'; if (is_summer) { tag[1] = 's'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; atmos->beta_r0 = BR0_SS; } else { tag[1] = 'w'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; atmos->beta_r0 = BR0_SW; } } else if (fabs(s_latitude*180.0/PI) > TROPIC_LAT) { tag[0] = 'm'; if (is_summer) { tag[1] = 's'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; atmos->beta_r0 = BR0_MS; } else { tag[1] = 'w'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; atmos->beta_r0 = BR0_MW; } } else { tag[0] = 't'; tag[1] = 'r'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; atmos->beta_r0 = BR0_T; } tag[2] = '\0'; } static Atmosphere init_atmos(const double aod, const double grefl) { Atmosphere atmos = { .ozone_density = {.layers = { {.width = 25000.0, .exp_term = 0.0, .exp_scale = 0.0, .linear_term = 1.0 / 15000.0, .constant_term = -2.0 / 3.0}, {.width = AH, .exp_term = 0.0, .exp_scale = 0.0, .linear_term = -1.0 / 15000.0, .constant_term = 8.0 / 3.0}, }}, .rayleigh_density = {.layers = { {.width = AH, .exp_term = 1.0, .exp_scale = -1.0 / HR_MS, .linear_term = 0.0, .constant_term = 0.0}, }}, .beta_r0 = BR0_MS, .beta_scale = aod / AOD0_CA, .beta_m = NULL, .grefl = grefl }; return atmos; } int main(int argc, char *argv[]) { progname = argv[0]; int month, day; double hour; FVECT sundir; int num_threads = 1; int sorder = 4; int year = 0; int tsolar = 0; double grefl = 0.2; double ccover = 0.0; int res = 128; double aod = AOD0_CA; char *outname = "out"; char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); char lstag[3]; if (argc < 4) { fprintf(stderr, "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r res -n nproc -c ccover -l mie -g grefl -f outpath\n", argv[0]); return 0; } month = atoi(argv[1]); day = atoi(argv[2]); hour = atof(argv[3]); if (!compute_sundir(year, month, day, hour, tsolar, sundir)) { fprintf(stderr, "Cannot compute solar angle\n"); exit(1); } for (int i = 4; i < argc; i++) { if (argv[i][0] == '-') { switch (argv[i][1]) { case 'a': s_latitude = atof(argv[++i]) * (PI / 180.0); break; case 'g': grefl = atof(argv[++i]); break; case 'c': ccover = atof(argv[++i]); break; case 'd': aod = atof(argv[++i]); break; case 'i': sorder = atoi(argv[++i]); break; case 'l': mie_path = argv[++i]; break; case 'm': s_meridian = atof(argv[++i]) * (PI / 180.0); break; case 'o': s_longitude = atof(argv[++i]) * (PI / 180.0); break; case 'n': num_threads = atoi(argv[++i]); break; case 'y': year = atoi(argv[++i]); break; case 'f': outname = argv[++i]; break; case 'r': res = atoi(argv[++i]); break; default: fprintf(stderr, "Unknown option %s\n", argv[i]); exit(1); } } } Atmosphere clear_atmos = init_atmos(aod, grefl); int is_summer = (month >= SUMMER_START && month <= SUMMER_END); if (s_latitude < 0) { is_summer = !is_summer; } set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); // Load mie density data DATARRAY *mie_dp = getdata(mie_path); if (mie_dp == NULL) { fprintf(stderr, "Error reading mie data\n"); return 0; } clear_atmos.beta_m = mie_dp; DpPaths clear_paths = get_dppaths(aod, lstag); if (getpath(clear_paths.tau, ".", R_OK) == NULL || getpath(clear_paths.scat, ".", R_OK) == NULL || getpath(clear_paths.scat1m, ".", R_OK) == NULL || getpath(clear_paths.irrad, ".", R_OK) == NULL) { printf("# Precomputing...\n"); if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { fprintf(stderr, "Precompute failed\n"); return 0; } } DATARRAY *tau_clear_dp = getdata(clear_paths.tau); DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); DATARRAY *scat_clear_dp = getdata(clear_paths.scat); DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, ccover, sundir, grefl, res, outname)) { fprintf(stderr, "gen_spect_sky failed\n"); exit(1); } freedata(mie_dp); freedata(tau_clear_dp); freedata(scat_clear_dp); freedata(irrad_clear_dp); freedata(scat1m_clear_dp); return 1; }