ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/genssky.c
(Generate patch)

Comparing ray/src/gen/genssky.c (file contents):
Revision 2.1 by greg, Fri Jul 5 18:04:36 2024 UTC vs.
Revision 2.3 by greg, Fri Aug 2 18:47:25 2024 UTC

# Line 1 | Line 1
1 < // Main function for generating spectral sky
2 < // Cloudy sky computed as weight average of clear and cie overcast sky
1 > #ifndef lint
2 > static const char RCSid[] = "$Id$";
3 > #endif
4 > /* Main function for generating spectral sky */
5 > /* Cloudy sky computed as weight average of clear and cie overcast sky */
6  
4 #include "copyright.h"
7   #include "atmos.h"
8 + #include "copyright.h"
9   #include "resolu.h"
10 < #include "view.h"
10 > #include "rtio.h"
11 > #include <ctype.h>
12 > #ifdef _WIN32
13 > #include <windows.h>
14 > #else
15 > #include <errno.h>
16 > #include <sys/stat.h>
17 > #include <sys/types.h>
18 > #endif
19  
9
20   char *progname;
21  
22   const double ARCTIC_LAT = 67.;
# Line 17 | Line 27 | const double GNORM = 0.777778;
27  
28   const double D65EFF = 203.; /* standard illuminant D65 */
29  
30 < // Mean normalized relative daylight spectra where CCT = 6415K for overcast;
30 > /* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */
31   const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
32                                1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
33                                1.0434,  1.05547, 0.98212, 0.94445, 0.9722,
34                                0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
35  
36 + /* European and North American zones */
37 + struct {
38 +  char zname[8]; /* time zone name (all caps) */
39 +  float zmer;    /* standard meridian */
40 + } tzone[] = {{"YST", 135},   {"YDT", 120},   {"PST", 120},  {"PDT", 105},
41 +             {"MST", 105},   {"MDT", 90},    {"CST", 90},   {"CDT", 75},
42 +             {"EST", 75},    {"EDT", 60},    {"AST", 60},   {"ADT", 45},
43 +             {"NST", 52.5},  {"NDT", 37.5},  {"GMT", 0},    {"BST", -15},
44 +             {"CET", -15},   {"CEST", -30},  {"EET", -30},  {"EEST", -45},
45 +             {"AST", -45},   {"ADT", -60},   {"GST", -60},  {"GDT", -75},
46 +             {"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150},
47 +             {"NZST", -180}, {"NZDT", -195}, {"", 0}};
48 +
49 + static int make_directory(const char *path) {
50 + #ifdef _WIN32
51 +  if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
52 +    return 1;
53 +  }
54 +  return 0;
55 + #else
56 +  if (mkdir(path, 0777) == 0 || errno == EEXIST) {
57 +    return 1;
58 +  }
59 +  return 0;
60 + #endif
61 + }
62 +
63 + inline static float deg2rad(float deg) { return deg * (PI / 180.); }
64 +
65 + static int cvthour(char *hs, int *tsolar, double *hour) {
66 +  char *cp = hs;
67 +  int i, j;
68 +
69 +  if ((*tsolar = *cp == '+'))
70 +    cp++; /* solar time? */
71 +  while (isdigit(*cp))
72 +    cp++;
73 +  if (*cp == ':')
74 +    *hour = atoi(hs) + atoi(++cp) / 60.0;
75 +  else {
76 +    *hour = atof(hs);
77 +    if (*cp == '.')
78 +      cp++;
79 +  }
80 +  while (isdigit(*cp))
81 +    cp++;
82 +  if (!*cp)
83 +    return (0);
84 +  if (*tsolar || !isalpha(*cp)) {
85 +    fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
86 +    exit(1);
87 +  }
88 +  i = 0;
89 +  do {
90 +    for (j = 0; cp[j]; j++)
91 +      if (toupper(cp[j]) != tzone[i].zname[j])
92 +        break;
93 +    if (!cp[j] && !tzone[i].zname[j]) {
94 +      s_meridian = tzone[i].zmer * (PI / 180);
95 +      return (1);
96 +    }
97 +  } while (tzone[i++].zname[0]);
98 +
99 +  fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
100 +  fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
101 +  for (i = 1; tzone[i].zname[0]; i++)
102 +    fprintf(stderr, " %s", tzone[i].zname);
103 +  putc('\n', stderr);
104 +  exit(1);
105 + }
106 +
107 + static void basename(const char *path, char *output, size_t outsize) {
108 +  const char *last_slash = strrchr(path, '/');
109 +  const char *last_backslash = strrchr(path, '\\');
110 +  const char *filename = path;
111 +  const char *last_dot;
112 +
113 +  if (last_slash && last_backslash) {
114 +    filename =
115 +        (last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1;
116 +  } else if (last_slash) {
117 +    filename = last_slash + 1;
118 +  } else if (last_backslash) {
119 +    filename = last_backslash + 1;
120 +  }
121 +
122 +  last_dot = strrchr(filename, '.');
123 +  if (last_dot) {
124 +    size_t length = last_dot - filename;
125 +    if (length < outsize) {
126 +      strncpy(output, filename, length);
127 +      output[length] = '\0';
128 +    } else {
129 +      strncpy(output, filename, outsize - 1);
130 +      output[outsize - 1] = '\0';
131 +    }
132 +  }
133 + }
134 +
135 + static char *join_paths(const char *path1, const char *path2) {
136 +  size_t len1 = strlen(path1);
137 +  size_t len2 = strlen(path2);
138 +  int need_separator = (path1[len1 - 1] != DIRSEP);
139 +
140 +  char *result = malloc(len1 + len2 + (need_separator ? 2 : 1));
141 +  if (!result)
142 +    return NULL;
143 +
144 +  strcpy(result, path1);
145 +  if (need_separator) {
146 +    result[len1] = DIRSEP;
147 +    len1++;
148 +  }
149 +  strcpy(result + len1, path2);
150 +
151 +  return result;
152 + }
153 +
154   static inline double wmean2(const double a, const double b, const double x) {
155    return a * (1 - x) + b * x;
156   }
# Line 42 | Line 170 | static double get_zenith_brightness(const double sundi
170    return zenithbr;
171   }
172  
173 < // from gensky.c
173 > /* from gensky.c */
174   static double get_overcast_brightness(const double dz, const double zenithbr) {
175    double groundbr = zenithbr * GNORM;
176    return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
177                 pow(dz + 1.01, -10), groundbr);
178   }
179  
180 < static void write_rad_file(FILE *fp, const double *sun_radiance,
181 <                           const FVECT sundir, const char skyfile[PATH_MAX],
182 <                           const char grndfile[PATH_MAX]) {
180 > static void write_header(const int argc, char **argv, const double cloud_cover,
181 >                         const double grefl, const int res) {
182 >  printf("# ");
183 >  for (int i = 0; i < argc; i++) {
184 >    printf("%s ", argv[i]);
185 >  }
186 >  printf("\n");
187 >  printf(
188 >      "#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n",
189 >      cloud_cover, grefl, res);
190 > }
191 >
192 > static void write_rad(const double *sun_radiance, const FVECT sundir,
193 >                      const char *ddir, const char *skyfile) {
194    if (sundir[2] > 0) {
195 <    fprintf(fp, "void spectrum sunrad\n0\n0\n22 380 780 ");
195 >    printf("void spectrum sunrad\n0\n0\n22 380 780 ");
196 >    /* Normalize to one */
197 >    double sum = 0.0;
198      for (int i = 0; i < NSSAMP; ++i) {
199 <      fprintf(fp, "%.1f ", sun_radiance[i] * WVLSPAN);
199 >      sum += sun_radiance[i];
200      }
201 <    fprintf(fp, "\n\nsunrad light solar\n0\n0\n3 1 1 1\n\n");
202 <    fprintf(fp, "solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0],
203 <            sundir[1], sundir[2]);
201 >    double mean = sum / NSSAMP;
202 >    for (int i = 0; i < NSSAMP; ++i) {
203 >      printf("%.3f ", sun_radiance[i] / mean);
204 >    }
205 >    double intensity = mean * WVLSPAN;
206 >    printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity,
207 >           intensity, intensity);
208 >    printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1],
209 >           sundir[2]);
210    }
211 <  fprintf(fp,
212 <          "void specpict skyfunc\n8 noop %s fisheye.cal fish_u fish_v -rx 90 "
213 <          "-mx\n0\n0\n\n",
67 <          skyfile);
68 <  fprintf(fp, "skyfunc glow sky_glow\n0\n0\n4 1 1 1 0\n\n");
69 <  fprintf(fp, "sky_glow source sky\n0\n0\n4 0 0 1 180\n\n");
70 <
71 <  fprintf(fp,
72 <          "void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 "
73 <          "-my\n0\n0\n\n",
74 <          grndfile);
75 <  fprintf(fp, "grndmap glow ground_glow\n0\n0\n4 1 1 1 0\n\n");
76 <  fprintf(fp, "ground_glow source ground_source\n0\n0\n4 0 0 -1 180\n\n");
211 >  printf("void specpict skyfunc\n5 noop %s . 'atan2(Dy,Dx)/PI+1' "
212 >         "'acos(Dz)/PI'\n0\n0\n\n",
213 >         skyfile);
214   }
215  
216   static void write_hsr_header(FILE *fp, RESOLU *res) {
217 <  float wvsplit[4] = {380, 480, 588,
81 <                      780}; // RGB wavelength limits+partitions (nm)
217 >  float wvsplit[4] = {380, 480, 588, 780};
218    newheader("RADIANCE", fp);
219    fputncomp(NSSAMP, fp);
220    fputwlsplit(wvsplit, fp);
# Line 87 | Line 223 | static void write_hsr_header(FILE *fp, RESOLU *res) {
223    fputsresolu(res, fp);
224   }
225  
226 + static inline float frac(float x) { return x - floor(x); }
227 +
228   int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
229                    DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
230                    const double cloud_cover, const FVECT sundir,
231 <                  const double grefl, const int res, const char *outname) {
232 <
95 <  char radfile[PATH_MAX];
231 >                  const double grefl, const int res, const char *outname,
232 >                  const char *ddir) {
233    char skyfile[PATH_MAX];
234    char grndfile[PATH_MAX];
235 <  if (!snprintf(radfile, sizeof(radfile), "%s.rad", outname)) {
236 <    fprintf(stderr, "Error setting rad file name\n");
100 <    return 0;
101 <  };
102 <  if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) {
235 >  if (!snprintf(skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP,
236 >                outname)) {
237      fprintf(stderr, "Error setting sky file name\n");
238      return 0;
239    };
240 <  if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) {
241 <    fprintf(stderr, "Error setting ground file name\n");
242 <    return 0;
109 <  }
110 <  RESOLU rs = {PIXSTANDARD, res, res};
240 >  int xres = res;
241 >  int yres = xres / 2;
242 >  RESOLU rs = {PIXSTANDARD, xres, yres};
243    FILE *skyfp = fopen(skyfile, "w");
112  FILE *grndfp = fopen(grndfile, "w");
113  write_hsr_header(grndfp, &rs);
244    write_hsr_header(skyfp, &rs);
115  VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1.,
116                  180.,   180.,         0.,           0.,           0.,
117                  0.,     {0., 0., 0.}, {0., 0., 0.}, 0.,           0.};
118  VIEW grndview = {
119      VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0.,
120      0.,     0.,           {0., 0., 0.},  {0., 0., 0.}, 0., 0.};
121  setview(&skyview);
122  setview(&grndview);
245  
246    CNDX[3] = NSSAMP;
247  
248 <  FVECT view_point = {0, 0, ER};
248 >  FVECT view_point = {0, 0, ER + 10};
249    const double radius = VLEN(view_point);
250    const double sun_ct = fdot(view_point, sundir) / radius;
251 <  for (unsigned int j = 0; j < res; ++j) {
252 <    for (unsigned int i = 0; i < res; ++i) {
253 <      RREAL loc[2];
132 <      FVECT rorg = {0};
133 <      FVECT rdir_sky = {0};
134 <      FVECT rdir_grnd = {0};
135 <      SCOLOR sky_radiance = {0};
136 <      SCOLOR ground_radiance = {0};
251 >  for (int j = 0; j < yres; ++j) {
252 >    for (int i = 0; i < xres; ++i) {
253 >      SCOLOR radiance = {0};
254        SCOLR sky_sclr = {0};
138      SCOLR ground_sclr = {0};
255  
256 <      pix2loc(loc, &rs, i, j);
257 <      viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]);
258 <      viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]);
256 >      float px = i / (xres - 1.0);
257 >      float py = j / (yres - 1.0);
258 >      float lambda = ((1 - py) * PI) - (PI / 2.0);
259 >      float phi = (px * 2.0 * PI) - PI;
260  
261 <      const double mu_sky = fdot(view_point, rdir_sky) / radius;
262 <      const double nu_sky = fdot(rdir_sky, sundir);
261 >      FVECT rdir = {cos(lambda) * cos(phi), cos(lambda) * sin(phi),
262 >                    sin(lambda)};
263  
264 <      const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
265 <      const double nu_grnd = fdot(rdir_grnd, sundir);
264 >      const double mu = fdot(view_point, rdir) / radius;
265 >      const double nu = fdot(rdir, sundir);
266  
267 <      get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky,
268 <                       sky_radiance);
269 <      get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
270 <                          view_point, rdir_grnd, radius, mu_grnd, sun_ct,
271 <                          nu_grnd, grefl, sundir, ground_radiance);
267 >      /* hit ground */
268 >      if (rdir[2] < 0) {
269 >        get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
270 >                            view_point, rdir, radius, mu, sun_ct, nu, grefl,
271 >                            sundir, radiance);
272 >      } else {
273 >        get_sky_radiance(scat_clear, scat1m_clear, radius, mu, sun_ct, nu,
274 >                         radiance);
275 >      }
276  
277        for (int k = 0; k < NSSAMP; ++k) {
278 <        sky_radiance[k] *= WVLSPAN;
158 <        ground_radiance[k] *= WVLSPAN;
278 >        radiance[k] *= WVLSPAN;
279        }
280  
281        if (cloud_cover > 0) {
282          double zenithbr = get_zenith_brightness(sundir);
283          double grndbr = zenithbr * GNORM;
284 <        double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
285 <        for (int k = 0; k < NSSAMP; ++k) {
286 <          sky_radiance[k] =
287 <              wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover);
288 <          ground_radiance[k] =
289 <              wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover);
284 >        double skybr = get_overcast_brightness(rdir[2], zenithbr);
285 >        if (rdir[2] < 0) {
286 >          for (int k = 0; k < NSSAMP; ++k) {
287 >            radiance[k] = wmean2(radiance[k], grndbr * D6415[k], cloud_cover);
288 >          }
289 >        } else {
290 >          for (int k = 0; k < NSSAMP; ++k) {
291 >            radiance[k] = wmean2(radiance[k], skybr * D6415[k], cloud_cover);
292 >          }
293          }
294        }
295  
296 <      scolor2scolr(sky_sclr, sky_radiance, 20);
296 >      scolor2scolr(sky_sclr, radiance, 20);
297        putbinary(sky_sclr, LSCOLR, 1, skyfp);
175
176      scolor2scolr(ground_sclr, ground_radiance, 20);
177      putbinary(ground_sclr, LSCOLR, 1, grndfp);
298      }
299    }
300    fclose(skyfp);
181  fclose(grndfp);
301  
302 <  // Get solar radiance
302 >  /* Get solar radiance */
303    double sun_radiance[NSSAMP] = {0};
304    get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
305                       sun_ct, sun_radiance);
# Line 193 | Line 312 | int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_
312      }
313    }
314  
315 <  FILE *rfp = fopen(radfile, "w");
197 <  write_rad_file(rfp, sun_radiance, sundir, skyfile, grndfile);
198 <  fclose(rfp);
315 >  write_rad(sun_radiance, sundir, ddir, skyfile);
316    return 1;
317   }
318  
319 < static DpPaths get_dppaths(const double aod, const char *tag) {
319 > static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
320 >                           const char *tag) {
321    DpPaths paths;
322  
323 <  snprintf(paths.tau, PATH_MAX, "tau_%s_%.2f.dat", tag, aod);
324 <  snprintf(paths.scat, PATH_MAX, "scat_%s_%.2f.dat", tag, aod);
325 <  snprintf(paths.scat1m, PATH_MAX, "scat1m_%s_%.2f.dat", tag, aod);
326 <  snprintf(paths.irrad, PATH_MAX, "irrad_%s_%.2f.dat", tag, aod);
323 >  snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
324 >           mname, aod);
325 >  snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
326 >           mname, aod);
327 >  snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
328 >           tag, mname, aod);
329 >  snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
330 >           mname, aod);
331  
332    return paths;
333   }
334  
335 < static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, const int is_summer,
335 > static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
336 >                                         const int is_summer,
337                                           const double s_latitude) {
338 <  // Set rayleigh density profile
216 <  if (fabs(s_latitude*180.0 / PI) > ARCTIC_LAT) {
338 >  if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
339      tag[0] = 's';
340      if (is_summer) {
341        tag[1] = 's';
# Line 224 | Line 346 | static void set_rayleigh_density_profile(Atmosphere *a
346        atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
347        atmos->beta_r0 = BR0_SW;
348      }
349 <  } else if (fabs(s_latitude*180.0/PI) > TROPIC_LAT) {
349 >  } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
350      tag[0] = 'm';
351      if (is_summer) {
352        tag[1] = 's';
# Line 245 | Line 367 | static void set_rayleigh_density_profile(Atmosphere *a
367   }
368  
369   static Atmosphere init_atmos(const double aod, const double grefl) {
370 <  Atmosphere atmos = {
371 <      .ozone_density = {.layers =
372 <                            {
373 <                                {.width = 25000.0,
374 <                                 .exp_term = 0.0,
375 <                                 .exp_scale = 0.0,
376 <                                 .linear_term = 1.0 / 15000.0,
377 <                                 .constant_term = -2.0 / 3.0},
378 <                                {.width = AH,
379 <                                 .exp_term = 0.0,
380 <                                 .exp_scale = 0.0,
381 <                                 .linear_term = -1.0 / 15000.0,
382 <                                 .constant_term = 8.0 / 3.0},
383 <                            }},
384 <      .rayleigh_density = {.layers =
385 <                               {
386 <                                   {.width = AH,
387 <                                    .exp_term = 1.0,
388 <                                    .exp_scale = -1.0 / HR_MS,
389 <                                    .linear_term = 0.0,
390 <                                    .constant_term = 0.0},
391 <                               }},
392 <      .beta_r0 = BR0_MS,
393 <      .beta_scale = aod / AOD0_CA,
394 <      .beta_m = NULL,
273 <      .grefl = grefl
274 <  };
370 >  Atmosphere atmos = {.ozone_density = {.layers =
371 >                                            {
372 >                                                {.width = 25000.0,
373 >                                                 .exp_term = 0.0,
374 >                                                 .exp_scale = 0.0,
375 >                                                 .linear_term = 1.0 / 15000.0,
376 >                                                 .constant_term = -2.0 / 3.0},
377 >                                                {.width = AH,
378 >                                                 .exp_term = 0.0,
379 >                                                 .exp_scale = 0.0,
380 >                                                 .linear_term = -1.0 / 15000.0,
381 >                                                 .constant_term = 8.0 / 3.0},
382 >                                            }},
383 >                      .rayleigh_density = {.layers =
384 >                                               {
385 >                                                   {.width = AH,
386 >                                                    .exp_term = 1.0,
387 >                                                    .exp_scale = -1.0 / HR_MS,
388 >                                                    .linear_term = 0.0,
389 >                                                    .constant_term = 0.0},
390 >                                               }},
391 >                      .beta_r0 = BR0_MS,
392 >                      .beta_scale = aod / AOD0_CA,
393 >                      .beta_m = NULL,
394 >                      .grefl = grefl};
395    return atmos;
396   }
397  
# Line 284 | Line 404 | int main(int argc, char *argv[]) {
404    int sorder = 4;
405    int year = 0;
406    int tsolar = 0;
407 +  int got_meridian = 0;
408    double grefl = 0.2;
409    double ccover = 0.0;
410 <  int res = 128;
410 >  int res = 64;
411    double aod = AOD0_CA;
412    char *outname = "out";
413    char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
414 +  char mie_name[20] = "mie_ca";
415    char lstag[3];
416 +  char *ddir = ".";
417  
418 +  if (argc == 2 && !strcmp(argv[1], "-defaults")) {
419 +    printf("-i %d\t\t\t\t#scattering order\n", sorder);
420 +    printf("-g %f\t\t\t#ground reflectance\n", grefl);
421 +    printf("-c %f\t\t\t#cloud cover\n", ccover);
422 +    printf("-r %d\t\t\t\t#image resolution\n", res);
423 +    printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA);
424 +    printf("-f %s\t\t\t\t#output name (-f)\n", outname);
425 +    printf("-p %s\t\t\t\t#atmos data directory\n", ddir);
426 +    exit(0);
427 +  }
428 +
429    if (argc < 4) {
430 <    fprintf(stderr, "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r res -n nproc -c ccover -l mie -g grefl -f outpath\n",
430 >    fprintf(stderr,
431 >            "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r "
432 >            "res -n nproc -c ccover -l mie -g grefl -f outpath\n",
433              argv[0]);
434      return 0;
435    }
436  
437    month = atoi(argv[1]);
438 +  if (month < 1 || month > 12) {
439 +    fprintf(stderr, "bad month");
440 +    exit(1);
441 +  }
442    day = atoi(argv[2]);
443 <  hour = atof(argv[3]);
443 >  if (day < 1 || day > 31) {
444 >    fprintf(stderr, "bad month");
445 >    exit(1);
446 >  }
447 >  got_meridian = cvthour(argv[3], &tsolar, &hour);
448  
449    if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
450      fprintf(stderr, "Cannot compute solar angle\n");
# Line 313 | Line 457 | int main(int argc, char *argv[]) {
457        case 'a':
458          s_latitude = atof(argv[++i]) * (PI / 180.0);
459          break;
316      case 'g':
317        grefl = atof(argv[++i]);
318        break;
460        case 'c':
461          ccover = atof(argv[++i]);
462          break;
463        case 'd':
464          aod = atof(argv[++i]);
465          break;
466 +      case 'f':
467 +        outname = argv[++i];
468 +        break;
469 +      case 'g':
470 +        grefl = atof(argv[++i]);
471 +        break;
472        case 'i':
473          sorder = atoi(argv[++i]);
474          break;
475        case 'l':
476          mie_path = argv[++i];
477 +        basename(mie_path, mie_name, sizeof(mie_name));
478          break;
479        case 'm':
480 +        if (got_meridian) {
481 +          ++i;
482 +          break;
483 +        }
484          s_meridian = atof(argv[++i]) * (PI / 180.0);
485          break;
334      case 'o':
335        s_longitude = atof(argv[++i]) * (PI / 180.0);
336        break;
486        case 'n':
487          num_threads = atoi(argv[++i]);
488          break;
489 <      case 'y':
490 <        year = atoi(argv[++i]);
489 >      case 'o':
490 >        s_longitude = atof(argv[++i]) * (PI / 180.0);
491          break;
492 <      case 'f':
493 <        outname = argv[++i];
492 >      case 'p':
493 >        ddir = argv[++i];
494          break;
495        case 'r':
496          res = atoi(argv[++i]);
497          break;
498 +      case 'y':
499 +        year = atoi(argv[++i]);
500 +        break;
501        default:
502          fprintf(stderr, "Unknown option %s\n", argv[i]);
503          exit(1);
504        }
505      }
506    }
507 +  if (year && (year < 1950) | (year > 2050))
508 +    fprintf(stderr, "%s: warning - year should be in range 1950-2050\n",
509 +            progname);
510 +  if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180)
511 +    fprintf(stderr,
512 +            "%s: warning - %.1f hours btwn. standard meridian and longitude\n",
513 +            progname, (s_longitude - s_meridian) * 12 / PI);
514  
515    Atmosphere clear_atmos = init_atmos(aod, grefl);
516  
# Line 361 | Line 520 | int main(int argc, char *argv[]) {
520    }
521    set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
522  
523 <  // Load mie density data
523 >  /* Load mie density data */
524    DATARRAY *mie_dp = getdata(mie_path);
525    if (mie_dp == NULL) {
526      fprintf(stderr, "Error reading mie data\n");
# Line 369 | Line 528 | int main(int argc, char *argv[]) {
528    }
529    clear_atmos.beta_m = mie_dp;
530  
531 <  DpPaths clear_paths = get_dppaths(aod, lstag);
531 >  char gsdir[PATH_MAX];
532 >  size_t siz = strlen(ddir);
533 >  if (ISDIRSEP(ddir[siz - 1]))
534 >    ddir[siz - 1] = '\0';
535 >  snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
536 >  if (!make_directory(gsdir)) {
537 >    fprintf(stderr, "Failed creating atmos_data directory");
538 >    exit(1);
539 >  }
540 >  DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
541  
542    if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
543        getpath(clear_paths.scat, ".", R_OK) == NULL ||
544        getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
545        getpath(clear_paths.irrad, ".", R_OK) == NULL) {
546 <    printf("# Precomputing...\n");
546 >    printf("# Pre-computing...\n");
547      if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
548 <      fprintf(stderr, "Precompute failed\n");
548 >      fprintf(stderr, "Pre-compute failed\n");
549        return 0;
550      }
551    }
# Line 387 | Line 555 | int main(int argc, char *argv[]) {
555    DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
556    DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
557  
558 +  write_header(argc, argv, ccover, grefl, res);
559 +
560    if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
561 <                     irrad_clear_dp, ccover, sundir, grefl, res, outname)) {
561 >                     irrad_clear_dp, ccover, sundir, grefl, res, outname,
562 >                     ddir)) {
563      fprintf(stderr, "gen_spect_sky failed\n");
564      exit(1);
565    }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines