1 |
greg |
2.2 |
#ifndef lint |
2 |
|
|
static const char RCSid[] = "$Id$"; |
3 |
|
|
#endif |
4 |
|
|
/* Main function for generating spectral sky */ |
5 |
|
|
/* Cloudy sky computed as weight average of clear and cie overcast sky */ |
6 |
greg |
2.1 |
|
7 |
greg |
2.2 |
#include "atmos.h" |
8 |
greg |
2.1 |
#include "copyright.h" |
9 |
|
|
#include "resolu.h" |
10 |
greg |
2.2 |
#include "rtio.h" |
11 |
|
|
#include <ctype.h> |
12 |
|
|
#ifdef _WIN32 |
13 |
|
|
#include <windows.h> |
14 |
|
|
#else |
15 |
|
|
#include <errno.h> |
16 |
|
|
#include <sys/stat.h> |
17 |
|
|
#include <sys/types.h> |
18 |
|
|
#endif |
19 |
greg |
2.1 |
|
20 |
|
|
char *progname; |
21 |
|
|
|
22 |
|
|
const double ARCTIC_LAT = 67.; |
23 |
|
|
const double TROPIC_LAT = 23.; |
24 |
|
|
const int SUMMER_START = 4; |
25 |
|
|
const int SUMMER_END = 9; |
26 |
|
|
const double GNORM = 0.777778; |
27 |
|
|
|
28 |
|
|
const double D65EFF = 203.; /* standard illuminant D65 */ |
29 |
|
|
|
30 |
greg |
2.2 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */ |
31 |
greg |
2.1 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
32 |
|
|
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
33 |
|
|
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
34 |
|
|
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
35 |
|
|
|
36 |
greg |
2.2 |
/* European and North American zones */ |
37 |
|
|
struct { |
38 |
|
|
char zname[8]; /* time zone name (all caps) */ |
39 |
|
|
float zmer; /* standard meridian */ |
40 |
|
|
} tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105}, |
41 |
|
|
{"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75}, |
42 |
|
|
{"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45}, |
43 |
|
|
{"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15}, |
44 |
|
|
{"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45}, |
45 |
|
|
{"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75}, |
46 |
|
|
{"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150}, |
47 |
|
|
{"NZST", -180}, {"NZDT", -195}, {"", 0}}; |
48 |
|
|
|
49 |
|
|
static int make_directory(const char *path) { |
50 |
|
|
#ifdef _WIN32 |
51 |
|
|
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
52 |
|
|
return 1; |
53 |
|
|
} |
54 |
|
|
return 0; |
55 |
|
|
#else |
56 |
|
|
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
57 |
|
|
return 1; |
58 |
|
|
} |
59 |
|
|
return 0; |
60 |
|
|
#endif |
61 |
|
|
} |
62 |
|
|
|
63 |
greg |
2.3 |
inline static float deg2rad(float deg) { return deg * (PI / 180.); } |
64 |
|
|
|
65 |
greg |
2.2 |
static int cvthour(char *hs, int *tsolar, double *hour) { |
66 |
|
|
char *cp = hs; |
67 |
|
|
int i, j; |
68 |
|
|
|
69 |
|
|
if ((*tsolar = *cp == '+')) |
70 |
|
|
cp++; /* solar time? */ |
71 |
|
|
while (isdigit(*cp)) |
72 |
|
|
cp++; |
73 |
|
|
if (*cp == ':') |
74 |
|
|
*hour = atoi(hs) + atoi(++cp) / 60.0; |
75 |
|
|
else { |
76 |
|
|
*hour = atof(hs); |
77 |
|
|
if (*cp == '.') |
78 |
|
|
cp++; |
79 |
|
|
} |
80 |
|
|
while (isdigit(*cp)) |
81 |
|
|
cp++; |
82 |
|
|
if (!*cp) |
83 |
|
|
return (0); |
84 |
|
|
if (*tsolar || !isalpha(*cp)) { |
85 |
|
|
fprintf(stderr, "%s: bad time format: %s\n", progname, hs); |
86 |
|
|
exit(1); |
87 |
|
|
} |
88 |
|
|
i = 0; |
89 |
|
|
do { |
90 |
|
|
for (j = 0; cp[j]; j++) |
91 |
|
|
if (toupper(cp[j]) != tzone[i].zname[j]) |
92 |
|
|
break; |
93 |
|
|
if (!cp[j] && !tzone[i].zname[j]) { |
94 |
|
|
s_meridian = tzone[i].zmer * (PI / 180); |
95 |
|
|
return (1); |
96 |
|
|
} |
97 |
|
|
} while (tzone[i++].zname[0]); |
98 |
|
|
|
99 |
|
|
fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp); |
100 |
|
|
fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname); |
101 |
|
|
for (i = 1; tzone[i].zname[0]; i++) |
102 |
|
|
fprintf(stderr, " %s", tzone[i].zname); |
103 |
|
|
putc('\n', stderr); |
104 |
|
|
exit(1); |
105 |
|
|
} |
106 |
|
|
|
107 |
|
|
static void basename(const char *path, char *output, size_t outsize) { |
108 |
|
|
const char *last_slash = strrchr(path, '/'); |
109 |
|
|
const char *last_backslash = strrchr(path, '\\'); |
110 |
|
|
const char *filename = path; |
111 |
|
|
const char *last_dot; |
112 |
|
|
|
113 |
|
|
if (last_slash && last_backslash) { |
114 |
|
|
filename = |
115 |
|
|
(last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1; |
116 |
|
|
} else if (last_slash) { |
117 |
|
|
filename = last_slash + 1; |
118 |
|
|
} else if (last_backslash) { |
119 |
|
|
filename = last_backslash + 1; |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
last_dot = strrchr(filename, '.'); |
123 |
|
|
if (last_dot) { |
124 |
|
|
size_t length = last_dot - filename; |
125 |
|
|
if (length < outsize) { |
126 |
|
|
strncpy(output, filename, length); |
127 |
|
|
output[length] = '\0'; |
128 |
|
|
} else { |
129 |
|
|
strncpy(output, filename, outsize - 1); |
130 |
|
|
output[outsize - 1] = '\0'; |
131 |
|
|
} |
132 |
|
|
} |
133 |
|
|
} |
134 |
|
|
|
135 |
greg |
2.3 |
static char *join_paths(const char *path1, const char *path2) { |
136 |
greg |
2.2 |
size_t len1 = strlen(path1); |
137 |
|
|
size_t len2 = strlen(path2); |
138 |
|
|
int need_separator = (path1[len1 - 1] != DIRSEP); |
139 |
|
|
|
140 |
|
|
char *result = malloc(len1 + len2 + (need_separator ? 2 : 1)); |
141 |
|
|
if (!result) |
142 |
|
|
return NULL; |
143 |
|
|
|
144 |
|
|
strcpy(result, path1); |
145 |
|
|
if (need_separator) { |
146 |
|
|
result[len1] = DIRSEP; |
147 |
|
|
len1++; |
148 |
|
|
} |
149 |
|
|
strcpy(result + len1, path2); |
150 |
|
|
|
151 |
|
|
return result; |
152 |
|
|
} |
153 |
|
|
|
154 |
greg |
2.1 |
static inline double wmean2(const double a, const double b, const double x) { |
155 |
|
|
return a * (1 - x) + b * x; |
156 |
|
|
} |
157 |
|
|
|
158 |
|
|
static inline double wmean(const double a, const double x, const double b, |
159 |
|
|
const double y) { |
160 |
|
|
return (a * x + b * y) / (a + b); |
161 |
|
|
} |
162 |
|
|
|
163 |
|
|
static double get_zenith_brightness(const double sundir[3]) { |
164 |
|
|
double zenithbr; |
165 |
|
|
if (sundir[2] < 0) { |
166 |
|
|
zenithbr = 0; |
167 |
|
|
} else { |
168 |
|
|
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
169 |
|
|
} |
170 |
|
|
return zenithbr; |
171 |
|
|
} |
172 |
|
|
|
173 |
greg |
2.2 |
/* from gensky.c */ |
174 |
greg |
2.1 |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
175 |
|
|
double groundbr = zenithbr * GNORM; |
176 |
|
|
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
177 |
|
|
pow(dz + 1.01, -10), groundbr); |
178 |
|
|
} |
179 |
|
|
|
180 |
greg |
2.2 |
static void write_header(const int argc, char **argv, const double cloud_cover, |
181 |
|
|
const double grefl, const int res) { |
182 |
|
|
printf("# "); |
183 |
|
|
for (int i = 0; i < argc; i++) { |
184 |
|
|
printf("%s ", argv[i]); |
185 |
|
|
} |
186 |
|
|
printf("\n"); |
187 |
greg |
2.3 |
printf( |
188 |
|
|
"#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n", |
189 |
|
|
cloud_cover, grefl, res); |
190 |
greg |
2.2 |
} |
191 |
|
|
|
192 |
|
|
static void write_rad(const double *sun_radiance, const FVECT sundir, |
193 |
greg |
2.3 |
const char *ddir, const char *skyfile) { |
194 |
greg |
2.1 |
if (sundir[2] > 0) { |
195 |
greg |
2.2 |
printf("void spectrum sunrad\n0\n0\n22 380 780 "); |
196 |
|
|
/* Normalize to one */ |
197 |
|
|
double sum = 0.0; |
198 |
greg |
2.1 |
for (int i = 0; i < NSSAMP; ++i) { |
199 |
greg |
2.2 |
sum += sun_radiance[i]; |
200 |
greg |
2.1 |
} |
201 |
greg |
2.2 |
double mean = sum / NSSAMP; |
202 |
|
|
for (int i = 0; i < NSSAMP; ++i) { |
203 |
|
|
printf("%.3f ", sun_radiance[i] / mean); |
204 |
|
|
} |
205 |
|
|
double intensity = mean * WVLSPAN; |
206 |
|
|
printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity, |
207 |
|
|
intensity, intensity); |
208 |
|
|
printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1], |
209 |
|
|
sundir[2]); |
210 |
|
|
} |
211 |
greg |
2.3 |
printf("void specpict skyfunc\n5 noop %s . 'atan2(Dy,Dx)/PI+1' " |
212 |
|
|
"'acos(Dz)/PI'\n0\n0\n\n", |
213 |
greg |
2.2 |
skyfile); |
214 |
greg |
2.1 |
} |
215 |
|
|
|
216 |
|
|
static void write_hsr_header(FILE *fp, RESOLU *res) { |
217 |
greg |
2.3 |
float wvsplit[4] = {380, 480, 588, 780}; |
218 |
greg |
2.1 |
newheader("RADIANCE", fp); |
219 |
|
|
fputncomp(NSSAMP, fp); |
220 |
|
|
fputwlsplit(wvsplit, fp); |
221 |
|
|
fputformat(SPECFMT, fp); |
222 |
|
|
fputc('\n', fp); |
223 |
|
|
fputsresolu(res, fp); |
224 |
|
|
} |
225 |
|
|
|
226 |
greg |
2.3 |
static inline float frac(float x) { return x - floor(x); } |
227 |
|
|
|
228 |
greg |
2.1 |
int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear, |
229 |
|
|
DATARRAY *scat1m_clear, DATARRAY *irrad_clear, |
230 |
|
|
const double cloud_cover, const FVECT sundir, |
231 |
greg |
2.3 |
const double grefl, const int res, const char *outname, |
232 |
|
|
const char *ddir) { |
233 |
greg |
2.1 |
char skyfile[PATH_MAX]; |
234 |
|
|
char grndfile[PATH_MAX]; |
235 |
greg |
2.3 |
if (!snprintf(skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP, |
236 |
|
|
outname)) { |
237 |
greg |
2.1 |
fprintf(stderr, "Error setting sky file name\n"); |
238 |
|
|
return 0; |
239 |
|
|
}; |
240 |
greg |
2.3 |
int xres = res; |
241 |
|
|
int yres = xres / 2; |
242 |
|
|
RESOLU rs = {PIXSTANDARD, xres, yres}; |
243 |
greg |
2.1 |
FILE *skyfp = fopen(skyfile, "w"); |
244 |
|
|
write_hsr_header(skyfp, &rs); |
245 |
|
|
|
246 |
|
|
CNDX[3] = NSSAMP; |
247 |
|
|
|
248 |
greg |
2.3 |
FVECT view_point = {0, 0, ER + 10}; |
249 |
greg |
2.1 |
const double radius = VLEN(view_point); |
250 |
|
|
const double sun_ct = fdot(view_point, sundir) / radius; |
251 |
greg |
2.3 |
for (int j = 0; j < yres; ++j) { |
252 |
|
|
for (int i = 0; i < xres; ++i) { |
253 |
|
|
SCOLOR radiance = {0}; |
254 |
greg |
2.1 |
SCOLR sky_sclr = {0}; |
255 |
|
|
|
256 |
greg |
2.3 |
float px = i / (xres - 1.0); |
257 |
|
|
float py = j / (yres - 1.0); |
258 |
|
|
float lambda = ((1 - py) * PI) - (PI / 2.0); |
259 |
|
|
float phi = (px * 2.0 * PI) - PI; |
260 |
|
|
|
261 |
|
|
FVECT rdir = {cos(lambda) * cos(phi), cos(lambda) * sin(phi), |
262 |
|
|
sin(lambda)}; |
263 |
|
|
|
264 |
|
|
const double mu = fdot(view_point, rdir) / radius; |
265 |
|
|
const double nu = fdot(rdir, sundir); |
266 |
|
|
|
267 |
|
|
/* hit ground */ |
268 |
|
|
if (rdir[2] < 0) { |
269 |
|
|
get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear, |
270 |
|
|
view_point, rdir, radius, mu, sun_ct, nu, grefl, |
271 |
|
|
sundir, radiance); |
272 |
|
|
} else { |
273 |
|
|
get_sky_radiance(scat_clear, scat1m_clear, radius, mu, sun_ct, nu, |
274 |
|
|
radiance); |
275 |
|
|
} |
276 |
greg |
2.1 |
|
277 |
|
|
for (int k = 0; k < NSSAMP; ++k) { |
278 |
greg |
2.3 |
radiance[k] *= WVLSPAN; |
279 |
greg |
2.1 |
} |
280 |
|
|
|
281 |
|
|
if (cloud_cover > 0) { |
282 |
|
|
double zenithbr = get_zenith_brightness(sundir); |
283 |
|
|
double grndbr = zenithbr * GNORM; |
284 |
greg |
2.3 |
double skybr = get_overcast_brightness(rdir[2], zenithbr); |
285 |
|
|
if (rdir[2] < 0) { |
286 |
|
|
for (int k = 0; k < NSSAMP; ++k) { |
287 |
|
|
radiance[k] = wmean2(radiance[k], grndbr * D6415[k], cloud_cover); |
288 |
|
|
} |
289 |
|
|
} else { |
290 |
|
|
for (int k = 0; k < NSSAMP; ++k) { |
291 |
|
|
radiance[k] = wmean2(radiance[k], skybr * D6415[k], cloud_cover); |
292 |
|
|
} |
293 |
greg |
2.1 |
} |
294 |
|
|
} |
295 |
|
|
|
296 |
greg |
2.3 |
scolor2scolr(sky_sclr, radiance, 20); |
297 |
greg |
2.1 |
putbinary(sky_sclr, LSCOLR, 1, skyfp); |
298 |
|
|
} |
299 |
|
|
} |
300 |
|
|
fclose(skyfp); |
301 |
|
|
|
302 |
greg |
2.2 |
/* Get solar radiance */ |
303 |
greg |
2.1 |
double sun_radiance[NSSAMP] = {0}; |
304 |
|
|
get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius, |
305 |
|
|
sun_ct, sun_radiance); |
306 |
|
|
if (cloud_cover > 0) { |
307 |
|
|
double zenithbr = get_zenith_brightness(sundir); |
308 |
|
|
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
309 |
|
|
for (int i = 0; i < NSSAMP; ++i) { |
310 |
|
|
sun_radiance[i] = |
311 |
|
|
wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover); |
312 |
|
|
} |
313 |
|
|
} |
314 |
|
|
|
315 |
greg |
2.3 |
write_rad(sun_radiance, sundir, ddir, skyfile); |
316 |
greg |
2.1 |
return 1; |
317 |
|
|
} |
318 |
|
|
|
319 |
greg |
2.2 |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, |
320 |
|
|
const char *tag) { |
321 |
greg |
2.1 |
DpPaths paths; |
322 |
|
|
|
323 |
greg |
2.2 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
324 |
|
|
mname, aod); |
325 |
|
|
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
326 |
|
|
mname, aod); |
327 |
|
|
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, |
328 |
|
|
tag, mname, aod); |
329 |
|
|
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
330 |
|
|
mname, aod); |
331 |
greg |
2.1 |
|
332 |
|
|
return paths; |
333 |
|
|
} |
334 |
|
|
|
335 |
greg |
2.2 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, |
336 |
|
|
const int is_summer, |
337 |
greg |
2.1 |
const double s_latitude) { |
338 |
greg |
2.2 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
339 |
greg |
2.1 |
tag[0] = 's'; |
340 |
|
|
if (is_summer) { |
341 |
|
|
tag[1] = 's'; |
342 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
343 |
|
|
atmos->beta_r0 = BR0_SS; |
344 |
|
|
} else { |
345 |
|
|
tag[1] = 'w'; |
346 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
347 |
|
|
atmos->beta_r0 = BR0_SW; |
348 |
|
|
} |
349 |
greg |
2.2 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
350 |
greg |
2.1 |
tag[0] = 'm'; |
351 |
|
|
if (is_summer) { |
352 |
|
|
tag[1] = 's'; |
353 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
354 |
|
|
atmos->beta_r0 = BR0_MS; |
355 |
|
|
} else { |
356 |
|
|
tag[1] = 'w'; |
357 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
358 |
|
|
atmos->beta_r0 = BR0_MW; |
359 |
|
|
} |
360 |
|
|
} else { |
361 |
|
|
tag[0] = 't'; |
362 |
|
|
tag[1] = 'r'; |
363 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
364 |
|
|
atmos->beta_r0 = BR0_T; |
365 |
|
|
} |
366 |
|
|
tag[2] = '\0'; |
367 |
|
|
} |
368 |
|
|
|
369 |
|
|
static Atmosphere init_atmos(const double aod, const double grefl) { |
370 |
greg |
2.2 |
Atmosphere atmos = {.ozone_density = {.layers = |
371 |
|
|
{ |
372 |
|
|
{.width = 25000.0, |
373 |
|
|
.exp_term = 0.0, |
374 |
|
|
.exp_scale = 0.0, |
375 |
|
|
.linear_term = 1.0 / 15000.0, |
376 |
|
|
.constant_term = -2.0 / 3.0}, |
377 |
|
|
{.width = AH, |
378 |
|
|
.exp_term = 0.0, |
379 |
|
|
.exp_scale = 0.0, |
380 |
|
|
.linear_term = -1.0 / 15000.0, |
381 |
|
|
.constant_term = 8.0 / 3.0}, |
382 |
|
|
}}, |
383 |
|
|
.rayleigh_density = {.layers = |
384 |
|
|
{ |
385 |
|
|
{.width = AH, |
386 |
|
|
.exp_term = 1.0, |
387 |
|
|
.exp_scale = -1.0 / HR_MS, |
388 |
|
|
.linear_term = 0.0, |
389 |
|
|
.constant_term = 0.0}, |
390 |
|
|
}}, |
391 |
|
|
.beta_r0 = BR0_MS, |
392 |
|
|
.beta_scale = aod / AOD0_CA, |
393 |
|
|
.beta_m = NULL, |
394 |
|
|
.grefl = grefl}; |
395 |
greg |
2.1 |
return atmos; |
396 |
|
|
} |
397 |
|
|
|
398 |
|
|
int main(int argc, char *argv[]) { |
399 |
|
|
progname = argv[0]; |
400 |
|
|
int month, day; |
401 |
|
|
double hour; |
402 |
|
|
FVECT sundir; |
403 |
|
|
int num_threads = 1; |
404 |
|
|
int sorder = 4; |
405 |
|
|
int year = 0; |
406 |
|
|
int tsolar = 0; |
407 |
greg |
2.2 |
int got_meridian = 0; |
408 |
greg |
2.1 |
double grefl = 0.2; |
409 |
|
|
double ccover = 0.0; |
410 |
greg |
2.3 |
int res = 64; |
411 |
greg |
2.1 |
double aod = AOD0_CA; |
412 |
|
|
char *outname = "out"; |
413 |
|
|
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
414 |
greg |
2.2 |
char mie_name[20] = "mie_ca"; |
415 |
greg |
2.1 |
char lstag[3]; |
416 |
greg |
2.2 |
char *ddir = "."; |
417 |
|
|
|
418 |
greg |
2.3 |
if (argc == 2 && !strcmp(argv[1], "-defaults")) { |
419 |
greg |
2.2 |
printf("-i %d\t\t\t\t#scattering order\n", sorder); |
420 |
|
|
printf("-g %f\t\t\t#ground reflectance\n", grefl); |
421 |
|
|
printf("-c %f\t\t\t#cloud cover\n", ccover); |
422 |
|
|
printf("-r %d\t\t\t\t#image resolution\n", res); |
423 |
|
|
printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA); |
424 |
|
|
printf("-f %s\t\t\t\t#output name (-f)\n", outname); |
425 |
|
|
printf("-p %s\t\t\t\t#atmos data directory\n", ddir); |
426 |
greg |
2.3 |
exit(0); |
427 |
greg |
2.2 |
} |
428 |
greg |
2.1 |
|
429 |
|
|
if (argc < 4) { |
430 |
greg |
2.2 |
fprintf(stderr, |
431 |
|
|
"Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r " |
432 |
|
|
"res -n nproc -c ccover -l mie -g grefl -f outpath\n", |
433 |
greg |
2.1 |
argv[0]); |
434 |
|
|
return 0; |
435 |
|
|
} |
436 |
|
|
|
437 |
|
|
month = atoi(argv[1]); |
438 |
greg |
2.2 |
if (month < 1 || month > 12) { |
439 |
|
|
fprintf(stderr, "bad month"); |
440 |
|
|
exit(1); |
441 |
|
|
} |
442 |
greg |
2.1 |
day = atoi(argv[2]); |
443 |
greg |
2.2 |
if (day < 1 || day > 31) { |
444 |
|
|
fprintf(stderr, "bad month"); |
445 |
|
|
exit(1); |
446 |
|
|
} |
447 |
|
|
got_meridian = cvthour(argv[3], &tsolar, &hour); |
448 |
greg |
2.1 |
|
449 |
|
|
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) { |
450 |
|
|
fprintf(stderr, "Cannot compute solar angle\n"); |
451 |
|
|
exit(1); |
452 |
|
|
} |
453 |
|
|
|
454 |
|
|
for (int i = 4; i < argc; i++) { |
455 |
|
|
if (argv[i][0] == '-') { |
456 |
|
|
switch (argv[i][1]) { |
457 |
|
|
case 'a': |
458 |
|
|
s_latitude = atof(argv[++i]) * (PI / 180.0); |
459 |
|
|
break; |
460 |
|
|
case 'c': |
461 |
|
|
ccover = atof(argv[++i]); |
462 |
|
|
break; |
463 |
|
|
case 'd': |
464 |
|
|
aod = atof(argv[++i]); |
465 |
|
|
break; |
466 |
greg |
2.2 |
case 'f': |
467 |
|
|
outname = argv[++i]; |
468 |
|
|
break; |
469 |
|
|
case 'g': |
470 |
|
|
grefl = atof(argv[++i]); |
471 |
|
|
break; |
472 |
greg |
2.1 |
case 'i': |
473 |
|
|
sorder = atoi(argv[++i]); |
474 |
|
|
break; |
475 |
|
|
case 'l': |
476 |
|
|
mie_path = argv[++i]; |
477 |
greg |
2.2 |
basename(mie_path, mie_name, sizeof(mie_name)); |
478 |
greg |
2.1 |
break; |
479 |
|
|
case 'm': |
480 |
greg |
2.2 |
if (got_meridian) { |
481 |
|
|
++i; |
482 |
|
|
break; |
483 |
|
|
} |
484 |
greg |
2.1 |
s_meridian = atof(argv[++i]) * (PI / 180.0); |
485 |
|
|
break; |
486 |
|
|
case 'n': |
487 |
|
|
num_threads = atoi(argv[++i]); |
488 |
|
|
break; |
489 |
greg |
2.2 |
case 'o': |
490 |
|
|
s_longitude = atof(argv[++i]) * (PI / 180.0); |
491 |
greg |
2.1 |
break; |
492 |
greg |
2.2 |
case 'p': |
493 |
|
|
ddir = argv[++i]; |
494 |
greg |
2.1 |
break; |
495 |
|
|
case 'r': |
496 |
|
|
res = atoi(argv[++i]); |
497 |
|
|
break; |
498 |
greg |
2.2 |
case 'y': |
499 |
|
|
year = atoi(argv[++i]); |
500 |
|
|
break; |
501 |
greg |
2.1 |
default: |
502 |
|
|
fprintf(stderr, "Unknown option %s\n", argv[i]); |
503 |
|
|
exit(1); |
504 |
|
|
} |
505 |
|
|
} |
506 |
|
|
} |
507 |
greg |
2.2 |
if (year && (year < 1950) | (year > 2050)) |
508 |
|
|
fprintf(stderr, "%s: warning - year should be in range 1950-2050\n", |
509 |
|
|
progname); |
510 |
|
|
if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180) |
511 |
|
|
fprintf(stderr, |
512 |
|
|
"%s: warning - %.1f hours btwn. standard meridian and longitude\n", |
513 |
|
|
progname, (s_longitude - s_meridian) * 12 / PI); |
514 |
greg |
2.1 |
|
515 |
|
|
Atmosphere clear_atmos = init_atmos(aod, grefl); |
516 |
|
|
|
517 |
|
|
int is_summer = (month >= SUMMER_START && month <= SUMMER_END); |
518 |
|
|
if (s_latitude < 0) { |
519 |
|
|
is_summer = !is_summer; |
520 |
|
|
} |
521 |
|
|
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
522 |
|
|
|
523 |
greg |
2.2 |
/* Load mie density data */ |
524 |
greg |
2.1 |
DATARRAY *mie_dp = getdata(mie_path); |
525 |
|
|
if (mie_dp == NULL) { |
526 |
|
|
fprintf(stderr, "Error reading mie data\n"); |
527 |
|
|
return 0; |
528 |
|
|
} |
529 |
|
|
clear_atmos.beta_m = mie_dp; |
530 |
|
|
|
531 |
greg |
2.2 |
char gsdir[PATH_MAX]; |
532 |
|
|
size_t siz = strlen(ddir); |
533 |
greg |
2.3 |
if (ISDIRSEP(ddir[siz - 1])) |
534 |
|
|
ddir[siz - 1] = '\0'; |
535 |
greg |
2.2 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
536 |
|
|
if (!make_directory(gsdir)) { |
537 |
|
|
fprintf(stderr, "Failed creating atmos_data directory"); |
538 |
|
|
exit(1); |
539 |
|
|
} |
540 |
|
|
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
541 |
greg |
2.1 |
|
542 |
|
|
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
543 |
|
|
getpath(clear_paths.scat, ".", R_OK) == NULL || |
544 |
|
|
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
545 |
|
|
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
546 |
greg |
2.2 |
printf("# Pre-computing...\n"); |
547 |
greg |
2.1 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
548 |
greg |
2.2 |
fprintf(stderr, "Pre-compute failed\n"); |
549 |
greg |
2.1 |
return 0; |
550 |
|
|
} |
551 |
|
|
} |
552 |
|
|
|
553 |
|
|
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
554 |
|
|
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
555 |
|
|
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
556 |
|
|
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
557 |
|
|
|
558 |
greg |
2.2 |
write_header(argc, argv, ccover, grefl, res); |
559 |
|
|
|
560 |
greg |
2.1 |
if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, |
561 |
greg |
2.3 |
irrad_clear_dp, ccover, sundir, grefl, res, outname, |
562 |
|
|
ddir)) { |
563 |
greg |
2.1 |
fprintf(stderr, "gen_spect_sky failed\n"); |
564 |
|
|
exit(1); |
565 |
|
|
} |
566 |
|
|
|
567 |
|
|
freedata(mie_dp); |
568 |
|
|
freedata(tau_clear_dp); |
569 |
|
|
freedata(scat_clear_dp); |
570 |
|
|
freedata(irrad_clear_dp); |
571 |
|
|
freedata(scat1m_clear_dp); |
572 |
|
|
|
573 |
|
|
return 1; |
574 |
|
|
} |