ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/genssky.c
Revision: 2.3
Committed: Fri Aug 2 18:47:25 2024 UTC (9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.2: +62 -79 lines
Log Message:
feat(gensdaymtx,epw2wea,genssky): Taoning added new gensdaymtx and updated others

File Contents

# User Rev Content
1 greg 2.2 #ifndef lint
2     static const char RCSid[] = "$Id$";
3     #endif
4     /* Main function for generating spectral sky */
5     /* Cloudy sky computed as weight average of clear and cie overcast sky */
6 greg 2.1
7 greg 2.2 #include "atmos.h"
8 greg 2.1 #include "copyright.h"
9     #include "resolu.h"
10 greg 2.2 #include "rtio.h"
11     #include <ctype.h>
12     #ifdef _WIN32
13     #include <windows.h>
14     #else
15     #include <errno.h>
16     #include <sys/stat.h>
17     #include <sys/types.h>
18     #endif
19 greg 2.1
20     char *progname;
21    
22     const double ARCTIC_LAT = 67.;
23     const double TROPIC_LAT = 23.;
24     const int SUMMER_START = 4;
25     const int SUMMER_END = 9;
26     const double GNORM = 0.777778;
27    
28     const double D65EFF = 203.; /* standard illuminant D65 */
29    
30 greg 2.2 /* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */
31 greg 2.1 const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
32     1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
33     1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
34     0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
35    
36 greg 2.2 /* European and North American zones */
37     struct {
38     char zname[8]; /* time zone name (all caps) */
39     float zmer; /* standard meridian */
40     } tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105},
41     {"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75},
42     {"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45},
43     {"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15},
44     {"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45},
45     {"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75},
46     {"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150},
47     {"NZST", -180}, {"NZDT", -195}, {"", 0}};
48    
49     static int make_directory(const char *path) {
50     #ifdef _WIN32
51     if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
52     return 1;
53     }
54     return 0;
55     #else
56     if (mkdir(path, 0777) == 0 || errno == EEXIST) {
57     return 1;
58     }
59     return 0;
60     #endif
61     }
62    
63 greg 2.3 inline static float deg2rad(float deg) { return deg * (PI / 180.); }
64    
65 greg 2.2 static int cvthour(char *hs, int *tsolar, double *hour) {
66     char *cp = hs;
67     int i, j;
68    
69     if ((*tsolar = *cp == '+'))
70     cp++; /* solar time? */
71     while (isdigit(*cp))
72     cp++;
73     if (*cp == ':')
74     *hour = atoi(hs) + atoi(++cp) / 60.0;
75     else {
76     *hour = atof(hs);
77     if (*cp == '.')
78     cp++;
79     }
80     while (isdigit(*cp))
81     cp++;
82     if (!*cp)
83     return (0);
84     if (*tsolar || !isalpha(*cp)) {
85     fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
86     exit(1);
87     }
88     i = 0;
89     do {
90     for (j = 0; cp[j]; j++)
91     if (toupper(cp[j]) != tzone[i].zname[j])
92     break;
93     if (!cp[j] && !tzone[i].zname[j]) {
94     s_meridian = tzone[i].zmer * (PI / 180);
95     return (1);
96     }
97     } while (tzone[i++].zname[0]);
98    
99     fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
100     fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
101     for (i = 1; tzone[i].zname[0]; i++)
102     fprintf(stderr, " %s", tzone[i].zname);
103     putc('\n', stderr);
104     exit(1);
105     }
106    
107     static void basename(const char *path, char *output, size_t outsize) {
108     const char *last_slash = strrchr(path, '/');
109     const char *last_backslash = strrchr(path, '\\');
110     const char *filename = path;
111     const char *last_dot;
112    
113     if (last_slash && last_backslash) {
114     filename =
115     (last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1;
116     } else if (last_slash) {
117     filename = last_slash + 1;
118     } else if (last_backslash) {
119     filename = last_backslash + 1;
120     }
121    
122     last_dot = strrchr(filename, '.');
123     if (last_dot) {
124     size_t length = last_dot - filename;
125     if (length < outsize) {
126     strncpy(output, filename, length);
127     output[length] = '\0';
128     } else {
129     strncpy(output, filename, outsize - 1);
130     output[outsize - 1] = '\0';
131     }
132     }
133     }
134    
135 greg 2.3 static char *join_paths(const char *path1, const char *path2) {
136 greg 2.2 size_t len1 = strlen(path1);
137     size_t len2 = strlen(path2);
138     int need_separator = (path1[len1 - 1] != DIRSEP);
139    
140     char *result = malloc(len1 + len2 + (need_separator ? 2 : 1));
141     if (!result)
142     return NULL;
143    
144     strcpy(result, path1);
145     if (need_separator) {
146     result[len1] = DIRSEP;
147     len1++;
148     }
149     strcpy(result + len1, path2);
150    
151     return result;
152     }
153    
154 greg 2.1 static inline double wmean2(const double a, const double b, const double x) {
155     return a * (1 - x) + b * x;
156     }
157    
158     static inline double wmean(const double a, const double x, const double b,
159     const double y) {
160     return (a * x + b * y) / (a + b);
161     }
162    
163     static double get_zenith_brightness(const double sundir[3]) {
164     double zenithbr;
165     if (sundir[2] < 0) {
166     zenithbr = 0;
167     } else {
168     zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
169     }
170     return zenithbr;
171     }
172    
173 greg 2.2 /* from gensky.c */
174 greg 2.1 static double get_overcast_brightness(const double dz, const double zenithbr) {
175     double groundbr = zenithbr * GNORM;
176     return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
177     pow(dz + 1.01, -10), groundbr);
178     }
179    
180 greg 2.2 static void write_header(const int argc, char **argv, const double cloud_cover,
181     const double grefl, const int res) {
182     printf("# ");
183     for (int i = 0; i < argc; i++) {
184     printf("%s ", argv[i]);
185     }
186     printf("\n");
187 greg 2.3 printf(
188     "#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n",
189     cloud_cover, grefl, res);
190 greg 2.2 }
191    
192     static void write_rad(const double *sun_radiance, const FVECT sundir,
193 greg 2.3 const char *ddir, const char *skyfile) {
194 greg 2.1 if (sundir[2] > 0) {
195 greg 2.2 printf("void spectrum sunrad\n0\n0\n22 380 780 ");
196     /* Normalize to one */
197     double sum = 0.0;
198 greg 2.1 for (int i = 0; i < NSSAMP; ++i) {
199 greg 2.2 sum += sun_radiance[i];
200 greg 2.1 }
201 greg 2.2 double mean = sum / NSSAMP;
202     for (int i = 0; i < NSSAMP; ++i) {
203     printf("%.3f ", sun_radiance[i] / mean);
204     }
205     double intensity = mean * WVLSPAN;
206     printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity,
207     intensity, intensity);
208     printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1],
209     sundir[2]);
210     }
211 greg 2.3 printf("void specpict skyfunc\n5 noop %s . 'atan2(Dy,Dx)/PI+1' "
212     "'acos(Dz)/PI'\n0\n0\n\n",
213 greg 2.2 skyfile);
214 greg 2.1 }
215    
216     static void write_hsr_header(FILE *fp, RESOLU *res) {
217 greg 2.3 float wvsplit[4] = {380, 480, 588, 780};
218 greg 2.1 newheader("RADIANCE", fp);
219     fputncomp(NSSAMP, fp);
220     fputwlsplit(wvsplit, fp);
221     fputformat(SPECFMT, fp);
222     fputc('\n', fp);
223     fputsresolu(res, fp);
224     }
225    
226 greg 2.3 static inline float frac(float x) { return x - floor(x); }
227    
228 greg 2.1 int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
229     DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
230     const double cloud_cover, const FVECT sundir,
231 greg 2.3 const double grefl, const int res, const char *outname,
232     const char *ddir) {
233 greg 2.1 char skyfile[PATH_MAX];
234     char grndfile[PATH_MAX];
235 greg 2.3 if (!snprintf(skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP,
236     outname)) {
237 greg 2.1 fprintf(stderr, "Error setting sky file name\n");
238     return 0;
239     };
240 greg 2.3 int xres = res;
241     int yres = xres / 2;
242     RESOLU rs = {PIXSTANDARD, xres, yres};
243 greg 2.1 FILE *skyfp = fopen(skyfile, "w");
244     write_hsr_header(skyfp, &rs);
245    
246     CNDX[3] = NSSAMP;
247    
248 greg 2.3 FVECT view_point = {0, 0, ER + 10};
249 greg 2.1 const double radius = VLEN(view_point);
250     const double sun_ct = fdot(view_point, sundir) / radius;
251 greg 2.3 for (int j = 0; j < yres; ++j) {
252     for (int i = 0; i < xres; ++i) {
253     SCOLOR radiance = {0};
254 greg 2.1 SCOLR sky_sclr = {0};
255    
256 greg 2.3 float px = i / (xres - 1.0);
257     float py = j / (yres - 1.0);
258     float lambda = ((1 - py) * PI) - (PI / 2.0);
259     float phi = (px * 2.0 * PI) - PI;
260    
261     FVECT rdir = {cos(lambda) * cos(phi), cos(lambda) * sin(phi),
262     sin(lambda)};
263    
264     const double mu = fdot(view_point, rdir) / radius;
265     const double nu = fdot(rdir, sundir);
266    
267     /* hit ground */
268     if (rdir[2] < 0) {
269     get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
270     view_point, rdir, radius, mu, sun_ct, nu, grefl,
271     sundir, radiance);
272     } else {
273     get_sky_radiance(scat_clear, scat1m_clear, radius, mu, sun_ct, nu,
274     radiance);
275     }
276 greg 2.1
277     for (int k = 0; k < NSSAMP; ++k) {
278 greg 2.3 radiance[k] *= WVLSPAN;
279 greg 2.1 }
280    
281     if (cloud_cover > 0) {
282     double zenithbr = get_zenith_brightness(sundir);
283     double grndbr = zenithbr * GNORM;
284 greg 2.3 double skybr = get_overcast_brightness(rdir[2], zenithbr);
285     if (rdir[2] < 0) {
286     for (int k = 0; k < NSSAMP; ++k) {
287     radiance[k] = wmean2(radiance[k], grndbr * D6415[k], cloud_cover);
288     }
289     } else {
290     for (int k = 0; k < NSSAMP; ++k) {
291     radiance[k] = wmean2(radiance[k], skybr * D6415[k], cloud_cover);
292     }
293 greg 2.1 }
294     }
295    
296 greg 2.3 scolor2scolr(sky_sclr, radiance, 20);
297 greg 2.1 putbinary(sky_sclr, LSCOLR, 1, skyfp);
298     }
299     }
300     fclose(skyfp);
301    
302 greg 2.2 /* Get solar radiance */
303 greg 2.1 double sun_radiance[NSSAMP] = {0};
304     get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
305     sun_ct, sun_radiance);
306     if (cloud_cover > 0) {
307     double zenithbr = get_zenith_brightness(sundir);
308     double skybr = get_overcast_brightness(sundir[2], zenithbr);
309     for (int i = 0; i < NSSAMP; ++i) {
310     sun_radiance[i] =
311     wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
312     }
313     }
314    
315 greg 2.3 write_rad(sun_radiance, sundir, ddir, skyfile);
316 greg 2.1 return 1;
317     }
318    
319 greg 2.2 static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
320     const char *tag) {
321 greg 2.1 DpPaths paths;
322    
323 greg 2.2 snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
324     mname, aod);
325     snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
326     mname, aod);
327     snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
328     tag, mname, aod);
329     snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
330     mname, aod);
331 greg 2.1
332     return paths;
333     }
334    
335 greg 2.2 static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
336     const int is_summer,
337 greg 2.1 const double s_latitude) {
338 greg 2.2 if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
339 greg 2.1 tag[0] = 's';
340     if (is_summer) {
341     tag[1] = 's';
342     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
343     atmos->beta_r0 = BR0_SS;
344     } else {
345     tag[1] = 'w';
346     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
347     atmos->beta_r0 = BR0_SW;
348     }
349 greg 2.2 } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
350 greg 2.1 tag[0] = 'm';
351     if (is_summer) {
352     tag[1] = 's';
353     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
354     atmos->beta_r0 = BR0_MS;
355     } else {
356     tag[1] = 'w';
357     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
358     atmos->beta_r0 = BR0_MW;
359     }
360     } else {
361     tag[0] = 't';
362     tag[1] = 'r';
363     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
364     atmos->beta_r0 = BR0_T;
365     }
366     tag[2] = '\0';
367     }
368    
369     static Atmosphere init_atmos(const double aod, const double grefl) {
370 greg 2.2 Atmosphere atmos = {.ozone_density = {.layers =
371     {
372     {.width = 25000.0,
373     .exp_term = 0.0,
374     .exp_scale = 0.0,
375     .linear_term = 1.0 / 15000.0,
376     .constant_term = -2.0 / 3.0},
377     {.width = AH,
378     .exp_term = 0.0,
379     .exp_scale = 0.0,
380     .linear_term = -1.0 / 15000.0,
381     .constant_term = 8.0 / 3.0},
382     }},
383     .rayleigh_density = {.layers =
384     {
385     {.width = AH,
386     .exp_term = 1.0,
387     .exp_scale = -1.0 / HR_MS,
388     .linear_term = 0.0,
389     .constant_term = 0.0},
390     }},
391     .beta_r0 = BR0_MS,
392     .beta_scale = aod / AOD0_CA,
393     .beta_m = NULL,
394     .grefl = grefl};
395 greg 2.1 return atmos;
396     }
397    
398     int main(int argc, char *argv[]) {
399     progname = argv[0];
400     int month, day;
401     double hour;
402     FVECT sundir;
403     int num_threads = 1;
404     int sorder = 4;
405     int year = 0;
406     int tsolar = 0;
407 greg 2.2 int got_meridian = 0;
408 greg 2.1 double grefl = 0.2;
409     double ccover = 0.0;
410 greg 2.3 int res = 64;
411 greg 2.1 double aod = AOD0_CA;
412     char *outname = "out";
413     char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
414 greg 2.2 char mie_name[20] = "mie_ca";
415 greg 2.1 char lstag[3];
416 greg 2.2 char *ddir = ".";
417    
418 greg 2.3 if (argc == 2 && !strcmp(argv[1], "-defaults")) {
419 greg 2.2 printf("-i %d\t\t\t\t#scattering order\n", sorder);
420     printf("-g %f\t\t\t#ground reflectance\n", grefl);
421     printf("-c %f\t\t\t#cloud cover\n", ccover);
422     printf("-r %d\t\t\t\t#image resolution\n", res);
423     printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA);
424     printf("-f %s\t\t\t\t#output name (-f)\n", outname);
425     printf("-p %s\t\t\t\t#atmos data directory\n", ddir);
426 greg 2.3 exit(0);
427 greg 2.2 }
428 greg 2.1
429     if (argc < 4) {
430 greg 2.2 fprintf(stderr,
431     "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r "
432     "res -n nproc -c ccover -l mie -g grefl -f outpath\n",
433 greg 2.1 argv[0]);
434     return 0;
435     }
436    
437     month = atoi(argv[1]);
438 greg 2.2 if (month < 1 || month > 12) {
439     fprintf(stderr, "bad month");
440     exit(1);
441     }
442 greg 2.1 day = atoi(argv[2]);
443 greg 2.2 if (day < 1 || day > 31) {
444     fprintf(stderr, "bad month");
445     exit(1);
446     }
447     got_meridian = cvthour(argv[3], &tsolar, &hour);
448 greg 2.1
449     if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
450     fprintf(stderr, "Cannot compute solar angle\n");
451     exit(1);
452     }
453    
454     for (int i = 4; i < argc; i++) {
455     if (argv[i][0] == '-') {
456     switch (argv[i][1]) {
457     case 'a':
458     s_latitude = atof(argv[++i]) * (PI / 180.0);
459     break;
460     case 'c':
461     ccover = atof(argv[++i]);
462     break;
463     case 'd':
464     aod = atof(argv[++i]);
465     break;
466 greg 2.2 case 'f':
467     outname = argv[++i];
468     break;
469     case 'g':
470     grefl = atof(argv[++i]);
471     break;
472 greg 2.1 case 'i':
473     sorder = atoi(argv[++i]);
474     break;
475     case 'l':
476     mie_path = argv[++i];
477 greg 2.2 basename(mie_path, mie_name, sizeof(mie_name));
478 greg 2.1 break;
479     case 'm':
480 greg 2.2 if (got_meridian) {
481     ++i;
482     break;
483     }
484 greg 2.1 s_meridian = atof(argv[++i]) * (PI / 180.0);
485     break;
486     case 'n':
487     num_threads = atoi(argv[++i]);
488     break;
489 greg 2.2 case 'o':
490     s_longitude = atof(argv[++i]) * (PI / 180.0);
491 greg 2.1 break;
492 greg 2.2 case 'p':
493     ddir = argv[++i];
494 greg 2.1 break;
495     case 'r':
496     res = atoi(argv[++i]);
497     break;
498 greg 2.2 case 'y':
499     year = atoi(argv[++i]);
500     break;
501 greg 2.1 default:
502     fprintf(stderr, "Unknown option %s\n", argv[i]);
503     exit(1);
504     }
505     }
506     }
507 greg 2.2 if (year && (year < 1950) | (year > 2050))
508     fprintf(stderr, "%s: warning - year should be in range 1950-2050\n",
509     progname);
510     if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180)
511     fprintf(stderr,
512     "%s: warning - %.1f hours btwn. standard meridian and longitude\n",
513     progname, (s_longitude - s_meridian) * 12 / PI);
514 greg 2.1
515     Atmosphere clear_atmos = init_atmos(aod, grefl);
516    
517     int is_summer = (month >= SUMMER_START && month <= SUMMER_END);
518     if (s_latitude < 0) {
519     is_summer = !is_summer;
520     }
521     set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
522    
523 greg 2.2 /* Load mie density data */
524 greg 2.1 DATARRAY *mie_dp = getdata(mie_path);
525     if (mie_dp == NULL) {
526     fprintf(stderr, "Error reading mie data\n");
527     return 0;
528     }
529     clear_atmos.beta_m = mie_dp;
530    
531 greg 2.2 char gsdir[PATH_MAX];
532     size_t siz = strlen(ddir);
533 greg 2.3 if (ISDIRSEP(ddir[siz - 1]))
534     ddir[siz - 1] = '\0';
535 greg 2.2 snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
536     if (!make_directory(gsdir)) {
537     fprintf(stderr, "Failed creating atmos_data directory");
538     exit(1);
539     }
540     DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
541 greg 2.1
542     if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
543     getpath(clear_paths.scat, ".", R_OK) == NULL ||
544     getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
545     getpath(clear_paths.irrad, ".", R_OK) == NULL) {
546 greg 2.2 printf("# Pre-computing...\n");
547 greg 2.1 if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
548 greg 2.2 fprintf(stderr, "Pre-compute failed\n");
549 greg 2.1 return 0;
550     }
551     }
552    
553     DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
554     DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
555     DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
556     DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
557    
558 greg 2.2 write_header(argc, argv, ccover, grefl, res);
559    
560 greg 2.1 if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
561 greg 2.3 irrad_clear_dp, ccover, sundir, grefl, res, outname,
562     ddir)) {
563 greg 2.1 fprintf(stderr, "gen_spect_sky failed\n");
564     exit(1);
565     }
566    
567     freedata(mie_dp);
568     freedata(tau_clear_dp);
569     freedata(scat_clear_dp);
570     freedata(irrad_clear_dp);
571     freedata(scat1m_clear_dp);
572    
573     return 1;
574     }