| 1 |
greg |
2.1 |
// Main function for generating spectral sky
|
| 2 |
|
|
// Cloudy sky computed as weight average of clear and cie overcast sky
|
| 3 |
|
|
|
| 4 |
|
|
#include "copyright.h"
|
| 5 |
|
|
#include "atmos.h"
|
| 6 |
|
|
#include "resolu.h"
|
| 7 |
|
|
#include "view.h"
|
| 8 |
|
|
|
| 9 |
|
|
|
| 10 |
|
|
char *progname;
|
| 11 |
|
|
|
| 12 |
|
|
const double ARCTIC_LAT = 67.;
|
| 13 |
|
|
const double TROPIC_LAT = 23.;
|
| 14 |
|
|
const int SUMMER_START = 4;
|
| 15 |
|
|
const int SUMMER_END = 9;
|
| 16 |
|
|
const double GNORM = 0.777778;
|
| 17 |
|
|
|
| 18 |
|
|
const double D65EFF = 203.; /* standard illuminant D65 */
|
| 19 |
|
|
|
| 20 |
|
|
// Mean normalized relative daylight spectra where CCT = 6415K for overcast;
|
| 21 |
|
|
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
|
| 22 |
|
|
1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
|
| 23 |
|
|
1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
|
| 24 |
|
|
0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
|
| 25 |
|
|
|
| 26 |
|
|
static inline double wmean2(const double a, const double b, const double x) {
|
| 27 |
|
|
return a * (1 - x) + b * x;
|
| 28 |
|
|
}
|
| 29 |
|
|
|
| 30 |
|
|
static inline double wmean(const double a, const double x, const double b,
|
| 31 |
|
|
const double y) {
|
| 32 |
|
|
return (a * x + b * y) / (a + b);
|
| 33 |
|
|
}
|
| 34 |
|
|
|
| 35 |
|
|
static double get_zenith_brightness(const double sundir[3]) {
|
| 36 |
|
|
double zenithbr;
|
| 37 |
|
|
if (sundir[2] < 0) {
|
| 38 |
|
|
zenithbr = 0;
|
| 39 |
|
|
} else {
|
| 40 |
|
|
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
|
| 41 |
|
|
}
|
| 42 |
|
|
return zenithbr;
|
| 43 |
|
|
}
|
| 44 |
|
|
|
| 45 |
|
|
// from gensky.c
|
| 46 |
|
|
static double get_overcast_brightness(const double dz, const double zenithbr) {
|
| 47 |
|
|
double groundbr = zenithbr * GNORM;
|
| 48 |
|
|
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
|
| 49 |
|
|
pow(dz + 1.01, -10), groundbr);
|
| 50 |
|
|
}
|
| 51 |
|
|
|
| 52 |
|
|
static void write_rad_file(FILE *fp, const double *sun_radiance,
|
| 53 |
|
|
const FVECT sundir, const char skyfile[PATH_MAX],
|
| 54 |
|
|
const char grndfile[PATH_MAX]) {
|
| 55 |
|
|
if (sundir[2] > 0) {
|
| 56 |
|
|
fprintf(fp, "void spectrum sunrad\n0\n0\n22 380 780 ");
|
| 57 |
|
|
for (int i = 0; i < NSSAMP; ++i) {
|
| 58 |
|
|
fprintf(fp, "%.1f ", sun_radiance[i] * WVLSPAN);
|
| 59 |
|
|
}
|
| 60 |
|
|
fprintf(fp, "\n\nsunrad light solar\n0\n0\n3 1 1 1\n\n");
|
| 61 |
|
|
fprintf(fp, "solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0],
|
| 62 |
|
|
sundir[1], sundir[2]);
|
| 63 |
|
|
}
|
| 64 |
|
|
fprintf(fp,
|
| 65 |
|
|
"void specpict skyfunc\n8 noop %s fisheye.cal fish_u fish_v -rx 90 "
|
| 66 |
|
|
"-mx\n0\n0\n\n",
|
| 67 |
|
|
skyfile);
|
| 68 |
|
|
fprintf(fp, "skyfunc glow sky_glow\n0\n0\n4 1 1 1 0\n\n");
|
| 69 |
|
|
fprintf(fp, "sky_glow source sky\n0\n0\n4 0 0 1 180\n\n");
|
| 70 |
|
|
|
| 71 |
|
|
fprintf(fp,
|
| 72 |
|
|
"void specpict grndmap\n8 noop %s fisheye.cal fish_u fish_v -rx -90 "
|
| 73 |
|
|
"-my\n0\n0\n\n",
|
| 74 |
|
|
grndfile);
|
| 75 |
|
|
fprintf(fp, "grndmap glow ground_glow\n0\n0\n4 1 1 1 0\n\n");
|
| 76 |
|
|
fprintf(fp, "ground_glow source ground_source\n0\n0\n4 0 0 -1 180\n\n");
|
| 77 |
|
|
}
|
| 78 |
|
|
|
| 79 |
|
|
static void write_hsr_header(FILE *fp, RESOLU *res) {
|
| 80 |
|
|
float wvsplit[4] = {380, 480, 588,
|
| 81 |
|
|
780}; // RGB wavelength limits+partitions (nm)
|
| 82 |
|
|
newheader("RADIANCE", fp);
|
| 83 |
|
|
fputncomp(NSSAMP, fp);
|
| 84 |
|
|
fputwlsplit(wvsplit, fp);
|
| 85 |
|
|
fputformat(SPECFMT, fp);
|
| 86 |
|
|
fputc('\n', fp);
|
| 87 |
|
|
fputsresolu(res, fp);
|
| 88 |
|
|
}
|
| 89 |
|
|
|
| 90 |
|
|
int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
|
| 91 |
|
|
DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
|
| 92 |
|
|
const double cloud_cover, const FVECT sundir,
|
| 93 |
|
|
const double grefl, const int res, const char *outname) {
|
| 94 |
|
|
|
| 95 |
|
|
char radfile[PATH_MAX];
|
| 96 |
|
|
char skyfile[PATH_MAX];
|
| 97 |
|
|
char grndfile[PATH_MAX];
|
| 98 |
|
|
if (!snprintf(radfile, sizeof(radfile), "%s.rad", outname)) {
|
| 99 |
|
|
fprintf(stderr, "Error setting rad file name\n");
|
| 100 |
|
|
return 0;
|
| 101 |
|
|
};
|
| 102 |
|
|
if (!snprintf(skyfile, sizeof(skyfile), "%s_sky.hsr", outname)) {
|
| 103 |
|
|
fprintf(stderr, "Error setting sky file name\n");
|
| 104 |
|
|
return 0;
|
| 105 |
|
|
};
|
| 106 |
|
|
if (!snprintf(grndfile, sizeof(grndfile), "%s_ground.hsr", outname)) {
|
| 107 |
|
|
fprintf(stderr, "Error setting ground file name\n");
|
| 108 |
|
|
return 0;
|
| 109 |
|
|
}
|
| 110 |
|
|
RESOLU rs = {PIXSTANDARD, res, res};
|
| 111 |
|
|
FILE *skyfp = fopen(skyfile, "w");
|
| 112 |
|
|
FILE *grndfp = fopen(grndfile, "w");
|
| 113 |
|
|
write_hsr_header(grndfp, &rs);
|
| 114 |
|
|
write_hsr_header(skyfp, &rs);
|
| 115 |
|
|
VIEW skyview = {VT_ANG, {0., 0., 0.}, {0., 0., 1.}, {0., 1., 0.}, 1.,
|
| 116 |
|
|
180., 180., 0., 0., 0.,
|
| 117 |
|
|
0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.};
|
| 118 |
|
|
VIEW grndview = {
|
| 119 |
|
|
VT_ANG, {0., 0., 0.}, {0., 0., -1.}, {0., 1., 0.}, 1., 180., 180., 0., 0.,
|
| 120 |
|
|
0., 0., {0., 0., 0.}, {0., 0., 0.}, 0., 0.};
|
| 121 |
|
|
setview(&skyview);
|
| 122 |
|
|
setview(&grndview);
|
| 123 |
|
|
|
| 124 |
|
|
CNDX[3] = NSSAMP;
|
| 125 |
|
|
|
| 126 |
|
|
FVECT view_point = {0, 0, ER};
|
| 127 |
|
|
const double radius = VLEN(view_point);
|
| 128 |
|
|
const double sun_ct = fdot(view_point, sundir) / radius;
|
| 129 |
|
|
for (unsigned int j = 0; j < res; ++j) {
|
| 130 |
|
|
for (unsigned int i = 0; i < res; ++i) {
|
| 131 |
|
|
RREAL loc[2];
|
| 132 |
|
|
FVECT rorg = {0};
|
| 133 |
|
|
FVECT rdir_sky = {0};
|
| 134 |
|
|
FVECT rdir_grnd = {0};
|
| 135 |
|
|
SCOLOR sky_radiance = {0};
|
| 136 |
|
|
SCOLOR ground_radiance = {0};
|
| 137 |
|
|
SCOLR sky_sclr = {0};
|
| 138 |
|
|
SCOLR ground_sclr = {0};
|
| 139 |
|
|
|
| 140 |
|
|
pix2loc(loc, &rs, i, j);
|
| 141 |
|
|
viewray(rorg, rdir_sky, &skyview, loc[0], loc[1]);
|
| 142 |
|
|
viewray(rorg, rdir_grnd, &grndview, loc[0], loc[1]);
|
| 143 |
|
|
|
| 144 |
|
|
const double mu_sky = fdot(view_point, rdir_sky) / radius;
|
| 145 |
|
|
const double nu_sky = fdot(rdir_sky, sundir);
|
| 146 |
|
|
|
| 147 |
|
|
const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
|
| 148 |
|
|
const double nu_grnd = fdot(rdir_grnd, sundir);
|
| 149 |
|
|
|
| 150 |
|
|
get_sky_radiance(scat_clear, scat1m_clear, radius, mu_sky, sun_ct, nu_sky,
|
| 151 |
|
|
sky_radiance);
|
| 152 |
|
|
get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
|
| 153 |
|
|
view_point, rdir_grnd, radius, mu_grnd, sun_ct,
|
| 154 |
|
|
nu_grnd, grefl, sundir, ground_radiance);
|
| 155 |
|
|
|
| 156 |
|
|
for (int k = 0; k < NSSAMP; ++k) {
|
| 157 |
|
|
sky_radiance[k] *= WVLSPAN;
|
| 158 |
|
|
ground_radiance[k] *= WVLSPAN;
|
| 159 |
|
|
}
|
| 160 |
|
|
|
| 161 |
|
|
if (cloud_cover > 0) {
|
| 162 |
|
|
double zenithbr = get_zenith_brightness(sundir);
|
| 163 |
|
|
double grndbr = zenithbr * GNORM;
|
| 164 |
|
|
double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
|
| 165 |
|
|
for (int k = 0; k < NSSAMP; ++k) {
|
| 166 |
|
|
sky_radiance[k] =
|
| 167 |
|
|
wmean2(sky_radiance[k], skybr * D6415[k], cloud_cover);
|
| 168 |
|
|
ground_radiance[k] =
|
| 169 |
|
|
wmean2(ground_radiance[k], grndbr * D6415[k], cloud_cover);
|
| 170 |
|
|
}
|
| 171 |
|
|
}
|
| 172 |
|
|
|
| 173 |
|
|
scolor2scolr(sky_sclr, sky_radiance, 20);
|
| 174 |
|
|
putbinary(sky_sclr, LSCOLR, 1, skyfp);
|
| 175 |
|
|
|
| 176 |
|
|
scolor2scolr(ground_sclr, ground_radiance, 20);
|
| 177 |
|
|
putbinary(ground_sclr, LSCOLR, 1, grndfp);
|
| 178 |
|
|
}
|
| 179 |
|
|
}
|
| 180 |
|
|
fclose(skyfp);
|
| 181 |
|
|
fclose(grndfp);
|
| 182 |
|
|
|
| 183 |
|
|
// Get solar radiance
|
| 184 |
|
|
double sun_radiance[NSSAMP] = {0};
|
| 185 |
|
|
get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
|
| 186 |
|
|
sun_ct, sun_radiance);
|
| 187 |
|
|
if (cloud_cover > 0) {
|
| 188 |
|
|
double zenithbr = get_zenith_brightness(sundir);
|
| 189 |
|
|
double skybr = get_overcast_brightness(sundir[2], zenithbr);
|
| 190 |
|
|
for (int i = 0; i < NSSAMP; ++i) {
|
| 191 |
|
|
sun_radiance[i] =
|
| 192 |
|
|
wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
|
| 193 |
|
|
}
|
| 194 |
|
|
}
|
| 195 |
|
|
|
| 196 |
|
|
FILE *rfp = fopen(radfile, "w");
|
| 197 |
|
|
write_rad_file(rfp, sun_radiance, sundir, skyfile, grndfile);
|
| 198 |
|
|
fclose(rfp);
|
| 199 |
|
|
return 1;
|
| 200 |
|
|
}
|
| 201 |
|
|
|
| 202 |
|
|
static DpPaths get_dppaths(const double aod, const char *tag) {
|
| 203 |
|
|
DpPaths paths;
|
| 204 |
|
|
|
| 205 |
|
|
snprintf(paths.tau, PATH_MAX, "tau_%s_%.2f.dat", tag, aod);
|
| 206 |
|
|
snprintf(paths.scat, PATH_MAX, "scat_%s_%.2f.dat", tag, aod);
|
| 207 |
|
|
snprintf(paths.scat1m, PATH_MAX, "scat1m_%s_%.2f.dat", tag, aod);
|
| 208 |
|
|
snprintf(paths.irrad, PATH_MAX, "irrad_%s_%.2f.dat", tag, aod);
|
| 209 |
|
|
|
| 210 |
|
|
return paths;
|
| 211 |
|
|
}
|
| 212 |
|
|
|
| 213 |
|
|
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, const int is_summer,
|
| 214 |
|
|
const double s_latitude) {
|
| 215 |
|
|
// Set rayleigh density profile
|
| 216 |
|
|
if (fabs(s_latitude*180.0 / PI) > ARCTIC_LAT) {
|
| 217 |
|
|
tag[0] = 's';
|
| 218 |
|
|
if (is_summer) {
|
| 219 |
|
|
tag[1] = 's';
|
| 220 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
|
| 221 |
|
|
atmos->beta_r0 = BR0_SS;
|
| 222 |
|
|
} else {
|
| 223 |
|
|
tag[1] = 'w';
|
| 224 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
|
| 225 |
|
|
atmos->beta_r0 = BR0_SW;
|
| 226 |
|
|
}
|
| 227 |
|
|
} else if (fabs(s_latitude*180.0/PI) > TROPIC_LAT) {
|
| 228 |
|
|
tag[0] = 'm';
|
| 229 |
|
|
if (is_summer) {
|
| 230 |
|
|
tag[1] = 's';
|
| 231 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
|
| 232 |
|
|
atmos->beta_r0 = BR0_MS;
|
| 233 |
|
|
} else {
|
| 234 |
|
|
tag[1] = 'w';
|
| 235 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
|
| 236 |
|
|
atmos->beta_r0 = BR0_MW;
|
| 237 |
|
|
}
|
| 238 |
|
|
} else {
|
| 239 |
|
|
tag[0] = 't';
|
| 240 |
|
|
tag[1] = 'r';
|
| 241 |
|
|
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
|
| 242 |
|
|
atmos->beta_r0 = BR0_T;
|
| 243 |
|
|
}
|
| 244 |
|
|
tag[2] = '\0';
|
| 245 |
|
|
}
|
| 246 |
|
|
|
| 247 |
|
|
static Atmosphere init_atmos(const double aod, const double grefl) {
|
| 248 |
|
|
Atmosphere atmos = {
|
| 249 |
|
|
.ozone_density = {.layers =
|
| 250 |
|
|
{
|
| 251 |
|
|
{.width = 25000.0,
|
| 252 |
|
|
.exp_term = 0.0,
|
| 253 |
|
|
.exp_scale = 0.0,
|
| 254 |
|
|
.linear_term = 1.0 / 15000.0,
|
| 255 |
|
|
.constant_term = -2.0 / 3.0},
|
| 256 |
|
|
{.width = AH,
|
| 257 |
|
|
.exp_term = 0.0,
|
| 258 |
|
|
.exp_scale = 0.0,
|
| 259 |
|
|
.linear_term = -1.0 / 15000.0,
|
| 260 |
|
|
.constant_term = 8.0 / 3.0},
|
| 261 |
|
|
}},
|
| 262 |
|
|
.rayleigh_density = {.layers =
|
| 263 |
|
|
{
|
| 264 |
|
|
{.width = AH,
|
| 265 |
|
|
.exp_term = 1.0,
|
| 266 |
|
|
.exp_scale = -1.0 / HR_MS,
|
| 267 |
|
|
.linear_term = 0.0,
|
| 268 |
|
|
.constant_term = 0.0},
|
| 269 |
|
|
}},
|
| 270 |
|
|
.beta_r0 = BR0_MS,
|
| 271 |
|
|
.beta_scale = aod / AOD0_CA,
|
| 272 |
|
|
.beta_m = NULL,
|
| 273 |
|
|
.grefl = grefl
|
| 274 |
|
|
};
|
| 275 |
|
|
return atmos;
|
| 276 |
|
|
}
|
| 277 |
|
|
|
| 278 |
|
|
int main(int argc, char *argv[]) {
|
| 279 |
|
|
progname = argv[0];
|
| 280 |
|
|
int month, day;
|
| 281 |
|
|
double hour;
|
| 282 |
|
|
FVECT sundir;
|
| 283 |
|
|
int num_threads = 1;
|
| 284 |
|
|
int sorder = 4;
|
| 285 |
|
|
int year = 0;
|
| 286 |
|
|
int tsolar = 0;
|
| 287 |
|
|
double grefl = 0.2;
|
| 288 |
|
|
double ccover = 0.0;
|
| 289 |
|
|
int res = 128;
|
| 290 |
|
|
double aod = AOD0_CA;
|
| 291 |
|
|
char *outname = "out";
|
| 292 |
|
|
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
|
| 293 |
|
|
char lstag[3];
|
| 294 |
|
|
|
| 295 |
|
|
if (argc < 4) {
|
| 296 |
|
|
fprintf(stderr, "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r res -n nproc -c ccover -l mie -g grefl -f outpath\n",
|
| 297 |
|
|
argv[0]);
|
| 298 |
|
|
return 0;
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
month = atoi(argv[1]);
|
| 302 |
|
|
day = atoi(argv[2]);
|
| 303 |
|
|
hour = atof(argv[3]);
|
| 304 |
|
|
|
| 305 |
|
|
if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
|
| 306 |
|
|
fprintf(stderr, "Cannot compute solar angle\n");
|
| 307 |
|
|
exit(1);
|
| 308 |
|
|
}
|
| 309 |
|
|
|
| 310 |
|
|
for (int i = 4; i < argc; i++) {
|
| 311 |
|
|
if (argv[i][0] == '-') {
|
| 312 |
|
|
switch (argv[i][1]) {
|
| 313 |
|
|
case 'a':
|
| 314 |
|
|
s_latitude = atof(argv[++i]) * (PI / 180.0);
|
| 315 |
|
|
break;
|
| 316 |
|
|
case 'g':
|
| 317 |
|
|
grefl = atof(argv[++i]);
|
| 318 |
|
|
break;
|
| 319 |
|
|
case 'c':
|
| 320 |
|
|
ccover = atof(argv[++i]);
|
| 321 |
|
|
break;
|
| 322 |
|
|
case 'd':
|
| 323 |
|
|
aod = atof(argv[++i]);
|
| 324 |
|
|
break;
|
| 325 |
|
|
case 'i':
|
| 326 |
|
|
sorder = atoi(argv[++i]);
|
| 327 |
|
|
break;
|
| 328 |
|
|
case 'l':
|
| 329 |
|
|
mie_path = argv[++i];
|
| 330 |
|
|
break;
|
| 331 |
|
|
case 'm':
|
| 332 |
|
|
s_meridian = atof(argv[++i]) * (PI / 180.0);
|
| 333 |
|
|
break;
|
| 334 |
|
|
case 'o':
|
| 335 |
|
|
s_longitude = atof(argv[++i]) * (PI / 180.0);
|
| 336 |
|
|
break;
|
| 337 |
|
|
case 'n':
|
| 338 |
|
|
num_threads = atoi(argv[++i]);
|
| 339 |
|
|
break;
|
| 340 |
|
|
case 'y':
|
| 341 |
|
|
year = atoi(argv[++i]);
|
| 342 |
|
|
break;
|
| 343 |
|
|
case 'f':
|
| 344 |
|
|
outname = argv[++i];
|
| 345 |
|
|
break;
|
| 346 |
|
|
case 'r':
|
| 347 |
|
|
res = atoi(argv[++i]);
|
| 348 |
|
|
break;
|
| 349 |
|
|
default:
|
| 350 |
|
|
fprintf(stderr, "Unknown option %s\n", argv[i]);
|
| 351 |
|
|
exit(1);
|
| 352 |
|
|
}
|
| 353 |
|
|
}
|
| 354 |
|
|
}
|
| 355 |
|
|
|
| 356 |
|
|
Atmosphere clear_atmos = init_atmos(aod, grefl);
|
| 357 |
|
|
|
| 358 |
|
|
int is_summer = (month >= SUMMER_START && month <= SUMMER_END);
|
| 359 |
|
|
if (s_latitude < 0) {
|
| 360 |
|
|
is_summer = !is_summer;
|
| 361 |
|
|
}
|
| 362 |
|
|
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
|
| 363 |
|
|
|
| 364 |
|
|
// Load mie density data
|
| 365 |
|
|
DATARRAY *mie_dp = getdata(mie_path);
|
| 366 |
|
|
if (mie_dp == NULL) {
|
| 367 |
|
|
fprintf(stderr, "Error reading mie data\n");
|
| 368 |
|
|
return 0;
|
| 369 |
|
|
}
|
| 370 |
|
|
clear_atmos.beta_m = mie_dp;
|
| 371 |
|
|
|
| 372 |
|
|
DpPaths clear_paths = get_dppaths(aod, lstag);
|
| 373 |
|
|
|
| 374 |
|
|
if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
|
| 375 |
|
|
getpath(clear_paths.scat, ".", R_OK) == NULL ||
|
| 376 |
|
|
getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
|
| 377 |
|
|
getpath(clear_paths.irrad, ".", R_OK) == NULL) {
|
| 378 |
|
|
printf("# Precomputing...\n");
|
| 379 |
|
|
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
|
| 380 |
|
|
fprintf(stderr, "Precompute failed\n");
|
| 381 |
|
|
return 0;
|
| 382 |
|
|
}
|
| 383 |
|
|
}
|
| 384 |
|
|
|
| 385 |
|
|
DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
|
| 386 |
|
|
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
|
| 387 |
|
|
DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
|
| 388 |
|
|
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
|
| 389 |
|
|
|
| 390 |
|
|
if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
|
| 391 |
|
|
irrad_clear_dp, ccover, sundir, grefl, res, outname)) {
|
| 392 |
|
|
fprintf(stderr, "gen_spect_sky failed\n");
|
| 393 |
|
|
exit(1);
|
| 394 |
|
|
}
|
| 395 |
|
|
|
| 396 |
|
|
freedata(mie_dp);
|
| 397 |
|
|
freedata(tau_clear_dp);
|
| 398 |
|
|
freedata(scat_clear_dp);
|
| 399 |
|
|
freedata(irrad_clear_dp);
|
| 400 |
|
|
freedata(scat1m_clear_dp);
|
| 401 |
|
|
|
| 402 |
|
|
return 1;
|
| 403 |
|
|
}
|