ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensky.c
Revision: 2.22
Committed: Sun Nov 16 10:29:38 2003 UTC (20 years, 5 months ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.21: +51 -33 lines
Log Message:
Continued ANSIfication and reduced other compile warnings.

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gensky.c,v 2.21 2003/07/27 22:12:02 schorsch Exp $";
3 #endif
4 /*
5 * gensky.c - program to generate sky functions.
6 * Our zenith is along the Z-axis, the X-axis
7 * points east, and the Y-axis points north.
8 * Radiance is in watts/steradian/sq. meter.
9 *
10 * 3/26/86
11 */
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <math.h>
17 #include <ctype.h>
18
19 #include "color.h"
20
21 extern int jdate(int month, int day);
22 extern double stadj(int jd);
23 extern double sdec(int jd);
24 extern double salt(double sd, double st);
25 extern double sazi(double sd, double st);
26
27 #ifndef PI
28 #define PI 3.14159265358979323846
29 #endif
30
31 #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
32
33 #define S_CLEAR 1
34 #define S_OVER 2
35 #define S_UNIF 3
36 #define S_INTER 4
37
38 #define overcast ((skytype==S_OVER)|(skytype==S_UNIF))
39
40 double normsc();
41 /* sun calculation constants */
42 extern double s_latitude;
43 extern double s_longitude;
44 extern double s_meridian;
45
46 #undef toupper
47 #define toupper(c) ((c) & ~0x20) /* ASCII trick to convert case */
48
49 /* European and North American zones */
50 struct {
51 char zname[8]; /* time zone name (all caps) */
52 float zmer; /* standard meridian */
53 } tzone[] = {
54 {"YST", 135}, {"YDT", 120},
55 {"PST", 120}, {"PDT", 105},
56 {"MST", 105}, {"MDT", 90},
57 {"CST", 90}, {"CDT", 75},
58 {"EST", 75}, {"EDT", 60},
59 {"AST", 60}, {"ADT", 45},
60 {"NST", 52.5}, {"NDT", 37.5},
61 {"GMT", 0}, {"BST", -15},
62 {"CET", -15}, {"CEST", -30},
63 {"EET", -30}, {"EEST", -45},
64 {"AST", -45}, {"ADT", -60},
65 {"GST", -60}, {"GDT", -75},
66 {"IST", -82.5}, {"IDT", -97.5},
67 {"JST", -135}, {"NDT", -150},
68 {"NZST", -180}, {"NZDT", -195},
69 {"", 0}
70 };
71 /* required values */
72 int month, day; /* date */
73 double hour; /* time */
74 int tsolar; /* 0=standard, 1=solar */
75 double altitude, azimuth; /* or solar angles */
76 /* default values */
77 int skytype = S_CLEAR; /* sky type */
78 int dosun = 1;
79 double zenithbr = 0.0;
80 int u_zenith = 0; /* -1=irradiance, 1=radiance */
81 double turbidity = 2.75;
82 double gprefl = 0.2;
83 /* computed values */
84 double sundir[3];
85 double groundbr;
86 double F2;
87 double solarbr = 0.0;
88 int u_solar = 0; /* -1=irradiance, 1=radiance */
89
90 char *progname;
91 char errmsg[128];
92
93 void computesky(void);
94 void printsky(void);
95 void printdefaults(void);
96 void userror(char *msg);
97 double normsc(void);
98 void cvthour(char *hs);
99 void printhead(register int ac, register char **av);
100
101
102 int
103 main(argc, argv)
104 int argc;
105 char *argv[];
106 {
107 int i;
108
109 progname = argv[0];
110 if (argc == 2 && !strcmp(argv[1], "-defaults")) {
111 printdefaults();
112 exit(0);
113 }
114 if (argc < 4)
115 userror("arg count");
116 if (!strcmp(argv[1], "-ang")) {
117 altitude = atof(argv[2]) * (PI/180);
118 azimuth = atof(argv[3]) * (PI/180);
119 month = 0;
120 } else {
121 month = atoi(argv[1]);
122 if (month < 1 || month > 12)
123 userror("bad month");
124 day = atoi(argv[2]);
125 if (day < 1 || day > 31)
126 userror("bad day");
127 cvthour(argv[3]);
128 }
129 for (i = 4; i < argc; i++)
130 if (argv[i][0] == '-' || argv[i][0] == '+')
131 switch (argv[i][1]) {
132 case 's':
133 skytype = S_CLEAR;
134 dosun = argv[i][0] == '+';
135 break;
136 case 'r':
137 case 'R':
138 u_solar = argv[i][1]=='R' ? -1 : 1;
139 solarbr = atof(argv[++i]);
140 break;
141 case 'c':
142 skytype = S_OVER;
143 break;
144 case 'u':
145 skytype = S_UNIF;
146 break;
147 case 'i':
148 skytype = S_INTER;
149 dosun = argv[i][0] == '+';
150 break;
151 case 't':
152 turbidity = atof(argv[++i]);
153 break;
154 case 'b':
155 case 'B':
156 u_zenith = argv[i][1]=='B' ? -1 : 1;
157 zenithbr = atof(argv[++i]);
158 break;
159 case 'g':
160 gprefl = atof(argv[++i]);
161 break;
162 case 'a':
163 s_latitude = atof(argv[++i]) * (PI/180);
164 break;
165 case 'o':
166 s_longitude = atof(argv[++i]) * (PI/180);
167 break;
168 case 'm':
169 s_meridian = atof(argv[++i]) * (PI/180);
170 break;
171 default:
172 sprintf(errmsg, "unknown option: %s", argv[i]);
173 userror(errmsg);
174 }
175 else
176 userror("bad option");
177
178 if (fabs(s_meridian-s_longitude) > 45*PI/180)
179 fprintf(stderr,
180 "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
181 progname, (s_longitude-s_meridian)*12/PI);
182
183 printhead(argc, argv);
184
185 computesky();
186 printsky();
187
188 exit(0);
189 }
190
191
192 void
193 computesky(void) /* compute sky parameters */
194 {
195 double normfactor;
196 /* compute solar direction */
197 if (month) { /* from date and time */
198 int jd;
199 double sd, st;
200
201 jd = jdate(month, day); /* Julian date */
202 sd = sdec(jd); /* solar declination */
203 if (tsolar) /* solar time */
204 st = hour;
205 else
206 st = hour + stadj(jd);
207 altitude = salt(sd, st);
208 azimuth = sazi(sd, st);
209 printf("# Local solar time: %.2f\n", st);
210 printf("# Solar altitude and azimuth: %.1f %.1f\n",
211 180./PI*altitude, 180./PI*azimuth);
212 }
213 if (!overcast && altitude > 87.*PI/180.) {
214 fprintf(stderr,
215 "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
216 progname);
217 printf(
218 "# warning - sun too close to zenith, reducing altitude to 87 degrees\n");
219 altitude = 87.*PI/180.;
220 }
221 sundir[0] = -sin(azimuth)*cos(altitude);
222 sundir[1] = -cos(azimuth)*cos(altitude);
223 sundir[2] = sin(altitude);
224
225 /* Compute normalization factor */
226 switch (skytype) {
227 case S_UNIF:
228 normfactor = 1.0;
229 break;
230 case S_OVER:
231 normfactor = 0.777778;
232 break;
233 case S_CLEAR:
234 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(PI/2.0-altitude)) +
235 0.45*sundir[2]*sundir[2]);
236 normfactor = normsc()/F2/PI;
237 break;
238 case S_INTER:
239 F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) *
240 exp(-(PI/2.0-altitude)*(.4441+1.48*altitude));
241 normfactor = normsc()/F2/PI;
242 break;
243 }
244 /* Compute zenith brightness */
245 if (u_zenith == -1)
246 zenithbr /= normfactor*PI;
247 else if (u_zenith == 0) {
248 if (overcast)
249 zenithbr = 8.6*sundir[2] + .123;
250 else
251 zenithbr = (1.376*turbidity-1.81)*tan(altitude)+0.38;
252 if (skytype == S_INTER)
253 zenithbr = (zenithbr + 8.6*sundir[2] + .123)/2.0;
254 if (zenithbr < 0.0)
255 zenithbr = 0.0;
256 else
257 zenithbr *= 1000.0/SKYEFFICACY;
258 }
259 /* Compute horizontal radiance */
260 groundbr = zenithbr*normfactor;
261 printf("# Ground ambient level: %.1f\n", groundbr);
262 if (!overcast && sundir[2] > 0.0 && (!u_solar || solarbr > 0.0)) {
263 if (u_solar == -1)
264 solarbr /= 6e-5*sundir[2];
265 else if (u_solar == 0) {
266 solarbr = 1.5e9/SUNEFFICACY *
267 (1.147 - .147/(sundir[2]>.16?sundir[2]:.16));
268 if (skytype == S_INTER)
269 solarbr *= 0.15; /* fudge factor! */
270 }
271 groundbr += 6e-5/PI*solarbr*sundir[2];
272 } else
273 dosun = 0;
274 groundbr *= gprefl;
275 }
276
277
278 void
279 printsky(void) /* print out sky */
280 {
281 if (dosun) {
282 printf("\nvoid light solar\n");
283 printf("0\n0\n");
284 printf("3 %.2e %.2e %.2e\n", solarbr, solarbr, solarbr);
285 printf("\nsolar source sun\n");
286 printf("0\n0\n");
287 printf("4 %f %f %f 0.5\n", sundir[0], sundir[1], sundir[2]);
288 }
289
290 printf("\nvoid brightfunc skyfunc\n");
291 printf("2 skybr skybright.cal\n");
292 printf("0\n");
293 if (overcast)
294 printf("3 %d %.2e %.2e\n", skytype, zenithbr, groundbr);
295 else
296 printf("7 %d %.2e %.2e %.2e %f %f %f\n",
297 skytype, zenithbr, groundbr, F2,
298 sundir[0], sundir[1], sundir[2]);
299 }
300
301
302 void
303 printdefaults(void) /* print default values */
304 {
305 switch (skytype) {
306 case S_OVER:
307 printf("-c\t\t\t\t# Cloudy sky\n");
308 break;
309 case S_UNIF:
310 printf("-u\t\t\t\t# Uniform cloudy sky\n");
311 break;
312 case S_INTER:
313 if (dosun)
314 printf("+i\t\t\t\t# Intermediate sky with sun\n");
315 else
316 printf("-i\t\t\t\t# Intermediate sky without sun\n");
317 break;
318 case S_CLEAR:
319 if (dosun)
320 printf("+s\t\t\t\t# Sunny sky with sun\n");
321 else
322 printf("-s\t\t\t\t# Sunny sky without sun\n");
323 break;
324 }
325 printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
326 if (zenithbr > 0.0)
327 printf("-b %f\t\t\t# Zenith radiance (watts/ster/m2\n", zenithbr);
328 else
329 printf("-t %f\t\t\t# Atmospheric turbidity\n", turbidity);
330 printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/PI));
331 printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/PI));
332 printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/PI));
333 }
334
335
336 void
337 userror( /* print usage error and quit */
338 char *msg
339 )
340 {
341 if (msg != NULL)
342 fprintf(stderr, "%s: Use error - %s\n", progname, msg);
343 fprintf(stderr, "Usage: %s month day hour [options]\n", progname);
344 fprintf(stderr, " Or: %s -ang altitude azimuth [options]\n", progname);
345 fprintf(stderr, " Or: %s -defaults\n", progname);
346 exit(1);
347 }
348
349
350 double
351 normsc(void) /* compute normalization factor (E0*F2/L0) */
352 {
353 static double nfc[2][5] = {
354 /* clear sky approx. */
355 {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
356 /* intermediate sky approx. */
357 {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
358 };
359 register double *nf;
360 double x, nsc;
361 register int i;
362 /* polynomial approximation */
363 nf = nfc[skytype==S_INTER];
364 x = (altitude - PI/4.0)/(PI/4.0);
365 nsc = nf[i=4];
366 while (i--)
367 nsc = nsc*x + nf[i];
368
369 return(nsc);
370 }
371
372
373 void
374 cvthour( /* convert hour string */
375 char *hs
376 )
377 {
378 register char *cp = hs;
379 register int i, j;
380
381 if ( (tsolar = *cp == '+') ) cp++; /* solar time? */
382 while (isdigit(*cp)) cp++;
383 if (*cp == ':')
384 hour = atoi(hs) + atoi(++cp)/60.0;
385 else {
386 hour = atof(hs);
387 if (*cp == '.') cp++;
388 }
389 while (isdigit(*cp)) cp++;
390 if (!*cp)
391 return;
392 if (tsolar || !isalpha(*cp)) {
393 fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
394 exit(1);
395 }
396 i = 0;
397 do {
398 for (j = 0; cp[j]; j++)
399 if (toupper(cp[j]) != tzone[i].zname[j])
400 break;
401 if (!cp[j] && !tzone[i].zname[j]) {
402 s_meridian = tzone[i].zmer * (PI/180);
403 return;
404 }
405 } while (tzone[i++].zname[0]);
406
407 fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
408 fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
409 for (i = 1; tzone[i].zname[0]; i++)
410 fprintf(stderr, " %s", tzone[i].zname);
411 putc('\n', stderr);
412 exit(1);
413 }
414
415
416 void
417 printhead( /* print command header */
418 register int ac,
419 register char **av
420 )
421 {
422 putchar('#');
423 while (ac--) {
424 putchar(' ');
425 fputs(*av++, stdout);
426 }
427 putchar('\n');
428 }