#ifndef lint static const char RCSid[] = "$Id: gensky.c,v 2.23 2004/09/10 18:19:24 greg Exp $"; #endif /* * gensky.c - program to generate sky functions. * Our zenith is along the Z-axis, the X-axis * points east, and the Y-axis points north. * Radiance is in watts/steradian/sq. meter. * * 3/26/86 */ #include #include #include #include #include #include "color.h" extern int jdate(int month, int day); extern double stadj(int jd); extern double sdec(int jd); extern double salt(double sd, double st); extern double sazi(double sd, double st); #ifndef PI #define PI 3.14159265358979323846 #endif #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) #define S_CLEAR 1 #define S_OVER 2 #define S_UNIF 3 #define S_INTER 4 #define overcast ((skytype==S_OVER)|(skytype==S_UNIF)) double normsc(); /* sun calculation constants */ extern double s_latitude; extern double s_longitude; extern double s_meridian; #undef toupper #define toupper(c) ((c) & ~0x20) /* ASCII trick to convert case */ /* European and North American zones */ struct { char zname[8]; /* time zone name (all caps) */ float zmer; /* standard meridian */ } tzone[] = { {"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105}, {"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75}, {"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45}, {"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15}, {"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45}, {"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75}, {"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150}, {"NZST", -180}, {"NZDT", -195}, {"", 0} }; /* required values */ int month, day; /* date */ double hour; /* time */ int tsolar; /* 0=standard, 1=solar */ double altitude, azimuth; /* or solar angles */ /* default values */ int skytype = S_CLEAR; /* sky type */ int dosun = 1; double zenithbr = 0.0; int u_zenith = 0; /* -1=irradiance, 1=radiance */ double turbidity = 2.75; double gprefl = 0.2; /* computed values */ double sundir[3]; double groundbr; double F2; double solarbr = 0.0; int u_solar = 0; /* -1=irradiance, 1=radiance */ char *progname; char errmsg[128]; void computesky(void); void printsky(void); void printdefaults(void); void userror(char *msg); double normsc(void); int cvthour(char *hs); void printhead(register int ac, register char **av); int main(argc, argv) int argc; char *argv[]; { int got_meridian = 0; int i; progname = argv[0]; if (argc == 2 && !strcmp(argv[1], "-defaults")) { printdefaults(); exit(0); } if (argc < 4) userror("arg count"); if (!strcmp(argv[1], "-ang")) { altitude = atof(argv[2]) * (PI/180); azimuth = atof(argv[3]) * (PI/180); month = 0; } else { month = atoi(argv[1]); if (month < 1 || month > 12) userror("bad month"); day = atoi(argv[2]); if (day < 1 || day > 31) userror("bad day"); got_meridian = cvthour(argv[3]); } for (i = 4; i < argc; i++) if (argv[i][0] == '-' || argv[i][0] == '+') switch (argv[i][1]) { case 's': skytype = S_CLEAR; dosun = argv[i][0] == '+'; break; case 'r': case 'R': u_solar = argv[i][1]=='R' ? -1 : 1; solarbr = atof(argv[++i]); break; case 'c': skytype = S_OVER; break; case 'u': skytype = S_UNIF; break; case 'i': skytype = S_INTER; dosun = argv[i][0] == '+'; break; case 't': turbidity = atof(argv[++i]); break; case 'b': case 'B': u_zenith = argv[i][1]=='B' ? -1 : 1; zenithbr = atof(argv[++i]); break; case 'g': gprefl = atof(argv[++i]); break; case 'a': s_latitude = atof(argv[++i]) * (PI/180); break; case 'o': s_longitude = atof(argv[++i]) * (PI/180); break; case 'm': if (got_meridian) { ++i; break; /* time overrides */ } s_meridian = atof(argv[++i]) * (PI/180); break; default: sprintf(errmsg, "unknown option: %s", argv[i]); userror(errmsg); } else userror("bad option"); if (fabs(s_meridian-s_longitude) > 45*PI/180) fprintf(stderr, "%s: warning: %.1f hours btwn. standard meridian and longitude\n", progname, (s_longitude-s_meridian)*12/PI); printhead(argc, argv); computesky(); printsky(); exit(0); } void computesky(void) /* compute sky parameters */ { double normfactor; /* compute solar direction */ if (month) { /* from date and time */ int jd; double sd, st; jd = jdate(month, day); /* Julian date */ sd = sdec(jd); /* solar declination */ if (tsolar) /* solar time */ st = hour; else st = hour + stadj(jd); altitude = salt(sd, st); azimuth = sazi(sd, st); printf("# Local solar time: %.2f\n", st); printf("# Solar altitude and azimuth: %.1f %.1f\n", 180./PI*altitude, 180./PI*azimuth); } if (!overcast && altitude > 87.*PI/180.) { fprintf(stderr, "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n", progname); printf( "# warning - sun too close to zenith, reducing altitude to 87 degrees\n"); altitude = 87.*PI/180.; } sundir[0] = -sin(azimuth)*cos(altitude); sundir[1] = -cos(azimuth)*cos(altitude); sundir[2] = sin(altitude); /* Compute normalization factor */ switch (skytype) { case S_UNIF: normfactor = 1.0; break; case S_OVER: normfactor = 0.777778; break; case S_CLEAR: F2 = 0.274*(0.91 + 10.0*exp(-3.0*(PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]); normfactor = normsc()/F2/PI; break; case S_INTER: F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(PI/2.0-altitude)*(.4441+1.48*altitude)); normfactor = normsc()/F2/PI; break; } /* Compute zenith brightness */ if (u_zenith == -1) zenithbr /= normfactor*PI; else if (u_zenith == 0) { if (overcast) zenithbr = 8.6*sundir[2] + .123; else zenithbr = (1.376*turbidity-1.81)*tan(altitude)+0.38; if (skytype == S_INTER) zenithbr = (zenithbr + 8.6*sundir[2] + .123)/2.0; if (zenithbr < 0.0) zenithbr = 0.0; else zenithbr *= 1000.0/SKYEFFICACY; } /* Compute horizontal radiance */ groundbr = zenithbr*normfactor; printf("# Ground ambient level: %.1f\n", groundbr); if (!overcast && sundir[2] > 0.0 && (!u_solar || solarbr > 0.0)) { if (u_solar == -1) solarbr /= 6e-5*sundir[2]; else if (u_solar == 0) { solarbr = 1.5e9/SUNEFFICACY * (1.147 - .147/(sundir[2]>.16?sundir[2]:.16)); if (skytype == S_INTER) solarbr *= 0.15; /* fudge factor! */ } groundbr += 6e-5/PI*solarbr*sundir[2]; } else dosun = 0; groundbr *= gprefl; } void printsky(void) /* print out sky */ { if (dosun) { printf("\nvoid light solar\n"); printf("0\n0\n"); printf("3 %.2e %.2e %.2e\n", solarbr, solarbr, solarbr); printf("\nsolar source sun\n"); printf("0\n0\n"); printf("4 %f %f %f 0.5\n", sundir[0], sundir[1], sundir[2]); } printf("\nvoid brightfunc skyfunc\n"); printf("2 skybr skybright.cal\n"); printf("0\n"); if (overcast) printf("3 %d %.2e %.2e\n", skytype, zenithbr, groundbr); else printf("7 %d %.2e %.2e %.2e %f %f %f\n", skytype, zenithbr, groundbr, F2, sundir[0], sundir[1], sundir[2]); } void printdefaults(void) /* print default values */ { switch (skytype) { case S_OVER: printf("-c\t\t\t\t# Cloudy sky\n"); break; case S_UNIF: printf("-u\t\t\t\t# Uniform cloudy sky\n"); break; case S_INTER: if (dosun) printf("+i\t\t\t\t# Intermediate sky with sun\n"); else printf("-i\t\t\t\t# Intermediate sky without sun\n"); break; case S_CLEAR: if (dosun) printf("+s\t\t\t\t# Sunny sky with sun\n"); else printf("-s\t\t\t\t# Sunny sky without sun\n"); break; } printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl); if (zenithbr > 0.0) printf("-b %f\t\t\t# Zenith radiance (watts/ster/m2\n", zenithbr); else printf("-t %f\t\t\t# Atmospheric turbidity\n", turbidity); printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/PI)); printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/PI)); printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/PI)); } void userror( /* print usage error and quit */ char *msg ) { if (msg != NULL) fprintf(stderr, "%s: Use error - %s\n", progname, msg); fprintf(stderr, "Usage: %s month day hour [options]\n", progname); fprintf(stderr, " Or: %s -ang altitude azimuth [options]\n", progname); fprintf(stderr, " Or: %s -defaults\n", progname); exit(1); } double normsc(void) /* compute normalization factor (E0*F2/L0) */ { static double nfc[2][5] = { /* clear sky approx. */ {2.766521, 0.547665, -0.369832, 0.009237, 0.059229}, /* intermediate sky approx. */ {3.5556, -2.7152, -1.3081, 1.0660, 0.60227}, }; register double *nf; double x, nsc; register int i; /* polynomial approximation */ nf = nfc[skytype==S_INTER]; x = (altitude - PI/4.0)/(PI/4.0); nsc = nf[i=4]; while (i--) nsc = nsc*x + nf[i]; return(nsc); } int cvthour( /* convert hour string */ char *hs ) { register char *cp = hs; register int i, j; if ( (tsolar = *cp == '+') ) cp++; /* solar time? */ while (isdigit(*cp)) cp++; if (*cp == ':') hour = atoi(hs) + atoi(++cp)/60.0; else { hour = atof(hs); if (*cp == '.') cp++; } while (isdigit(*cp)) cp++; if (!*cp) return(0); if (tsolar || !isalpha(*cp)) { fprintf(stderr, "%s: bad time format: %s\n", progname, hs); exit(1); } i = 0; do { for (j = 0; cp[j]; j++) if (toupper(cp[j]) != tzone[i].zname[j]) break; if (!cp[j] && !tzone[i].zname[j]) { s_meridian = tzone[i].zmer * (PI/180); return(1); } } while (tzone[i++].zname[0]); fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp); fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname); for (i = 1; tzone[i].zname[0]; i++) fprintf(stderr, " %s", tzone[i].zname); putc('\n', stderr); exit(1); } void printhead( /* print command header */ register int ac, register char **av ) { putchar('#'); while (ac--) { putchar(' '); fputs(*av++, stdout); } putchar('\n'); }