ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensky.c
Revision: 2.27
Committed: Thu Nov 7 23:15:07 2019 UTC (4 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +22 -9 lines
Log Message:
Added more accurate Michalsky solar position calculation and made correction to old IES handbook formula (thanks to Axel Jacobs)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.27 static const char RCSid[] = "$Id: gensky.c,v 2.26 2014/07/30 17:30:27 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * gensky.c - program to generate sky functions.
6     * Our zenith is along the Z-axis, the X-axis
7     * points east, and the Y-axis points north.
8     * Radiance is in watts/steradian/sq. meter.
9     *
10     * 3/26/86
11     */
12    
13     #include <stdio.h>
14 greg 2.20 #include <stdlib.h>
15     #include <string.h>
16 greg 1.1 #include <math.h>
17 greg 2.17 #include <ctype.h>
18 greg 2.26 #include "sun.h"
19 greg 1.6 #include "color.h"
20 greg 1.1
21 greg 2.17 #ifndef PI
22     #define PI 3.14159265358979323846
23     #endif
24 greg 1.1
25     #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
26    
27 greg 2.13 #define S_CLEAR 1
28     #define S_OVER 2
29     #define S_UNIF 3
30     #define S_INTER 4
31    
32 schorsch 2.21 #define overcast ((skytype==S_OVER)|(skytype==S_UNIF))
33 greg 2.13
34 greg 1.1 double normsc();
35 greg 2.17
36     #undef toupper
37     #define toupper(c) ((c) & ~0x20) /* ASCII trick to convert case */
38    
39     /* European and North American zones */
40     struct {
41     char zname[8]; /* time zone name (all caps) */
42     float zmer; /* standard meridian */
43     } tzone[] = {
44 schorsch 2.22 {"YST", 135}, {"YDT", 120},
45     {"PST", 120}, {"PDT", 105},
46     {"MST", 105}, {"MDT", 90},
47     {"CST", 90}, {"CDT", 75},
48     {"EST", 75}, {"EDT", 60},
49     {"AST", 60}, {"ADT", 45},
50     {"NST", 52.5}, {"NDT", 37.5},
51     {"GMT", 0}, {"BST", -15},
52     {"CET", -15}, {"CEST", -30},
53     {"EET", -30}, {"EEST", -45},
54     {"AST", -45}, {"ADT", -60},
55     {"GST", -60}, {"GDT", -75},
56     {"IST", -82.5}, {"IDT", -97.5},
57     {"JST", -135}, {"NDT", -150},
58     {"NZST", -180}, {"NZDT", -195},
59     {"", 0}
60 greg 2.17 };
61 greg 1.1 /* required values */
62 greg 2.27 int year = 0; /* year (optional) */
63 greg 2.3 int month, day; /* date */
64 greg 2.5 double hour; /* time */
65     int tsolar; /* 0=standard, 1=solar */
66 greg 2.3 double altitude, azimuth; /* or solar angles */
67 greg 1.1 /* default values */
68 greg 2.13 int skytype = S_CLEAR; /* sky type */
69 greg 1.1 int dosun = 1;
70 greg 2.12 double zenithbr = 0.0;
71     int u_zenith = 0; /* -1=irradiance, 1=radiance */
72 greg 2.24 double turbidity = 2.45;
73 greg 1.1 double gprefl = 0.2;
74     /* computed values */
75     double sundir[3];
76     double groundbr;
77     double F2;
78 greg 2.12 double solarbr = 0.0;
79     int u_solar = 0; /* -1=irradiance, 1=radiance */
80 greg 1.1
81     char *progname;
82     char errmsg[128];
83    
84 schorsch 2.22 void computesky(void);
85     void printsky(void);
86     void printdefaults(void);
87     void userror(char *msg);
88     double normsc(void);
89 greg 2.23 int cvthour(char *hs);
90 greg 2.26 void printhead(int ac, char **av);
91 schorsch 2.22
92 greg 1.1
93 schorsch 2.22 int
94 greg 2.26 main(
95     int argc,
96     char *argv[]
97     )
98 greg 1.1 {
99 greg 2.23 int got_meridian = 0;
100 greg 1.1 int i;
101    
102     progname = argv[0];
103     if (argc == 2 && !strcmp(argv[1], "-defaults")) {
104     printdefaults();
105     exit(0);
106     }
107     if (argc < 4)
108     userror("arg count");
109 greg 2.3 if (!strcmp(argv[1], "-ang")) {
110     altitude = atof(argv[2]) * (PI/180);
111     azimuth = atof(argv[3]) * (PI/180);
112     month = 0;
113     } else {
114     month = atoi(argv[1]);
115 greg 2.6 if (month < 1 || month > 12)
116     userror("bad month");
117 greg 2.3 day = atoi(argv[2]);
118 greg 2.6 if (day < 1 || day > 31)
119     userror("bad day");
120 greg 2.23 got_meridian = cvthour(argv[3]);
121 greg 2.3 }
122 greg 1.1 for (i = 4; i < argc; i++)
123     if (argv[i][0] == '-' || argv[i][0] == '+')
124     switch (argv[i][1]) {
125     case 's':
126 greg 2.13 skytype = S_CLEAR;
127 greg 1.1 dosun = argv[i][0] == '+';
128     break;
129 greg 2.27 case 'y':
130     year = atoi(argv[++i]);
131     break;
132 greg 2.8 case 'r':
133 greg 2.12 case 'R':
134     u_solar = argv[i][1]=='R' ? -1 : 1;
135 greg 2.8 solarbr = atof(argv[++i]);
136     break;
137 greg 1.1 case 'c':
138 greg 2.13 skytype = S_OVER;
139 greg 1.1 break;
140 greg 2.13 case 'u':
141     skytype = S_UNIF;
142     break;
143     case 'i':
144     skytype = S_INTER;
145     dosun = argv[i][0] == '+';
146     break;
147 greg 1.1 case 't':
148     turbidity = atof(argv[++i]);
149     break;
150     case 'b':
151 greg 2.12 case 'B':
152     u_zenith = argv[i][1]=='B' ? -1 : 1;
153 greg 1.1 zenithbr = atof(argv[++i]);
154     break;
155     case 'g':
156     gprefl = atof(argv[++i]);
157     break;
158     case 'a':
159     s_latitude = atof(argv[++i]) * (PI/180);
160     break;
161     case 'o':
162     s_longitude = atof(argv[++i]) * (PI/180);
163     break;
164     case 'm':
165 greg 2.23 if (got_meridian) {
166     ++i;
167     break; /* time overrides */
168     }
169 greg 1.1 s_meridian = atof(argv[++i]) * (PI/180);
170     break;
171     default:
172     sprintf(errmsg, "unknown option: %s", argv[i]);
173     userror(errmsg);
174     }
175     else
176     userror("bad option");
177 greg 1.5
178 greg 2.27 if (year && (year < 1950) | (year > 2050))
179     fprintf(stderr,
180     "%s: warning - year should be in range 1950-2050\n",
181     progname);
182 greg 2.25 if (month && !tsolar && fabs(s_meridian-s_longitude) > 45*PI/180)
183 greg 1.5 fprintf(stderr,
184 greg 2.25 "%s: warning - %.1f hours btwn. standard meridian and longitude\n",
185 greg 1.5 progname, (s_longitude-s_meridian)*12/PI);
186 greg 1.1
187     printhead(argc, argv);
188    
189     computesky();
190     printsky();
191 greg 2.15
192     exit(0);
193 greg 1.1 }
194    
195    
196 schorsch 2.22 void
197     computesky(void) /* compute sky parameters */
198 greg 1.1 {
199 greg 2.12 double normfactor;
200 greg 1.1 /* compute solar direction */
201 greg 2.3 if (month) { /* from date and time */
202 greg 2.27 double sd, st = hour;
203 greg 2.3
204 greg 2.27 if (year) { /* Michalsky algorithm? */
205     double mjd = mjdate(year, month, day, hour);
206     if (tsolar)
207     sd = msdec(mjd, NULL);
208     else
209     sd = msdec(mjd, &st);
210     } else {
211     int jd = jdate(month, day); /* Julian date */
212     sd = sdec(jd); /* solar declination */
213     if (!tsolar) /* get solar time? */
214     st = hour + stadj(jd);
215     }
216 greg 2.3 altitude = salt(sd, st);
217     azimuth = sazi(sd, st);
218 greg 2.17 printf("# Local solar time: %.2f\n", st);
219 greg 2.13 printf("# Solar altitude and azimuth: %.1f %.1f\n",
220 greg 2.11 180./PI*altitude, 180./PI*azimuth);
221 greg 2.9 }
222 greg 2.13 if (!overcast && altitude > 87.*PI/180.) {
223 greg 2.9 fprintf(stderr,
224     "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
225     progname);
226     printf(
227     "# warning - sun too close to zenith, reducing altitude to 87 degrees\n");
228     altitude = 87.*PI/180.;
229 greg 2.3 }
230 greg 1.1 sundir[0] = -sin(azimuth)*cos(altitude);
231     sundir[1] = -cos(azimuth)*cos(altitude);
232     sundir[2] = sin(altitude);
233    
234 greg 2.12 /* Compute normalization factor */
235 greg 2.13 switch (skytype) {
236     case S_UNIF:
237 greg 2.12 normfactor = 1.0;
238 greg 2.13 break;
239     case S_OVER:
240 greg 2.12 normfactor = 0.777778;
241 greg 2.13 break;
242     case S_CLEAR:
243 greg 2.12 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(PI/2.0-altitude)) +
244     0.45*sundir[2]*sundir[2]);
245 greg 2.13 normfactor = normsc()/F2/PI;
246     break;
247     case S_INTER:
248     F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) *
249     exp(-(PI/2.0-altitude)*(.4441+1.48*altitude));
250     normfactor = normsc()/F2/PI;
251     break;
252 greg 2.12 }
253 greg 1.1 /* Compute zenith brightness */
254 greg 2.12 if (u_zenith == -1)
255     zenithbr /= normfactor*PI;
256     else if (u_zenith == 0) {
257 greg 2.13 if (overcast)
258 greg 1.1 zenithbr = 8.6*sundir[2] + .123;
259 greg 2.12 else
260 greg 1.1 zenithbr = (1.376*turbidity-1.81)*tan(altitude)+0.38;
261 greg 2.13 if (skytype == S_INTER)
262     zenithbr = (zenithbr + 8.6*sundir[2] + .123)/2.0;
263 greg 2.12 if (zenithbr < 0.0)
264     zenithbr = 0.0;
265     else
266 greg 1.6 zenithbr *= 1000.0/SKYEFFICACY;
267 greg 2.12 }
268 greg 1.1 /* Compute horizontal radiance */
269 greg 2.12 groundbr = zenithbr*normfactor;
270 greg 2.13 printf("# Ground ambient level: %.1f\n", groundbr);
271 greg 2.14 if (!overcast && sundir[2] > 0.0 && (!u_solar || solarbr > 0.0)) {
272 greg 2.12 if (u_solar == -1)
273     solarbr /= 6e-5*sundir[2];
274 greg 2.13 else if (u_solar == 0) {
275 greg 2.12 solarbr = 1.5e9/SUNEFFICACY *
276     (1.147 - .147/(sundir[2]>.16?sundir[2]:.16));
277 greg 2.13 if (skytype == S_INTER)
278     solarbr *= 0.15; /* fudge factor! */
279     }
280 greg 2.12 groundbr += 6e-5/PI*solarbr*sundir[2];
281     } else
282     dosun = 0;
283 greg 1.1 groundbr *= gprefl;
284     }
285    
286    
287 schorsch 2.22 void
288     printsky(void) /* print out sky */
289 greg 1.1 {
290     if (dosun) {
291     printf("\nvoid light solar\n");
292     printf("0\n0\n");
293 greg 1.6 printf("3 %.2e %.2e %.2e\n", solarbr, solarbr, solarbr);
294 greg 1.1 printf("\nsolar source sun\n");
295     printf("0\n0\n");
296     printf("4 %f %f %f 0.5\n", sundir[0], sundir[1], sundir[2]);
297     }
298    
299     printf("\nvoid brightfunc skyfunc\n");
300 greg 2.13 printf("2 skybr skybright.cal\n");
301 greg 1.1 printf("0\n");
302 greg 2.13 if (overcast)
303     printf("3 %d %.2e %.2e\n", skytype, zenithbr, groundbr);
304 greg 1.1 else
305 greg 2.13 printf("7 %d %.2e %.2e %.2e %f %f %f\n",
306     skytype, zenithbr, groundbr, F2,
307     sundir[0], sundir[1], sundir[2]);
308 greg 1.1 }
309    
310    
311 schorsch 2.22 void
312     printdefaults(void) /* print default values */
313 greg 1.1 {
314 greg 2.13 switch (skytype) {
315     case S_OVER:
316 greg 1.1 printf("-c\t\t\t\t# Cloudy sky\n");
317 greg 2.13 break;
318     case S_UNIF:
319     printf("-u\t\t\t\t# Uniform cloudy sky\n");
320     break;
321     case S_INTER:
322     if (dosun)
323     printf("+i\t\t\t\t# Intermediate sky with sun\n");
324     else
325     printf("-i\t\t\t\t# Intermediate sky without sun\n");
326     break;
327     case S_CLEAR:
328     if (dosun)
329     printf("+s\t\t\t\t# Sunny sky with sun\n");
330     else
331     printf("-s\t\t\t\t# Sunny sky without sun\n");
332     break;
333     }
334 greg 1.1 printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
335     if (zenithbr > 0.0)
336     printf("-b %f\t\t\t# Zenith radiance (watts/ster/m2\n", zenithbr);
337     else
338     printf("-t %f\t\t\t# Atmospheric turbidity\n", turbidity);
339     printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/PI));
340     printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/PI));
341     printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/PI));
342     }
343    
344    
345 schorsch 2.22 void
346     userror( /* print usage error and quit */
347     char *msg
348     )
349 greg 1.1 {
350     if (msg != NULL)
351     fprintf(stderr, "%s: Use error - %s\n", progname, msg);
352     fprintf(stderr, "Usage: %s month day hour [options]\n", progname);
353 greg 2.3 fprintf(stderr, " Or: %s -ang altitude azimuth [options]\n", progname);
354 greg 1.1 fprintf(stderr, " Or: %s -defaults\n", progname);
355     exit(1);
356     }
357    
358    
359     double
360 schorsch 2.22 normsc(void) /* compute normalization factor (E0*F2/L0) */
361 greg 1.1 {
362 greg 2.13 static double nfc[2][5] = {
363     /* clear sky approx. */
364     {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
365     /* intermediate sky approx. */
366     {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
367     };
368 greg 2.26 double *nf;
369 greg 1.1 double x, nsc;
370 greg 2.26 int i;
371 greg 1.1 /* polynomial approximation */
372 greg 2.13 nf = nfc[skytype==S_INTER];
373     x = (altitude - PI/4.0)/(PI/4.0);
374     nsc = nf[i=4];
375     while (i--)
376 greg 1.1 nsc = nsc*x + nf[i];
377    
378     return(nsc);
379 greg 2.16 }
380    
381    
382 greg 2.23 int
383 schorsch 2.22 cvthour( /* convert hour string */
384     char *hs
385     )
386 greg 2.16 {
387 greg 2.26 char *cp = hs;
388     int i, j;
389 greg 2.16
390 schorsch 2.21 if ( (tsolar = *cp == '+') ) cp++; /* solar time? */
391 greg 2.17 while (isdigit(*cp)) cp++;
392     if (*cp == ':')
393     hour = atoi(hs) + atoi(++cp)/60.0;
394     else {
395 greg 2.16 hour = atof(hs);
396 greg 2.17 if (*cp == '.') cp++;
397     }
398     while (isdigit(*cp)) cp++;
399     if (!*cp)
400 greg 2.23 return(0);
401 greg 2.17 if (tsolar || !isalpha(*cp)) {
402     fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
403     exit(1);
404     }
405     i = 0;
406     do {
407     for (j = 0; cp[j]; j++)
408     if (toupper(cp[j]) != tzone[i].zname[j])
409     break;
410     if (!cp[j] && !tzone[i].zname[j]) {
411     s_meridian = tzone[i].zmer * (PI/180);
412 greg 2.23 return(1);
413 greg 2.17 }
414     } while (tzone[i++].zname[0]);
415    
416     fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
417     fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
418     for (i = 1; tzone[i].zname[0]; i++)
419     fprintf(stderr, " %s", tzone[i].zname);
420     putc('\n', stderr);
421     exit(1);
422 greg 1.1 }
423    
424    
425 schorsch 2.22 void
426     printhead( /* print command header */
427 greg 2.26 int ac,
428     char **av
429 schorsch 2.22 )
430 greg 1.1 {
431     putchar('#');
432     while (ac--) {
433     putchar(' ');
434     fputs(*av++, stdout);
435     }
436     putchar('\n');
437     }