ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensky.c
Revision: 2.17
Committed: Tue Jul 16 14:14:50 1996 UTC (27 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.16: +61 -8 lines
Log Message:
added time zone specifications

File Contents

# User Rev Content
1 greg 2.9 /* Copyright (c) 1992 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * gensky.c - program to generate sky functions.
9     * Our zenith is along the Z-axis, the X-axis
10     * points east, and the Y-axis points north.
11     * Radiance is in watts/steradian/sq. meter.
12     *
13     * 3/26/86
14     */
15    
16     #include <stdio.h>
17    
18     #include <math.h>
19    
20 greg 2.17 #include <ctype.h>
21    
22 greg 1.6 #include "color.h"
23 greg 1.1
24     extern char *strcpy(), *strcat(), *malloc();
25 greg 2.17 extern double stadj(), sdec(), sazi(), salt(), tz2mer();
26 greg 1.1
27 greg 2.17 #ifndef PI
28     #define PI 3.14159265358979323846
29     #endif
30 greg 1.1
31     #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
32    
33 greg 2.13 #define S_CLEAR 1
34     #define S_OVER 2
35     #define S_UNIF 3
36     #define S_INTER 4
37    
38     #define overcast (skytype==S_OVER|skytype==S_UNIF)
39    
40 greg 1.1 double normsc();
41     /* sun calculation constants */
42     extern double s_latitude;
43     extern double s_longitude;
44     extern double s_meridian;
45 greg 2.17
46     #undef toupper
47     #define toupper(c) ((c) & ~0x20) /* ASCII trick to convert case */
48    
49     /* European and North American zones */
50     struct {
51     char zname[8]; /* time zone name (all caps) */
52     float zmer; /* standard meridian */
53     } tzone[] = {
54     "YST", 135, "YDT", 120,
55     "PST", 120, "PDT", 105,
56     "MST", 105, "MDT", 90,
57     "CST", 90, "CDT", 75,
58     "EST", 75, "EDT", 60,
59     "AST", 60, "ADT", 45,
60     "NST", 52.5, "NDT", 37.5,
61     "GMT", 0, "BST", -15,
62     "WET", -15, "WETDST", -30,
63     "MET", -30, "METDST", -45,
64     "MEZ", -30, "MESZ", -45,
65     "", 0
66     };
67 greg 1.1 /* required values */
68 greg 2.3 int month, day; /* date */
69 greg 2.5 double hour; /* time */
70     int tsolar; /* 0=standard, 1=solar */
71 greg 2.3 double altitude, azimuth; /* or solar angles */
72 greg 1.1 /* default values */
73 greg 2.13 int skytype = S_CLEAR; /* sky type */
74 greg 1.1 int dosun = 1;
75 greg 2.12 double zenithbr = 0.0;
76     int u_zenith = 0; /* -1=irradiance, 1=radiance */
77 greg 1.1 double turbidity = 2.75;
78     double gprefl = 0.2;
79     /* computed values */
80     double sundir[3];
81     double groundbr;
82     double F2;
83 greg 2.12 double solarbr = 0.0;
84     int u_solar = 0; /* -1=irradiance, 1=radiance */
85 greg 1.1
86     char *progname;
87     char errmsg[128];
88    
89    
90     main(argc, argv)
91     int argc;
92     char *argv[];
93     {
94     int i;
95    
96     progname = argv[0];
97     if (argc == 2 && !strcmp(argv[1], "-defaults")) {
98     printdefaults();
99     exit(0);
100     }
101     if (argc < 4)
102     userror("arg count");
103 greg 2.3 if (!strcmp(argv[1], "-ang")) {
104     altitude = atof(argv[2]) * (PI/180);
105     azimuth = atof(argv[3]) * (PI/180);
106     month = 0;
107     } else {
108     month = atoi(argv[1]);
109 greg 2.6 if (month < 1 || month > 12)
110     userror("bad month");
111 greg 2.3 day = atoi(argv[2]);
112 greg 2.6 if (day < 1 || day > 31)
113     userror("bad day");
114 greg 2.16 cvthour(argv[3]);
115 greg 2.3 }
116 greg 1.1 for (i = 4; i < argc; i++)
117     if (argv[i][0] == '-' || argv[i][0] == '+')
118     switch (argv[i][1]) {
119     case 's':
120 greg 2.13 skytype = S_CLEAR;
121 greg 1.1 dosun = argv[i][0] == '+';
122     break;
123 greg 2.8 case 'r':
124 greg 2.12 case 'R':
125     u_solar = argv[i][1]=='R' ? -1 : 1;
126 greg 2.8 solarbr = atof(argv[++i]);
127     break;
128 greg 1.1 case 'c':
129 greg 2.13 skytype = S_OVER;
130 greg 1.1 break;
131 greg 2.13 case 'u':
132     skytype = S_UNIF;
133     break;
134     case 'i':
135     skytype = S_INTER;
136     dosun = argv[i][0] == '+';
137     break;
138 greg 1.1 case 't':
139     turbidity = atof(argv[++i]);
140     break;
141     case 'b':
142 greg 2.12 case 'B':
143     u_zenith = argv[i][1]=='B' ? -1 : 1;
144 greg 1.1 zenithbr = atof(argv[++i]);
145     break;
146     case 'g':
147     gprefl = atof(argv[++i]);
148     break;
149     case 'a':
150     s_latitude = atof(argv[++i]) * (PI/180);
151     break;
152     case 'o':
153     s_longitude = atof(argv[++i]) * (PI/180);
154     break;
155     case 'm':
156     s_meridian = atof(argv[++i]) * (PI/180);
157     break;
158     default:
159     sprintf(errmsg, "unknown option: %s", argv[i]);
160     userror(errmsg);
161     }
162     else
163     userror("bad option");
164 greg 1.5
165     if (fabs(s_meridian-s_longitude) > 30*PI/180)
166     fprintf(stderr,
167     "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
168     progname, (s_longitude-s_meridian)*12/PI);
169 greg 1.1
170     printhead(argc, argv);
171    
172     computesky();
173     printsky();
174 greg 2.15
175     exit(0);
176 greg 1.1 }
177    
178    
179     computesky() /* compute sky parameters */
180     {
181 greg 2.12 double normfactor;
182 greg 1.1 /* compute solar direction */
183 greg 2.3 if (month) { /* from date and time */
184     int jd;
185     double sd, st;
186    
187     jd = jdate(month, day); /* Julian date */
188     sd = sdec(jd); /* solar declination */
189 greg 2.5 if (tsolar) /* solar time */
190     st = hour;
191     else
192     st = hour + stadj(jd);
193 greg 2.3 altitude = salt(sd, st);
194     azimuth = sazi(sd, st);
195 greg 2.17 printf("# Local solar time: %.2f\n", st);
196 greg 2.13 printf("# Solar altitude and azimuth: %.1f %.1f\n",
197 greg 2.11 180./PI*altitude, 180./PI*azimuth);
198 greg 2.9 }
199 greg 2.13 if (!overcast && altitude > 87.*PI/180.) {
200 greg 2.9 fprintf(stderr,
201     "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
202     progname);
203     printf(
204     "# warning - sun too close to zenith, reducing altitude to 87 degrees\n");
205     altitude = 87.*PI/180.;
206 greg 2.3 }
207 greg 1.1 sundir[0] = -sin(azimuth)*cos(altitude);
208     sundir[1] = -cos(azimuth)*cos(altitude);
209     sundir[2] = sin(altitude);
210    
211 greg 2.12 /* Compute normalization factor */
212 greg 2.13 switch (skytype) {
213     case S_UNIF:
214 greg 2.12 normfactor = 1.0;
215 greg 2.13 break;
216     case S_OVER:
217 greg 2.12 normfactor = 0.777778;
218 greg 2.13 break;
219     case S_CLEAR:
220 greg 2.12 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(PI/2.0-altitude)) +
221     0.45*sundir[2]*sundir[2]);
222 greg 2.13 normfactor = normsc()/F2/PI;
223     break;
224     case S_INTER:
225     F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) *
226     exp(-(PI/2.0-altitude)*(.4441+1.48*altitude));
227     normfactor = normsc()/F2/PI;
228     break;
229 greg 2.12 }
230 greg 1.1 /* Compute zenith brightness */
231 greg 2.12 if (u_zenith == -1)
232     zenithbr /= normfactor*PI;
233     else if (u_zenith == 0) {
234 greg 2.13 if (overcast)
235 greg 1.1 zenithbr = 8.6*sundir[2] + .123;
236 greg 2.12 else
237 greg 1.1 zenithbr = (1.376*turbidity-1.81)*tan(altitude)+0.38;
238 greg 2.13 if (skytype == S_INTER)
239     zenithbr = (zenithbr + 8.6*sundir[2] + .123)/2.0;
240 greg 2.12 if (zenithbr < 0.0)
241     zenithbr = 0.0;
242     else
243 greg 1.6 zenithbr *= 1000.0/SKYEFFICACY;
244 greg 2.12 }
245 greg 1.1 /* Compute horizontal radiance */
246 greg 2.12 groundbr = zenithbr*normfactor;
247 greg 2.13 printf("# Ground ambient level: %.1f\n", groundbr);
248 greg 2.14 if (!overcast && sundir[2] > 0.0 && (!u_solar || solarbr > 0.0)) {
249 greg 2.12 if (u_solar == -1)
250     solarbr /= 6e-5*sundir[2];
251 greg 2.13 else if (u_solar == 0) {
252 greg 2.12 solarbr = 1.5e9/SUNEFFICACY *
253     (1.147 - .147/(sundir[2]>.16?sundir[2]:.16));
254 greg 2.13 if (skytype == S_INTER)
255     solarbr *= 0.15; /* fudge factor! */
256     }
257 greg 2.12 groundbr += 6e-5/PI*solarbr*sundir[2];
258     } else
259     dosun = 0;
260 greg 1.1 groundbr *= gprefl;
261     }
262    
263    
264     printsky() /* print out sky */
265     {
266     if (dosun) {
267     printf("\nvoid light solar\n");
268     printf("0\n0\n");
269 greg 1.6 printf("3 %.2e %.2e %.2e\n", solarbr, solarbr, solarbr);
270 greg 1.1 printf("\nsolar source sun\n");
271     printf("0\n0\n");
272     printf("4 %f %f %f 0.5\n", sundir[0], sundir[1], sundir[2]);
273     }
274    
275     printf("\nvoid brightfunc skyfunc\n");
276 greg 2.13 printf("2 skybr skybright.cal\n");
277 greg 1.1 printf("0\n");
278 greg 2.13 if (overcast)
279     printf("3 %d %.2e %.2e\n", skytype, zenithbr, groundbr);
280 greg 1.1 else
281 greg 2.13 printf("7 %d %.2e %.2e %.2e %f %f %f\n",
282     skytype, zenithbr, groundbr, F2,
283     sundir[0], sundir[1], sundir[2]);
284 greg 1.1 }
285    
286    
287     printdefaults() /* print default values */
288     {
289 greg 2.13 switch (skytype) {
290     case S_OVER:
291 greg 1.1 printf("-c\t\t\t\t# Cloudy sky\n");
292 greg 2.13 break;
293     case S_UNIF:
294     printf("-u\t\t\t\t# Uniform cloudy sky\n");
295     break;
296     case S_INTER:
297     if (dosun)
298     printf("+i\t\t\t\t# Intermediate sky with sun\n");
299     else
300     printf("-i\t\t\t\t# Intermediate sky without sun\n");
301     break;
302     case S_CLEAR:
303     if (dosun)
304     printf("+s\t\t\t\t# Sunny sky with sun\n");
305     else
306     printf("-s\t\t\t\t# Sunny sky without sun\n");
307     break;
308     }
309 greg 1.1 printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
310     if (zenithbr > 0.0)
311     printf("-b %f\t\t\t# Zenith radiance (watts/ster/m2\n", zenithbr);
312     else
313     printf("-t %f\t\t\t# Atmospheric turbidity\n", turbidity);
314     printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/PI));
315     printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/PI));
316     printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/PI));
317     }
318    
319    
320     userror(msg) /* print usage error and quit */
321     char *msg;
322     {
323     if (msg != NULL)
324     fprintf(stderr, "%s: Use error - %s\n", progname, msg);
325     fprintf(stderr, "Usage: %s month day hour [options]\n", progname);
326 greg 2.3 fprintf(stderr, " Or: %s -ang altitude azimuth [options]\n", progname);
327 greg 1.1 fprintf(stderr, " Or: %s -defaults\n", progname);
328     exit(1);
329     }
330    
331    
332     double
333 greg 2.13 normsc() /* compute normalization factor (E0*F2/L0) */
334 greg 1.1 {
335 greg 2.13 static double nfc[2][5] = {
336     /* clear sky approx. */
337     {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
338     /* intermediate sky approx. */
339     {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
340     };
341     register double *nf;
342 greg 1.1 double x, nsc;
343     register int i;
344     /* polynomial approximation */
345 greg 2.13 nf = nfc[skytype==S_INTER];
346     x = (altitude - PI/4.0)/(PI/4.0);
347     nsc = nf[i=4];
348     while (i--)
349 greg 1.1 nsc = nsc*x + nf[i];
350    
351     return(nsc);
352 greg 2.16 }
353    
354    
355     cvthour(hs) /* convert hour string */
356     char *hs;
357     {
358     register char *cp = hs;
359 greg 2.17 register int i, j;
360 greg 2.16
361 greg 2.17 if (tsolar = *cp == '+') cp++; /* solar time? */
362     while (isdigit(*cp)) cp++;
363     if (*cp == ':')
364     hour = atoi(hs) + atoi(++cp)/60.0;
365     else {
366 greg 2.16 hour = atof(hs);
367 greg 2.17 if (*cp == '.') cp++;
368     }
369     while (isdigit(*cp)) cp++;
370     if (!*cp)
371     return;
372     if (tsolar || !isalpha(*cp)) {
373     fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
374     exit(1);
375     }
376     i = 0;
377     do {
378     for (j = 0; cp[j]; j++)
379     if (toupper(cp[j]) != tzone[i].zname[j])
380     break;
381     if (!cp[j] && !tzone[i].zname[j]) {
382     s_meridian = tzone[i].zmer * (PI/180);
383     return;
384     }
385     } while (tzone[i++].zname[0]);
386    
387     fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
388     fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
389     for (i = 1; tzone[i].zname[0]; i++)
390     fprintf(stderr, " %s", tzone[i].zname);
391     putc('\n', stderr);
392     exit(1);
393 greg 1.1 }
394    
395    
396     printhead(ac, av) /* print command header */
397     register int ac;
398     register char **av;
399     {
400     putchar('#');
401     while (ac--) {
402     putchar(' ');
403     fputs(*av++, stdout);
404     }
405     putchar('\n');
406     }