ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensdaymtx.c
Revision: 1.5
Committed: Thu Apr 10 23:30:58 2025 UTC (3 weeks, 3 days ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.4: +550 -454 lines
Log Message:
feat(gensdaymtx,genssky): TW fixed bug in genssky and added absolute calibration

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gensdaymtx.c,v 1.4 2024/08/08 02:00:20 greg Exp $";
3 #endif
4
5 #include <stdlib.h>
6 #include <ctype.h>
7 #ifdef _WIN32
8 #include <windows.h>
9 #else
10 #include <errno.h>
11 #include <sys/stat.h>
12 #include <sys/types.h>
13 #endif
14
15 #include "atmos.h"
16 #include "copyright.h"
17 #include "data.h"
18 #include "platform.h"
19 #include "rtio.h"
20 #include "rtmath.h"
21 #include "sun.h"
22 #include "loadEPW.h"
23
24 #ifndef M_PI
25 #define M_PI 3.14159265358579
26 #endif
27
28 #define vector(v, alt, azi) \
29 ((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \
30 (v)[2] = sin(alt))
31
32 #define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i])
33
34 #define rh_cos(i) tsin(rh_palt[i])
35
36 #define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5))
37
38
39 char *progname;
40
41 double altitude; /* Solar altitude (radians) */
42 double azimuth; /* Solar azimuth (radians) */
43 int julian_date; /* Julian date */
44 double sun_zenith; /* Sun zenith angle (radians) */
45 int input = 0; /* Input type */
46 int output = 0; /* Output type */
47 FVECT sundir;
48
49 const double ARCTIC_LAT = 67.;
50 const double TROPIC_LAT = 23.;
51 const int SUMMER_START = 4;
52 const int SUMMER_END = 9;
53 const double GNORM = 0.777778;
54
55 const double D65EFF = 203.; /* standard illuminant D65 */
56
57 /* Mean normalized relative daylight spectra where CCT = 6415K for overcast */
58 const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
59 1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
60 1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
61 0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
62 /* Degrees into radians */
63 #define DegToRad(deg) ((deg) * (PI / 180.))
64
65 /* Radiuans into degrees */
66 #define RadToDeg(rad) ((rad) * (180. / PI))
67
68 #ifndef NSUNPATCH
69 #define NSUNPATCH 4 /* max. # patches to spread sun into */
70 #endif
71
72 #define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */
73
74 int nsuns = NSUNPATCH; /* number of sun patches to use */
75 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
76
77 int verbose = 0; /* progress reports to stderr? */
78
79 int outfmt = 'a'; /* output format */
80
81 int rhsubdiv = 1; /* Reinhart sky subdivisions */
82
83 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
84 COLOR suncolor = {1., 1., 1.}; /* sun color */
85 double grefl = .2; /* ground reflectance */
86
87 int nskypatch; /* number of Reinhart patches */
88 float *rh_palt; /* sky patch altitudes (radians) */
89 float *rh_pazi; /* sky patch azimuths (radians) */
90 float *rh_dom; /* sky patch solid angle (sr) */
91
92 double sun_ct;
93
94 inline void vectorize(double altitude, double azimuth, FVECT v) {
95 v[1] = cos(altitude);
96 v[0] = (v)[1] * sin(azimuth);
97 v[1] *= cos(azimuth);
98 v[2] = sin(altitude);
99 }
100
101 static int make_directory(const char *path) {
102 #ifdef _WIN32
103 if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
104 return 1;
105 }
106 return 0;
107 #else
108 if (mkdir(path, 0777) == 0 || errno == EEXIST) {
109 return 1;
110 }
111 return 0;
112 #endif
113 }
114
115 static const char *getfmtname(int fmt) {
116 switch (fmt) {
117 case 'a':
118 return ("ascii");
119 case 'f':
120 return ("float");
121 case 'd':
122 return ("double");
123 }
124 return ("unknown");
125 }
126
127 static inline double wmean2(const double a, const double b, const double x) {
128 return a * (1 - x) + b * x;
129 }
130
131 static inline double wmean(const double a, const double x, const double b,
132 const double y) {
133 return (a * x + b * y) / (a + b);
134 }
135
136
137 static double get_overcast_zenith_brightness(const double sundir[3]) {
138 double zenithbr;
139 if (sundir[2] < 0) {
140 zenithbr = 0;
141 } else {
142 zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
143 }
144 return zenithbr;
145 }
146
147 /* from gensky.c */
148 static double get_overcast_brightness(const double dz, const double zenithbr) {
149 double groundbr = zenithbr * GNORM;
150 return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
151 pow(dz + 1.01, -10), groundbr);
152 }
153
154 double
155 solar_sunset(int month, int day)
156 {
157 float W;
158 W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day))));
159 return(12 + (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15));
160 }
161
162
163 double
164 solar_sunrise(int month, int day)
165 {
166 float W;
167 W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day))));
168 return(12 - (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15));
169 }
170
171 int rh_init(void) {
172 #define NROW 7
173 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
174 const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5);
175 int p, i, j;
176 /* allocate patch angle arrays */
177 nskypatch = 0;
178 for (p = 0; p < NROW; p++)
179 nskypatch += tnaz[p];
180 nskypatch *= rhsubdiv * rhsubdiv;
181 nskypatch += 2;
182 rh_palt = (float *)malloc(sizeof(float) * nskypatch);
183 rh_pazi = (float *)malloc(sizeof(float) * nskypatch);
184 rh_dom = (float *)malloc(sizeof(float) * nskypatch);
185 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
186 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
187 exit(1);
188 }
189 rh_palt[0] = -PI / 2.; /* ground & zenith patches */
190 rh_pazi[0] = 0.;
191 rh_dom[0] = 2. * PI;
192 rh_palt[nskypatch - 1] = PI / 2.;
193 rh_pazi[nskypatch - 1] = 0.;
194 rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5));
195 p = 1; /* "normal" patches */
196 for (i = 0; i < NROW * rhsubdiv; i++) {
197 const float ralt = alpha * (i + .5);
198 const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv;
199 const float dom =
200 2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow;
201 for (j = 0; j < ninrow; j++) {
202 rh_palt[p] = ralt;
203 rh_pazi[p] = 2. * PI * j / (double)ninrow;
204 rh_dom[p++] = dom;
205 }
206 }
207 return nskypatch;
208 #undef NROW
209 }
210
211 /* Resize daylight matrix (GW) */
212 float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) {
213 if (mtx_data == NULL)
214 mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch);
215 else
216 mtx_data =
217 (float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch);
218 if (mtx_data == NULL) {
219 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname,
220 nsteps, npatch);
221 exit(1);
222 }
223 return (mtx_data);
224 }
225
226 static Atmosphere init_atmos(const double aod, const double grefl) {
227 Atmosphere atmos = {.ozone_density = {.layers =
228 {
229 {.width = 25000.0,
230 .exp_term = 0.0,
231 .exp_scale = 0.0,
232 .linear_term = 1.0 / 15000.0,
233 .constant_term = -2.0 / 3.0},
234 {.width = AH,
235 .exp_term = 0.0,
236 .exp_scale = 0.0,
237 .linear_term = -1.0 / 15000.0,
238 .constant_term = 8.0 / 3.0},
239 }},
240 .rayleigh_density = {.layers =
241 {
242 {.width = AH,
243 .exp_term = 1.0,
244 .exp_scale = -1.0 / HR_MS,
245 .linear_term = 0.0,
246 .constant_term = 0.0},
247 }},
248 .beta_r0 = BR0_MS,
249 .beta_scale = aod / AOD0_CA,
250 .beta_m = NULL,
251 .grefl = grefl};
252 return atmos;
253 }
254
255 static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
256 const char *tag) {
257 DpPaths paths;
258
259 snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
260 mname, aod);
261 snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
262 mname, aod);
263 snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
264 tag, mname, aod);
265 snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
266 mname, aod);
267
268 return paths;
269 }
270
271 static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
272 const int is_summer,
273 const double s_latitude) {
274 /* Set rayleigh density profile */
275 if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
276 tag[0] = 's';
277 if (is_summer) {
278 tag[1] = 's';
279 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
280 atmos->beta_r0 = BR0_SS;
281 } else {
282 tag[1] = 'w';
283 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
284 atmos->beta_r0 = BR0_SW;
285 }
286 } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
287 tag[0] = 'm';
288 if (is_summer) {
289 tag[1] = 's';
290 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
291 atmos->beta_r0 = BR0_MS;
292 } else {
293 tag[1] = 'w';
294 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
295 atmos->beta_r0 = BR0_MW;
296 }
297 } else {
298 tag[0] = 't';
299 tag[1] = 'r';
300 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
301 atmos->beta_r0 = BR0_T;
302 }
303 tag[2] = '\0';
304 }
305
306 /* Add in solar direct to nearest sky patches (GW) */
307 void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m,
308 DATARRAY *irrad, double ccover, double dirnorm, float *parr) {
309 FVECT svec;
310 double near_dprod[NSUNPATCH];
311 int near_patch[NSUNPATCH];
312 double wta[NSUNPATCH], wtot;
313 int i, j, p;
314
315 /* identify nsuns closest patches */
316 for (i = nsuns; i--;)
317 near_dprod[i] = -1.;
318 vectorize(altitude, azimuth, svec);
319 for (p = 1; p < nskypatch; p++) {
320 FVECT pvec;
321 double dprod;
322 vectorize(rh_palt[p], rh_pazi[p], pvec);
323 dprod = DOT(pvec, svec);
324 for (i = 0; i < nsuns; i++)
325 if (dprod > near_dprod[i]) {
326 for (j = nsuns; --j > i;) {
327 near_dprod[j] = near_dprod[j - 1];
328 near_patch[j] = near_patch[j - 1];
329 }
330 near_dprod[i] = dprod;
331 near_patch[i] = p;
332 break;
333 }
334 }
335 /* Get solar radiance */
336 double sun_radiance[NSSAMP] = {0};
337 get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance);
338 if (ccover > 0) {
339 double zenithbr = get_overcast_zenith_brightness(sundir);
340 double skybr = get_overcast_brightness(sundir[2], zenithbr);
341 int l;
342 for (l = 0; l < NSSAMP; ++l) {
343 sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover);
344 }
345 }
346 /* Normalize */
347 double sum = 0.0;
348 for (i = 0; i < NSSAMP; ++i) {
349 sum += sun_radiance[i];
350 }
351 double mean = sum / NSSAMP;
352
353 double intensity = mean * WVLSPAN;
354 if (dirnorm > 0) {
355 intensity = dirnorm / SOLOMG / WHTEFFICACY;
356 }
357 double dir_ratio = 1.;
358 if (mean > 0)
359 dir_ratio = intensity / mean;
360 for (i = 0; i < NSSAMP; ++i) {
361 sun_radiance[i] *= dir_ratio;
362 }
363
364 /* weight by proximity */
365 wtot = 0;
366 for (i = nsuns; i--;)
367 wtot += wta[i] = 1. / (1.002 - near_dprod[i]);
368 /* add to nearest patch radiances */
369 for (i = nsuns; i--;) {
370 float *pdest = parr + NSSAMP * near_patch[i];
371 int k;
372 for (k = 0; k < NSSAMP; k++) {
373 *pdest++ = sun_radiance[k] * wta[i] / wtot;
374 }
375 }
376 }
377
378 void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad_clear, double ccover, double dif_ratio,
379 double overcast_zenithbr, float *parr) {
380 int i;
381 double mu_sky; /* Sun-sky point azimuthal angle */
382 double sspa; /* Sun-sky point angle */
383 FVECT view_point = {0, 0, ER};
384 for (i = 1; i < nskypatch; i++) {
385 FVECT rdir_sky;
386 int k;
387 vectorize(rh_palt[i], rh_pazi[i], rdir_sky);
388 mu_sky = fdot(view_point, rdir_sky) / ER;
389 sspa = fdot(rdir_sky, sundir);
390 SCOLOR sky_radiance = {0};
391
392 get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance);
393 for (k = 0; k < NSSAMP; ++k) {
394 sky_radiance[k] *= WVLSPAN;
395 }
396
397 if (ccover > 0) {
398 double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr);
399 int k;
400 for (k = 0; k < NSSAMP; ++k) {
401 sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover);
402 }
403 }
404
405 /* calibration */
406 for (k = 0; k < NSSAMP; ++k) {
407 sky_radiance[k] *= dif_ratio;
408 }
409
410 for (k = 0; k < NSSAMP; ++k) {
411 parr[NSSAMP * i + k] = sky_radiance[k];
412 }
413 }
414 }
415
416 /* Return maximum of two doubles */
417 static inline double dmax(double a, double b) { return (a > b) ? a : b; }
418
419 /* Compute sky patch radiance values (modified by GW) */
420 void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m,
421 DATARRAY *irrad, double ccover, double difhor, float *parr) {
422 float sun_zenith;
423 SCOLOR sky_radiance = {0};
424 SCOLOR ground_radiance = {0};
425 SCOLR sky_sclr = {0};
426 SCOLR ground_sclr = {0};
427 FVECT view_point = {0, 0, ER};
428 const double radius = VLEN(view_point);
429 const double sun_ct = fdot(view_point, sundir) / radius;
430 const FVECT rdir_grnd = {0, 0, -1};
431 const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
432 const double nu_grnd = fdot(rdir_grnd, sundir);
433
434 /* Calculate sun zenith angle (don't let it dip below horizon) */
435 /* Also limit minimum angle to keep circumsolar off zenith */
436 if (altitude <= 0.0)
437 sun_zenith = DegToRad(90.0);
438 else if (altitude >= DegToRad(87.0))
439 sun_zenith = DegToRad(3.0);
440 else
441 sun_zenith = DegToRad(90.0) - altitude;
442
443 double overcast_zenithbr = get_overcast_zenith_brightness(sundir);
444
445 /* diffuse calibration factor */
446 double dif_ratio = 1;
447 if (difhor > 0) {
448 DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct);
449 double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0;
450 double diffuse_irradiance = 0;
451 int l;
452 for (l = 0; l < NSSAMP; ++l) {
453 diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */
454 }
455 /* free(indirect_irradiance_clear); */
456 diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover);
457 if (diffuse_irradiance > 0) {
458 dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */
459 }
460 }
461
462 /* Compute ground radiance (include solar contribution if any) */
463 get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius,
464 mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr);
465 int j;
466 for (j = 0; j < NSSAMP; j++) {
467 parr[j] *= WVLSPAN;
468 }
469 calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, parr);
470 }
471
472 int main(int argc, char *argv[]) {
473
474 EPWheader *epw = NULL; /* EPW/WEA input file */
475 EPWrecord erec; /* current EPW/WEA input record */
476 int doheader = 1; /* output header? */
477 double rotation = 0.0;
478 double elevation = 0;
479 int leap_day = 0; /* add leap day? */
480 int sun_hours_only = 0; /* only output sun hours? */
481 int dir_is_horiz; /* direct is meas. on horizontal? */
482 float *mtx_data = NULL;
483 int ntsteps = 0; /* number of time steps */
484 int tstorage = 0; /* number of allocated time steps */
485 int nstored = 0; /* number of time steps in matrix */
486 int last_monthly = 0; /* month of last report */
487 double dni, dhi;
488 int mtx_offset = 0;
489 double timeinterval = 0;
490 char lstag[3];
491 char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
492 char *ddir = ".";
493 char mie_name[20] = "mie_ca";
494 int num_threads = 1;
495 int sorder = 4;
496 int solar_only = 0;
497 int sky_only = 0;
498 FVECT view_point = {0, 0, ER};
499 int i, j;
500
501 progname = argv[0];
502
503 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
504 switch (argv[i][1]) {
505 case 'd': /* solar (direct) only */
506 solar_only = 1;
507 break;
508 case 's': /* sky only (no direct) */
509 sky_only = 1;
510 break;
511 case 'g':
512 grefl = atof(argv[++i]);
513 break;
514 case 'm':
515 rhsubdiv = atoi(argv[++i]);
516 break;
517 case 'n':
518 num_threads = atoi(argv[++i]);
519 break;
520 case 'r': /* rotate distribution */
521 if (argv[i][2] && argv[i][2] != 'z')
522 goto userr;
523 rotation = atof(argv[++i]);
524 break;
525 case 'u': /* solar hours only */
526 sun_hours_only = 1;
527 break;
528 case 'p':
529 ddir = argv[++i];
530 break;
531 case 'v': /* verbose progress reports */
532 verbose++;
533 break;
534 case 'h': /* turn off header */
535 doheader = 0;
536 break;
537 case '5': /* 5-phase calculation */
538 nsuns = 1;
539 fixed_sun_sa = PI / 360. * atof(argv[++i]);
540 if (fixed_sun_sa <= 0) {
541 fprintf(
542 stderr,
543 "%s: missing solar disk size argument for '-5' option\n",
544 progname);
545 exit(1);
546 }
547 fixed_sun_sa *= fixed_sun_sa * PI;
548 break;
549 case 'i':
550 timeinterval = atof(argv[++i]);
551 break;
552 case 'o': /* output format */
553 switch (argv[i][2]) {
554 case 'f':
555 case 'd':
556 case 'a':
557 outfmt = argv[i][2];
558 break;
559 default:
560 goto userr;
561 }
562 break;
563 default:
564 goto userr;
565 }
566 }
567 if (i < argc - 1)
568 goto userr;
569
570 epw = EPWopen(argv[i]);
571 if (epw == NULL)
572 exit(1);
573 if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) {
574 fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]);
575 exit(1);
576 }
577 if (verbose) {
578 if (i == argc - 1)
579 fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]);
580 else
581 fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname);
582 }
583 s_latitude = epw->loc.latitude;
584 s_longitude = -epw->loc.longitude;
585 s_meridian = -15.*epw->loc.timezone;
586 elevation = epw->loc.elevation;
587 switch (epw->isWEA) { /* translate units */
588 case WEAnot:
589 case WEAradnorm:
590 input = 1; /* radiometric quantities */
591 dir_is_horiz = 0; /* direct is perpendicular meas. */
592 break;
593 case WEAradhoriz:
594 input = 1; /* radiometric quantities */
595 dir_is_horiz = 1; /* solar measured horizontally */
596 break;
597 case WEAphotnorm:
598 input = 2; /* photometric quantities */
599 dir_is_horiz = 0; /* direct is perpendicular meas. */
600 break;
601 default:
602 goto fmterr;
603 }
604
605 rh_init();
606
607 if (verbose) {
608 fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country);
609 fprintf(
610 stderr,
611 "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
612 progname, s_latitude, s_longitude);
613 if (rotation != 0)
614 fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation);
615 }
616
617 s_latitude = DegToRad(s_latitude);
618 s_longitude = DegToRad(s_longitude);
619 s_meridian = DegToRad(s_meridian);
620 /* initial allocation */
621 mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch);
622
623 /* Load mie density data */
624 DATARRAY *mie_dp = getdata(mie_path);
625 if (mie_dp == NULL) {
626 fprintf(stderr, "Error reading mie data\n");
627 return 0;
628 }
629
630 if (epw->isWEA == WEAnot) {
631 fprintf(stderr, "EPW input\n");
632 } else if (epw->isWEA != WEAphotnorm) {
633 fprintf(stderr, "need WEA in photopic unit\n");
634 exit(1);
635 }
636
637 while ((j = EPWread(epw, &erec)) > 0) {
638 const int mo = erec.date.month+1;
639 const int da = erec.date.day;
640 const double hr = erec.date.hour;
641 double aod = erec.optdepth;
642 double cc = erec.skycover;
643 double sda, sta, st;
644 int sun_in_sky;
645
646 if (aod == 0.0) {
647 aod = AOD0_CA;
648 fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA);
649 }
650 /* compute solar position */
651 if ((mo == 2) & (da == 29)) {
652 julian_date = 60;
653 leap_day = 1;
654 } else
655 julian_date = jdate(mo, da) + leap_day;
656 sda = sdec(julian_date);
657 sta = stadj(julian_date);
658 st = hr + sta;
659 if (timeinterval > 0) {
660 if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120)
661 st = (st + timeinterval/120 + solar_sunrise(mo, da))/2;
662 else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120)
663 st = (st - timeinterval/120 + solar_sunset(mo, da))/2;
664 }
665 altitude = salt(sda, st);
666 sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.));
667
668 azimuth = sazi(sda, st) + PI - DegToRad(rotation);
669
670 vectorize(altitude, azimuth, sundir);
671 if (sun_hours_only && !sun_in_sky) {
672 continue; /* skipping nighttime points */
673 }
674 sun_ct = fdot(view_point, sundir) / ER;
675
676 dni = erec.dirillum;
677 dhi = erec.diffillum;
678 printf("%d %d %f %f %f %f %f\n", mo, da, hr, dni, dhi, aod, cc);
679
680 mtx_offset = NSSAMP * nskypatch * nstored;
681 nstored += 1;
682
683 /* make space for next row */
684 if (nstored > tstorage) {
685 tstorage += (tstorage >> 1) + nstored + 7;
686 mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
687 }
688 ntsteps++; /* keep count of time steps */
689
690 /* compute sky patch values */
691 Atmosphere clear_atmos = init_atmos(aod, grefl);
692 int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END);
693 if (s_latitude < 0) {
694 is_summer = !is_summer;
695 }
696 set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
697
698 clear_atmos.beta_m = mie_dp;
699
700 char gsdir[PATH_MAX];
701 size_t siz = strlen(ddir);
702 if (ISDIRSEP(ddir[siz - 1]))
703 ddir[siz - 1] = '\0';
704 snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
705 if (!make_directory(gsdir)) {
706 fprintf(stderr, "Failed creating atmos_data directory");
707 exit(1);
708 }
709 DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
710
711 if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
712 getpath(clear_paths.scat, ".", R_OK) == NULL ||
713 getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
714 getpath(clear_paths.irrad, ".", R_OK) == NULL) {
715 fprintf(stderr, "# Pre-computing...\n");
716 if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
717 fprintf(stderr, "Pre-compute failed\n");
718 return 0;
719 }
720 }
721
722 DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
723 DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
724 DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
725 DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
726
727 if (!solar_only)
728 compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp,
729 cc, dhi, mtx_data + mtx_offset);
730 if (!sky_only)
731 add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp,
732 cc, dni, mtx_data + mtx_offset);
733 /* monthly reporting */
734 if (verbose && mo != last_monthly)
735 fprintf(stderr, "%s: stepping through month %d...\n", progname,
736 last_monthly = mo);
737 }
738 if (j != EOF) {
739 fprintf(stderr, "%s: error on input\n", progname);
740 exit(1);
741 }
742 EPWclose(epw); epw = NULL;
743 freedata(mie_dp);
744 if (!ntsteps) {
745 fprintf(stderr, "%s: no valid time steps on input\n", progname);
746 exit(1);
747 }
748 /* write out matrix */
749 if (outfmt != 'a')
750 SET_FILE_BINARY(stdout);
751 #ifdef getc_unlocked
752 flockfile(stdout);
753 #endif
754 if (verbose)
755 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname,
756 outfmt == 'a' ? "" : "binary ", nstored);
757 if (doheader) {
758 newheader("RADIANCE", stdout);
759 printargs(argc, argv, stdout);
760 printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
761 -RadToDeg(s_longitude));
762 printf("NROWS=%d\n", nskypatch);
763 printf("NCOLS=%d\n", nstored);
764 printf("NCOMP=%d\n", NSSAMP);
765 if ((outfmt == 'f') | (outfmt == 'd'))
766 fputendian(stdout);
767 fputformat((char *)getfmtname(outfmt), stdout);
768 putchar('\n');
769 }
770 /* patches are rows (outer sort) */
771 for (i = 0; i < nskypatch; i++) {
772 mtx_offset = NSSAMP * i;
773 switch (outfmt) {
774 case 'a':
775 for (j = 0; j < nstored; j++) {
776 int k;
777 for (k = 0; k < NSSAMP; k++) {
778 printf("%.3g ", mtx_data[mtx_offset + k]);
779 }
780 printf("\n");
781 mtx_offset += NSSAMP * nskypatch;
782 }
783 if (nstored > 1)
784 fputc('\n', stdout);
785 break;
786 case 'f':
787 for (j = 0; j < nstored; j++) {
788 putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout);
789 mtx_offset += NSSAMP * nskypatch;
790 }
791 break;
792 case 'd':
793 for (j = 0; j < nstored; j++) {
794 double ment[NSSAMP];
795 for (j = 0; j < NSSAMP; j++)
796 ment[j] = mtx_data[mtx_offset + j];
797 putbinary(ment, sizeof(double), NSSAMP, stdout);
798 mtx_offset += NSSAMP * nskypatch;
799 }
800 break;
801 }
802 if (ferror(stdout))
803 goto writerr;
804 }
805 userr:
806 fprintf(stderr,
807 "Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r "
808 "deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
809 progname);
810 exit(1);
811 fmterr:
812 fprintf(stderr, "%s: weather tape format error in header\n", progname);
813 exit(1);
814 writerr:
815 fprintf(stderr, "%s: write error on output\n", progname);
816 exit(1);
817 }