1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: gensdaymtx.c,v 1.4 2024/08/08 02:00:20 greg Exp $"; |
3 |
#endif |
4 |
|
5 |
#include <stdlib.h> |
6 |
#include <ctype.h> |
7 |
#ifdef _WIN32 |
8 |
#include <windows.h> |
9 |
#else |
10 |
#include <errno.h> |
11 |
#include <sys/stat.h> |
12 |
#include <sys/types.h> |
13 |
#endif |
14 |
|
15 |
#include "atmos.h" |
16 |
#include "copyright.h" |
17 |
#include "data.h" |
18 |
#include "platform.h" |
19 |
#include "rtio.h" |
20 |
#include "rtmath.h" |
21 |
#include "sun.h" |
22 |
#include "loadEPW.h" |
23 |
|
24 |
#ifndef M_PI |
25 |
#define M_PI 3.14159265358579 |
26 |
#endif |
27 |
|
28 |
#define vector(v, alt, azi) \ |
29 |
((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \ |
30 |
(v)[2] = sin(alt)) |
31 |
|
32 |
#define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i]) |
33 |
|
34 |
#define rh_cos(i) tsin(rh_palt[i]) |
35 |
|
36 |
#define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5)) |
37 |
|
38 |
|
39 |
char *progname; |
40 |
|
41 |
double altitude; /* Solar altitude (radians) */ |
42 |
double azimuth; /* Solar azimuth (radians) */ |
43 |
int julian_date; /* Julian date */ |
44 |
double sun_zenith; /* Sun zenith angle (radians) */ |
45 |
int input = 0; /* Input type */ |
46 |
int output = 0; /* Output type */ |
47 |
FVECT sundir; |
48 |
|
49 |
const double ARCTIC_LAT = 67.; |
50 |
const double TROPIC_LAT = 23.; |
51 |
const int SUMMER_START = 4; |
52 |
const int SUMMER_END = 9; |
53 |
const double GNORM = 0.777778; |
54 |
|
55 |
const double D65EFF = 203.; /* standard illuminant D65 */ |
56 |
|
57 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
58 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
59 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
60 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
61 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
62 |
/* Degrees into radians */ |
63 |
#define DegToRad(deg) ((deg) * (PI / 180.)) |
64 |
|
65 |
/* Radiuans into degrees */ |
66 |
#define RadToDeg(rad) ((rad) * (180. / PI)) |
67 |
|
68 |
#ifndef NSUNPATCH |
69 |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
70 |
#endif |
71 |
|
72 |
#define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */ |
73 |
|
74 |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
75 |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
76 |
|
77 |
int verbose = 0; /* progress reports to stderr? */ |
78 |
|
79 |
int outfmt = 'a'; /* output format */ |
80 |
|
81 |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
82 |
|
83 |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
84 |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
85 |
double grefl = .2; /* ground reflectance */ |
86 |
|
87 |
int nskypatch; /* number of Reinhart patches */ |
88 |
float *rh_palt; /* sky patch altitudes (radians) */ |
89 |
float *rh_pazi; /* sky patch azimuths (radians) */ |
90 |
float *rh_dom; /* sky patch solid angle (sr) */ |
91 |
|
92 |
double sun_ct; |
93 |
|
94 |
inline void vectorize(double altitude, double azimuth, FVECT v) { |
95 |
v[1] = cos(altitude); |
96 |
v[0] = (v)[1] * sin(azimuth); |
97 |
v[1] *= cos(azimuth); |
98 |
v[2] = sin(altitude); |
99 |
} |
100 |
|
101 |
static int make_directory(const char *path) { |
102 |
#ifdef _WIN32 |
103 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
104 |
return 1; |
105 |
} |
106 |
return 0; |
107 |
#else |
108 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
109 |
return 1; |
110 |
} |
111 |
return 0; |
112 |
#endif |
113 |
} |
114 |
|
115 |
static const char *getfmtname(int fmt) { |
116 |
switch (fmt) { |
117 |
case 'a': |
118 |
return ("ascii"); |
119 |
case 'f': |
120 |
return ("float"); |
121 |
case 'd': |
122 |
return ("double"); |
123 |
} |
124 |
return ("unknown"); |
125 |
} |
126 |
|
127 |
static inline double wmean2(const double a, const double b, const double x) { |
128 |
return a * (1 - x) + b * x; |
129 |
} |
130 |
|
131 |
static inline double wmean(const double a, const double x, const double b, |
132 |
const double y) { |
133 |
return (a * x + b * y) / (a + b); |
134 |
} |
135 |
|
136 |
|
137 |
static double get_overcast_zenith_brightness(const double sundir[3]) { |
138 |
double zenithbr; |
139 |
if (sundir[2] < 0) { |
140 |
zenithbr = 0; |
141 |
} else { |
142 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
143 |
} |
144 |
return zenithbr; |
145 |
} |
146 |
|
147 |
/* from gensky.c */ |
148 |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
149 |
double groundbr = zenithbr * GNORM; |
150 |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
151 |
pow(dz + 1.01, -10), groundbr); |
152 |
} |
153 |
|
154 |
double |
155 |
solar_sunset(int month, int day) |
156 |
{ |
157 |
float W; |
158 |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
159 |
return(12 + (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15)); |
160 |
} |
161 |
|
162 |
|
163 |
double |
164 |
solar_sunrise(int month, int day) |
165 |
{ |
166 |
float W; |
167 |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
168 |
return(12 - (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15)); |
169 |
} |
170 |
|
171 |
int rh_init(void) { |
172 |
#define NROW 7 |
173 |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
174 |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
175 |
int p, i, j; |
176 |
/* allocate patch angle arrays */ |
177 |
nskypatch = 0; |
178 |
for (p = 0; p < NROW; p++) |
179 |
nskypatch += tnaz[p]; |
180 |
nskypatch *= rhsubdiv * rhsubdiv; |
181 |
nskypatch += 2; |
182 |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
183 |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
184 |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
185 |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
186 |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
187 |
exit(1); |
188 |
} |
189 |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
190 |
rh_pazi[0] = 0.; |
191 |
rh_dom[0] = 2. * PI; |
192 |
rh_palt[nskypatch - 1] = PI / 2.; |
193 |
rh_pazi[nskypatch - 1] = 0.; |
194 |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
195 |
p = 1; /* "normal" patches */ |
196 |
for (i = 0; i < NROW * rhsubdiv; i++) { |
197 |
const float ralt = alpha * (i + .5); |
198 |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
199 |
const float dom = |
200 |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
201 |
for (j = 0; j < ninrow; j++) { |
202 |
rh_palt[p] = ralt; |
203 |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
204 |
rh_dom[p++] = dom; |
205 |
} |
206 |
} |
207 |
return nskypatch; |
208 |
#undef NROW |
209 |
} |
210 |
|
211 |
/* Resize daylight matrix (GW) */ |
212 |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) { |
213 |
if (mtx_data == NULL) |
214 |
mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
215 |
else |
216 |
mtx_data = |
217 |
(float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch); |
218 |
if (mtx_data == NULL) { |
219 |
fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname, |
220 |
nsteps, npatch); |
221 |
exit(1); |
222 |
} |
223 |
return (mtx_data); |
224 |
} |
225 |
|
226 |
static Atmosphere init_atmos(const double aod, const double grefl) { |
227 |
Atmosphere atmos = {.ozone_density = {.layers = |
228 |
{ |
229 |
{.width = 25000.0, |
230 |
.exp_term = 0.0, |
231 |
.exp_scale = 0.0, |
232 |
.linear_term = 1.0 / 15000.0, |
233 |
.constant_term = -2.0 / 3.0}, |
234 |
{.width = AH, |
235 |
.exp_term = 0.0, |
236 |
.exp_scale = 0.0, |
237 |
.linear_term = -1.0 / 15000.0, |
238 |
.constant_term = 8.0 / 3.0}, |
239 |
}}, |
240 |
.rayleigh_density = {.layers = |
241 |
{ |
242 |
{.width = AH, |
243 |
.exp_term = 1.0, |
244 |
.exp_scale = -1.0 / HR_MS, |
245 |
.linear_term = 0.0, |
246 |
.constant_term = 0.0}, |
247 |
}}, |
248 |
.beta_r0 = BR0_MS, |
249 |
.beta_scale = aod / AOD0_CA, |
250 |
.beta_m = NULL, |
251 |
.grefl = grefl}; |
252 |
return atmos; |
253 |
} |
254 |
|
255 |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, |
256 |
const char *tag) { |
257 |
DpPaths paths; |
258 |
|
259 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
260 |
mname, aod); |
261 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
262 |
mname, aod); |
263 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, |
264 |
tag, mname, aod); |
265 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
266 |
mname, aod); |
267 |
|
268 |
return paths; |
269 |
} |
270 |
|
271 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, |
272 |
const int is_summer, |
273 |
const double s_latitude) { |
274 |
/* Set rayleigh density profile */ |
275 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
276 |
tag[0] = 's'; |
277 |
if (is_summer) { |
278 |
tag[1] = 's'; |
279 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
280 |
atmos->beta_r0 = BR0_SS; |
281 |
} else { |
282 |
tag[1] = 'w'; |
283 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
284 |
atmos->beta_r0 = BR0_SW; |
285 |
} |
286 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
287 |
tag[0] = 'm'; |
288 |
if (is_summer) { |
289 |
tag[1] = 's'; |
290 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
291 |
atmos->beta_r0 = BR0_MS; |
292 |
} else { |
293 |
tag[1] = 'w'; |
294 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
295 |
atmos->beta_r0 = BR0_MW; |
296 |
} |
297 |
} else { |
298 |
tag[0] = 't'; |
299 |
tag[1] = 'r'; |
300 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
301 |
atmos->beta_r0 = BR0_T; |
302 |
} |
303 |
tag[2] = '\0'; |
304 |
} |
305 |
|
306 |
/* Add in solar direct to nearest sky patches (GW) */ |
307 |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
308 |
DATARRAY *irrad, double ccover, double dirnorm, float *parr) { |
309 |
FVECT svec; |
310 |
double near_dprod[NSUNPATCH]; |
311 |
int near_patch[NSUNPATCH]; |
312 |
double wta[NSUNPATCH], wtot; |
313 |
int i, j, p; |
314 |
|
315 |
/* identify nsuns closest patches */ |
316 |
for (i = nsuns; i--;) |
317 |
near_dprod[i] = -1.; |
318 |
vectorize(altitude, azimuth, svec); |
319 |
for (p = 1; p < nskypatch; p++) { |
320 |
FVECT pvec; |
321 |
double dprod; |
322 |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
323 |
dprod = DOT(pvec, svec); |
324 |
for (i = 0; i < nsuns; i++) |
325 |
if (dprod > near_dprod[i]) { |
326 |
for (j = nsuns; --j > i;) { |
327 |
near_dprod[j] = near_dprod[j - 1]; |
328 |
near_patch[j] = near_patch[j - 1]; |
329 |
} |
330 |
near_dprod[i] = dprod; |
331 |
near_patch[i] = p; |
332 |
break; |
333 |
} |
334 |
} |
335 |
/* Get solar radiance */ |
336 |
double sun_radiance[NSSAMP] = {0}; |
337 |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
338 |
if (ccover > 0) { |
339 |
double zenithbr = get_overcast_zenith_brightness(sundir); |
340 |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
341 |
int l; |
342 |
for (l = 0; l < NSSAMP; ++l) { |
343 |
sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
344 |
} |
345 |
} |
346 |
/* Normalize */ |
347 |
double sum = 0.0; |
348 |
for (i = 0; i < NSSAMP; ++i) { |
349 |
sum += sun_radiance[i]; |
350 |
} |
351 |
double mean = sum / NSSAMP; |
352 |
|
353 |
double intensity = mean * WVLSPAN; |
354 |
if (dirnorm > 0) { |
355 |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
356 |
} |
357 |
double dir_ratio = 1.; |
358 |
if (mean > 0) |
359 |
dir_ratio = intensity / mean; |
360 |
for (i = 0; i < NSSAMP; ++i) { |
361 |
sun_radiance[i] *= dir_ratio; |
362 |
} |
363 |
|
364 |
/* weight by proximity */ |
365 |
wtot = 0; |
366 |
for (i = nsuns; i--;) |
367 |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
368 |
/* add to nearest patch radiances */ |
369 |
for (i = nsuns; i--;) { |
370 |
float *pdest = parr + NSSAMP * near_patch[i]; |
371 |
int k; |
372 |
for (k = 0; k < NSSAMP; k++) { |
373 |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
374 |
} |
375 |
} |
376 |
} |
377 |
|
378 |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad_clear, double ccover, double dif_ratio, |
379 |
double overcast_zenithbr, float *parr) { |
380 |
int i; |
381 |
double mu_sky; /* Sun-sky point azimuthal angle */ |
382 |
double sspa; /* Sun-sky point angle */ |
383 |
FVECT view_point = {0, 0, ER}; |
384 |
for (i = 1; i < nskypatch; i++) { |
385 |
FVECT rdir_sky; |
386 |
int k; |
387 |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
388 |
mu_sky = fdot(view_point, rdir_sky) / ER; |
389 |
sspa = fdot(rdir_sky, sundir); |
390 |
SCOLOR sky_radiance = {0}; |
391 |
|
392 |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
393 |
for (k = 0; k < NSSAMP; ++k) { |
394 |
sky_radiance[k] *= WVLSPAN; |
395 |
} |
396 |
|
397 |
if (ccover > 0) { |
398 |
double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr); |
399 |
int k; |
400 |
for (k = 0; k < NSSAMP; ++k) { |
401 |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
402 |
} |
403 |
} |
404 |
|
405 |
/* calibration */ |
406 |
for (k = 0; k < NSSAMP; ++k) { |
407 |
sky_radiance[k] *= dif_ratio; |
408 |
} |
409 |
|
410 |
for (k = 0; k < NSSAMP; ++k) { |
411 |
parr[NSSAMP * i + k] = sky_radiance[k]; |
412 |
} |
413 |
} |
414 |
} |
415 |
|
416 |
/* Return maximum of two doubles */ |
417 |
static inline double dmax(double a, double b) { return (a > b) ? a : b; } |
418 |
|
419 |
/* Compute sky patch radiance values (modified by GW) */ |
420 |
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
421 |
DATARRAY *irrad, double ccover, double difhor, float *parr) { |
422 |
float sun_zenith; |
423 |
SCOLOR sky_radiance = {0}; |
424 |
SCOLOR ground_radiance = {0}; |
425 |
SCOLR sky_sclr = {0}; |
426 |
SCOLR ground_sclr = {0}; |
427 |
FVECT view_point = {0, 0, ER}; |
428 |
const double radius = VLEN(view_point); |
429 |
const double sun_ct = fdot(view_point, sundir) / radius; |
430 |
const FVECT rdir_grnd = {0, 0, -1}; |
431 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
432 |
const double nu_grnd = fdot(rdir_grnd, sundir); |
433 |
|
434 |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
435 |
/* Also limit minimum angle to keep circumsolar off zenith */ |
436 |
if (altitude <= 0.0) |
437 |
sun_zenith = DegToRad(90.0); |
438 |
else if (altitude >= DegToRad(87.0)) |
439 |
sun_zenith = DegToRad(3.0); |
440 |
else |
441 |
sun_zenith = DegToRad(90.0) - altitude; |
442 |
|
443 |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
444 |
|
445 |
/* diffuse calibration factor */ |
446 |
double dif_ratio = 1; |
447 |
if (difhor > 0) { |
448 |
DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct); |
449 |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
450 |
double diffuse_irradiance = 0; |
451 |
int l; |
452 |
for (l = 0; l < NSSAMP; ++l) { |
453 |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
454 |
} |
455 |
/* free(indirect_irradiance_clear); */ |
456 |
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
457 |
if (diffuse_irradiance > 0) { |
458 |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
459 |
} |
460 |
} |
461 |
|
462 |
/* Compute ground radiance (include solar contribution if any) */ |
463 |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
464 |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
465 |
int j; |
466 |
for (j = 0; j < NSSAMP; j++) { |
467 |
parr[j] *= WVLSPAN; |
468 |
} |
469 |
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, parr); |
470 |
} |
471 |
|
472 |
int main(int argc, char *argv[]) { |
473 |
|
474 |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
475 |
EPWrecord erec; /* current EPW/WEA input record */ |
476 |
int doheader = 1; /* output header? */ |
477 |
double rotation = 0.0; |
478 |
double elevation = 0; |
479 |
int leap_day = 0; /* add leap day? */ |
480 |
int sun_hours_only = 0; /* only output sun hours? */ |
481 |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
482 |
float *mtx_data = NULL; |
483 |
int ntsteps = 0; /* number of time steps */ |
484 |
int tstorage = 0; /* number of allocated time steps */ |
485 |
int nstored = 0; /* number of time steps in matrix */ |
486 |
int last_monthly = 0; /* month of last report */ |
487 |
double dni, dhi; |
488 |
int mtx_offset = 0; |
489 |
double timeinterval = 0; |
490 |
char lstag[3]; |
491 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
492 |
char *ddir = "."; |
493 |
char mie_name[20] = "mie_ca"; |
494 |
int num_threads = 1; |
495 |
int sorder = 4; |
496 |
int solar_only = 0; |
497 |
int sky_only = 0; |
498 |
FVECT view_point = {0, 0, ER}; |
499 |
int i, j; |
500 |
|
501 |
progname = argv[0]; |
502 |
|
503 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
504 |
switch (argv[i][1]) { |
505 |
case 'd': /* solar (direct) only */ |
506 |
solar_only = 1; |
507 |
break; |
508 |
case 's': /* sky only (no direct) */ |
509 |
sky_only = 1; |
510 |
break; |
511 |
case 'g': |
512 |
grefl = atof(argv[++i]); |
513 |
break; |
514 |
case 'm': |
515 |
rhsubdiv = atoi(argv[++i]); |
516 |
break; |
517 |
case 'n': |
518 |
num_threads = atoi(argv[++i]); |
519 |
break; |
520 |
case 'r': /* rotate distribution */ |
521 |
if (argv[i][2] && argv[i][2] != 'z') |
522 |
goto userr; |
523 |
rotation = atof(argv[++i]); |
524 |
break; |
525 |
case 'u': /* solar hours only */ |
526 |
sun_hours_only = 1; |
527 |
break; |
528 |
case 'p': |
529 |
ddir = argv[++i]; |
530 |
break; |
531 |
case 'v': /* verbose progress reports */ |
532 |
verbose++; |
533 |
break; |
534 |
case 'h': /* turn off header */ |
535 |
doheader = 0; |
536 |
break; |
537 |
case '5': /* 5-phase calculation */ |
538 |
nsuns = 1; |
539 |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
540 |
if (fixed_sun_sa <= 0) { |
541 |
fprintf( |
542 |
stderr, |
543 |
"%s: missing solar disk size argument for '-5' option\n", |
544 |
progname); |
545 |
exit(1); |
546 |
} |
547 |
fixed_sun_sa *= fixed_sun_sa * PI; |
548 |
break; |
549 |
case 'i': |
550 |
timeinterval = atof(argv[++i]); |
551 |
break; |
552 |
case 'o': /* output format */ |
553 |
switch (argv[i][2]) { |
554 |
case 'f': |
555 |
case 'd': |
556 |
case 'a': |
557 |
outfmt = argv[i][2]; |
558 |
break; |
559 |
default: |
560 |
goto userr; |
561 |
} |
562 |
break; |
563 |
default: |
564 |
goto userr; |
565 |
} |
566 |
} |
567 |
if (i < argc - 1) |
568 |
goto userr; |
569 |
|
570 |
epw = EPWopen(argv[i]); |
571 |
if (epw == NULL) |
572 |
exit(1); |
573 |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
574 |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
575 |
exit(1); |
576 |
} |
577 |
if (verbose) { |
578 |
if (i == argc - 1) |
579 |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
580 |
else |
581 |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
582 |
} |
583 |
s_latitude = epw->loc.latitude; |
584 |
s_longitude = -epw->loc.longitude; |
585 |
s_meridian = -15.*epw->loc.timezone; |
586 |
elevation = epw->loc.elevation; |
587 |
switch (epw->isWEA) { /* translate units */ |
588 |
case WEAnot: |
589 |
case WEAradnorm: |
590 |
input = 1; /* radiometric quantities */ |
591 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
592 |
break; |
593 |
case WEAradhoriz: |
594 |
input = 1; /* radiometric quantities */ |
595 |
dir_is_horiz = 1; /* solar measured horizontally */ |
596 |
break; |
597 |
case WEAphotnorm: |
598 |
input = 2; /* photometric quantities */ |
599 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
600 |
break; |
601 |
default: |
602 |
goto fmterr; |
603 |
} |
604 |
|
605 |
rh_init(); |
606 |
|
607 |
if (verbose) { |
608 |
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
609 |
fprintf( |
610 |
stderr, |
611 |
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
612 |
progname, s_latitude, s_longitude); |
613 |
if (rotation != 0) |
614 |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
615 |
} |
616 |
|
617 |
s_latitude = DegToRad(s_latitude); |
618 |
s_longitude = DegToRad(s_longitude); |
619 |
s_meridian = DegToRad(s_meridian); |
620 |
/* initial allocation */ |
621 |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
622 |
|
623 |
/* Load mie density data */ |
624 |
DATARRAY *mie_dp = getdata(mie_path); |
625 |
if (mie_dp == NULL) { |
626 |
fprintf(stderr, "Error reading mie data\n"); |
627 |
return 0; |
628 |
} |
629 |
|
630 |
if (epw->isWEA == WEAnot) { |
631 |
fprintf(stderr, "EPW input\n"); |
632 |
} else if (epw->isWEA != WEAphotnorm) { |
633 |
fprintf(stderr, "need WEA in photopic unit\n"); |
634 |
exit(1); |
635 |
} |
636 |
|
637 |
while ((j = EPWread(epw, &erec)) > 0) { |
638 |
const int mo = erec.date.month+1; |
639 |
const int da = erec.date.day; |
640 |
const double hr = erec.date.hour; |
641 |
double aod = erec.optdepth; |
642 |
double cc = erec.skycover; |
643 |
double sda, sta, st; |
644 |
int sun_in_sky; |
645 |
|
646 |
if (aod == 0.0) { |
647 |
aod = AOD0_CA; |
648 |
fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA); |
649 |
} |
650 |
/* compute solar position */ |
651 |
if ((mo == 2) & (da == 29)) { |
652 |
julian_date = 60; |
653 |
leap_day = 1; |
654 |
} else |
655 |
julian_date = jdate(mo, da) + leap_day; |
656 |
sda = sdec(julian_date); |
657 |
sta = stadj(julian_date); |
658 |
st = hr + sta; |
659 |
if (timeinterval > 0) { |
660 |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) |
661 |
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
662 |
else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) |
663 |
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
664 |
} |
665 |
altitude = salt(sda, st); |
666 |
sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.)); |
667 |
|
668 |
azimuth = sazi(sda, st) + PI - DegToRad(rotation); |
669 |
|
670 |
vectorize(altitude, azimuth, sundir); |
671 |
if (sun_hours_only && !sun_in_sky) { |
672 |
continue; /* skipping nighttime points */ |
673 |
} |
674 |
sun_ct = fdot(view_point, sundir) / ER; |
675 |
|
676 |
dni = erec.dirillum; |
677 |
dhi = erec.diffillum; |
678 |
printf("%d %d %f %f %f %f %f\n", mo, da, hr, dni, dhi, aod, cc); |
679 |
|
680 |
mtx_offset = NSSAMP * nskypatch * nstored; |
681 |
nstored += 1; |
682 |
|
683 |
/* make space for next row */ |
684 |
if (nstored > tstorage) { |
685 |
tstorage += (tstorage >> 1) + nstored + 7; |
686 |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
687 |
} |
688 |
ntsteps++; /* keep count of time steps */ |
689 |
|
690 |
/* compute sky patch values */ |
691 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
692 |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
693 |
if (s_latitude < 0) { |
694 |
is_summer = !is_summer; |
695 |
} |
696 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
697 |
|
698 |
clear_atmos.beta_m = mie_dp; |
699 |
|
700 |
char gsdir[PATH_MAX]; |
701 |
size_t siz = strlen(ddir); |
702 |
if (ISDIRSEP(ddir[siz - 1])) |
703 |
ddir[siz - 1] = '\0'; |
704 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
705 |
if (!make_directory(gsdir)) { |
706 |
fprintf(stderr, "Failed creating atmos_data directory"); |
707 |
exit(1); |
708 |
} |
709 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
710 |
|
711 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
712 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
713 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
714 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
715 |
fprintf(stderr, "# Pre-computing...\n"); |
716 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
717 |
fprintf(stderr, "Pre-compute failed\n"); |
718 |
return 0; |
719 |
} |
720 |
} |
721 |
|
722 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
723 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
724 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
725 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
726 |
|
727 |
if (!solar_only) |
728 |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
729 |
cc, dhi, mtx_data + mtx_offset); |
730 |
if (!sky_only) |
731 |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
732 |
cc, dni, mtx_data + mtx_offset); |
733 |
/* monthly reporting */ |
734 |
if (verbose && mo != last_monthly) |
735 |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
736 |
last_monthly = mo); |
737 |
} |
738 |
if (j != EOF) { |
739 |
fprintf(stderr, "%s: error on input\n", progname); |
740 |
exit(1); |
741 |
} |
742 |
EPWclose(epw); epw = NULL; |
743 |
freedata(mie_dp); |
744 |
if (!ntsteps) { |
745 |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
746 |
exit(1); |
747 |
} |
748 |
/* write out matrix */ |
749 |
if (outfmt != 'a') |
750 |
SET_FILE_BINARY(stdout); |
751 |
#ifdef getc_unlocked |
752 |
flockfile(stdout); |
753 |
#endif |
754 |
if (verbose) |
755 |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
756 |
outfmt == 'a' ? "" : "binary ", nstored); |
757 |
if (doheader) { |
758 |
newheader("RADIANCE", stdout); |
759 |
printargs(argc, argv, stdout); |
760 |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
761 |
-RadToDeg(s_longitude)); |
762 |
printf("NROWS=%d\n", nskypatch); |
763 |
printf("NCOLS=%d\n", nstored); |
764 |
printf("NCOMP=%d\n", NSSAMP); |
765 |
if ((outfmt == 'f') | (outfmt == 'd')) |
766 |
fputendian(stdout); |
767 |
fputformat((char *)getfmtname(outfmt), stdout); |
768 |
putchar('\n'); |
769 |
} |
770 |
/* patches are rows (outer sort) */ |
771 |
for (i = 0; i < nskypatch; i++) { |
772 |
mtx_offset = NSSAMP * i; |
773 |
switch (outfmt) { |
774 |
case 'a': |
775 |
for (j = 0; j < nstored; j++) { |
776 |
int k; |
777 |
for (k = 0; k < NSSAMP; k++) { |
778 |
printf("%.3g ", mtx_data[mtx_offset + k]); |
779 |
} |
780 |
printf("\n"); |
781 |
mtx_offset += NSSAMP * nskypatch; |
782 |
} |
783 |
if (nstored > 1) |
784 |
fputc('\n', stdout); |
785 |
break; |
786 |
case 'f': |
787 |
for (j = 0; j < nstored; j++) { |
788 |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
789 |
mtx_offset += NSSAMP * nskypatch; |
790 |
} |
791 |
break; |
792 |
case 'd': |
793 |
for (j = 0; j < nstored; j++) { |
794 |
double ment[NSSAMP]; |
795 |
for (j = 0; j < NSSAMP; j++) |
796 |
ment[j] = mtx_data[mtx_offset + j]; |
797 |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
798 |
mtx_offset += NSSAMP * nskypatch; |
799 |
} |
800 |
break; |
801 |
} |
802 |
if (ferror(stdout)) |
803 |
goto writerr; |
804 |
} |
805 |
userr: |
806 |
fprintf(stderr, |
807 |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
808 |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
809 |
progname); |
810 |
exit(1); |
811 |
fmterr: |
812 |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
813 |
exit(1); |
814 |
writerr: |
815 |
fprintf(stderr, "%s: write error on output\n", progname); |
816 |
exit(1); |
817 |
} |