| 1 |
#ifndef lint |
| 2 |
static const char RCSid[] = "$Id$"; |
| 3 |
#endif |
| 4 |
#include "atmos.h" |
| 5 |
#include "copyright.h" |
| 6 |
#include "data.h" |
| 7 |
#include "platform.h" |
| 8 |
#include "rtio.h" |
| 9 |
#include <ctype.h> |
| 10 |
#include <stdlib.h> |
| 11 |
#ifdef _WIN32 |
| 12 |
#include <windows.h> |
| 13 |
#else |
| 14 |
#include <errno.h> |
| 15 |
#include <sys/stat.h> |
| 16 |
#include <sys/types.h> |
| 17 |
#endif |
| 18 |
|
| 19 |
char *progname; |
| 20 |
|
| 21 |
double altitude; /* Solar altitude (radians) */ |
| 22 |
double azimuth; /* Solar azimuth (radians) */ |
| 23 |
int julian_date; /* Julian date */ |
| 24 |
double sun_zenith; /* Sun zenith angle (radians) */ |
| 25 |
int input = 0; /* Input type */ |
| 26 |
int output = 0; /* Output type */ |
| 27 |
FVECT sundir; |
| 28 |
|
| 29 |
const double ARCTIC_LAT = 67.; |
| 30 |
const double TROPIC_LAT = 23.; |
| 31 |
const int SUMMER_START = 4; |
| 32 |
const int SUMMER_END = 9; |
| 33 |
const double GNORM = 0.777778; |
| 34 |
|
| 35 |
const double D65EFF = 203.; /* standard illuminant D65 */ |
| 36 |
|
| 37 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
| 38 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
| 39 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
| 40 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
| 41 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
| 42 |
/* Degrees into radians */ |
| 43 |
#define DegToRad(deg) ((deg) * (PI / 180.)) |
| 44 |
|
| 45 |
/* Radiuans into degrees */ |
| 46 |
#define RadToDeg(rad) ((rad) * (180. / PI)) |
| 47 |
|
| 48 |
#ifndef NSUNPATCH |
| 49 |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
| 50 |
#endif |
| 51 |
|
| 52 |
#define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */ |
| 53 |
|
| 54 |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
| 55 |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
| 56 |
|
| 57 |
int verbose = 0; /* progress reports to stderr? */ |
| 58 |
|
| 59 |
int outfmt = 'a'; /* output format */ |
| 60 |
|
| 61 |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
| 62 |
|
| 63 |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
| 64 |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
| 65 |
double grefl = .2; /* ground reflectance */ |
| 66 |
|
| 67 |
int nskypatch; /* number of Reinhart patches */ |
| 68 |
float *rh_palt; /* sky patch altitudes (radians) */ |
| 69 |
float *rh_pazi; /* sky patch azimuths (radians) */ |
| 70 |
float *rh_dom; /* sky patch solid angle (sr) */ |
| 71 |
|
| 72 |
double sun_ct; |
| 73 |
|
| 74 |
#define vector(v, alt, azi) \ |
| 75 |
((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \ |
| 76 |
(v)[2] = sin(alt)) |
| 77 |
|
| 78 |
#define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i]) |
| 79 |
|
| 80 |
#define rh_cos(i) tsin(rh_palt[i]) |
| 81 |
|
| 82 |
#define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5)) |
| 83 |
|
| 84 |
inline void vectorize(double altitude, double azimuth, FVECT v) { |
| 85 |
v[1] = cos(altitude); |
| 86 |
v[0] = (v)[1] * sin(azimuth); |
| 87 |
v[1] *= cos(azimuth); |
| 88 |
v[2] = sin(altitude); |
| 89 |
} |
| 90 |
|
| 91 |
static int make_directory(const char *path) { |
| 92 |
#ifdef _WIN32 |
| 93 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
| 94 |
return 1; |
| 95 |
} |
| 96 |
return 0; |
| 97 |
#else |
| 98 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
| 99 |
return 1; |
| 100 |
} |
| 101 |
return 0; |
| 102 |
#endif |
| 103 |
} |
| 104 |
|
| 105 |
static const char *getfmtname(int fmt) { |
| 106 |
switch (fmt) { |
| 107 |
case 'a': |
| 108 |
return ("ascii"); |
| 109 |
case 'f': |
| 110 |
return ("float"); |
| 111 |
case 'd': |
| 112 |
return ("double"); |
| 113 |
} |
| 114 |
return ("unknown"); |
| 115 |
} |
| 116 |
|
| 117 |
static inline double wmean2(const double a, const double b, const double x) { |
| 118 |
return a * (1 - x) + b * x; |
| 119 |
} |
| 120 |
|
| 121 |
static inline double wmean(const double a, const double x, const double b, |
| 122 |
const double y) { |
| 123 |
return (a * x + b * y) / (a + b); |
| 124 |
} |
| 125 |
|
| 126 |
static double get_zenith_brightness(const double sundir[3]) { |
| 127 |
double zenithbr; |
| 128 |
if (sundir[2] < 0) { |
| 129 |
zenithbr = 0; |
| 130 |
} else { |
| 131 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
| 132 |
} |
| 133 |
return zenithbr; |
| 134 |
} |
| 135 |
|
| 136 |
/* from gensky.c */ |
| 137 |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
| 138 |
double groundbr = zenithbr * GNORM; |
| 139 |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
| 140 |
pow(dz + 1.01, -10), groundbr); |
| 141 |
} |
| 142 |
|
| 143 |
int rh_init(void) { |
| 144 |
#define NROW 7 |
| 145 |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
| 146 |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
| 147 |
int p, i, j; |
| 148 |
/* allocate patch angle arrays */ |
| 149 |
nskypatch = 0; |
| 150 |
for (p = 0; p < NROW; p++) |
| 151 |
nskypatch += tnaz[p]; |
| 152 |
nskypatch *= rhsubdiv * rhsubdiv; |
| 153 |
nskypatch += 2; |
| 154 |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
| 155 |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
| 156 |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
| 157 |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
| 158 |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
| 159 |
exit(1); |
| 160 |
} |
| 161 |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
| 162 |
rh_pazi[0] = 0.; |
| 163 |
rh_dom[0] = 2. * PI; |
| 164 |
rh_palt[nskypatch - 1] = PI / 2.; |
| 165 |
rh_pazi[nskypatch - 1] = 0.; |
| 166 |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
| 167 |
p = 1; /* "normal" patches */ |
| 168 |
for (i = 0; i < NROW * rhsubdiv; i++) { |
| 169 |
const float ralt = alpha * (i + .5); |
| 170 |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
| 171 |
const float dom = |
| 172 |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
| 173 |
for (j = 0; j < ninrow; j++) { |
| 174 |
rh_palt[p] = ralt; |
| 175 |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
| 176 |
rh_dom[p++] = dom; |
| 177 |
} |
| 178 |
} |
| 179 |
return nskypatch; |
| 180 |
#undef NROW |
| 181 |
} |
| 182 |
|
| 183 |
/* Resize daylight matrix (GW) */ |
| 184 |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) { |
| 185 |
if (mtx_data == NULL) |
| 186 |
mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
| 187 |
else |
| 188 |
mtx_data = |
| 189 |
(float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch); |
| 190 |
if (mtx_data == NULL) { |
| 191 |
fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname, |
| 192 |
nsteps, npatch); |
| 193 |
exit(1); |
| 194 |
} |
| 195 |
return (mtx_data); |
| 196 |
} |
| 197 |
|
| 198 |
static Atmosphere init_atmos(const double aod, const double grefl) { |
| 199 |
Atmosphere atmos = {.ozone_density = {.layers = |
| 200 |
{ |
| 201 |
{.width = 25000.0, |
| 202 |
.exp_term = 0.0, |
| 203 |
.exp_scale = 0.0, |
| 204 |
.linear_term = 1.0 / 15000.0, |
| 205 |
.constant_term = -2.0 / 3.0}, |
| 206 |
{.width = AH, |
| 207 |
.exp_term = 0.0, |
| 208 |
.exp_scale = 0.0, |
| 209 |
.linear_term = -1.0 / 15000.0, |
| 210 |
.constant_term = 8.0 / 3.0}, |
| 211 |
}}, |
| 212 |
.rayleigh_density = {.layers = |
| 213 |
{ |
| 214 |
{.width = AH, |
| 215 |
.exp_term = 1.0, |
| 216 |
.exp_scale = -1.0 / HR_MS, |
| 217 |
.linear_term = 0.0, |
| 218 |
.constant_term = 0.0}, |
| 219 |
}}, |
| 220 |
.beta_r0 = BR0_MS, |
| 221 |
.beta_scale = aod / AOD0_CA, |
| 222 |
.beta_m = NULL, |
| 223 |
.grefl = grefl}; |
| 224 |
return atmos; |
| 225 |
} |
| 226 |
|
| 227 |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, |
| 228 |
const char *tag) { |
| 229 |
DpPaths paths; |
| 230 |
|
| 231 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
| 232 |
mname, aod); |
| 233 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
| 234 |
mname, aod); |
| 235 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, |
| 236 |
tag, mname, aod); |
| 237 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
| 238 |
mname, aod); |
| 239 |
|
| 240 |
return paths; |
| 241 |
} |
| 242 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, |
| 243 |
const int is_summer, |
| 244 |
const double s_latitude) { |
| 245 |
/* Set rayleigh density profile */ |
| 246 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
| 247 |
tag[0] = 's'; |
| 248 |
if (is_summer) { |
| 249 |
tag[1] = 's'; |
| 250 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
| 251 |
atmos->beta_r0 = BR0_SS; |
| 252 |
} else { |
| 253 |
tag[1] = 'w'; |
| 254 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
| 255 |
atmos->beta_r0 = BR0_SW; |
| 256 |
} |
| 257 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
| 258 |
tag[0] = 'm'; |
| 259 |
if (is_summer) { |
| 260 |
tag[1] = 's'; |
| 261 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
| 262 |
atmos->beta_r0 = BR0_MS; |
| 263 |
} else { |
| 264 |
tag[1] = 'w'; |
| 265 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
| 266 |
atmos->beta_r0 = BR0_MW; |
| 267 |
} |
| 268 |
} else { |
| 269 |
tag[0] = 't'; |
| 270 |
tag[1] = 'r'; |
| 271 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
| 272 |
atmos->beta_r0 = BR0_T; |
| 273 |
} |
| 274 |
tag[2] = '\0'; |
| 275 |
} |
| 276 |
/* Add in solar direct to nearest sky patches (GW) */ |
| 277 |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
| 278 |
DATARRAY *irrad, double ccover, float *parr) { |
| 279 |
FVECT svec; |
| 280 |
double near_dprod[NSUNPATCH]; |
| 281 |
int near_patch[NSUNPATCH]; |
| 282 |
double wta[NSUNPATCH], wtot; |
| 283 |
int i, j, p; |
| 284 |
|
| 285 |
/* identify nsuns closest patches */ |
| 286 |
for (i = nsuns; i--;) |
| 287 |
near_dprod[i] = -1.; |
| 288 |
vectorize(altitude, azimuth, svec); |
| 289 |
for (p = 1; p < nskypatch; p++) { |
| 290 |
FVECT pvec; |
| 291 |
double dprod; |
| 292 |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
| 293 |
dprod = DOT(pvec, svec); |
| 294 |
for (i = 0; i < nsuns; i++) |
| 295 |
if (dprod > near_dprod[i]) { |
| 296 |
for (j = nsuns; --j > i;) { |
| 297 |
near_dprod[j] = near_dprod[j - 1]; |
| 298 |
near_patch[j] = near_patch[j - 1]; |
| 299 |
} |
| 300 |
near_dprod[i] = dprod; |
| 301 |
near_patch[i] = p; |
| 302 |
break; |
| 303 |
} |
| 304 |
} |
| 305 |
/* Get solar radiance */ |
| 306 |
double sun_radiance[NSSAMP] = {0}; |
| 307 |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
| 308 |
if (ccover > 0) { |
| 309 |
double zenithbr = get_zenith_brightness(sundir); |
| 310 |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
| 311 |
for (int l = 0; l < NSSAMP; ++l) { |
| 312 |
sun_radiance[l] = |
| 313 |
wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
| 314 |
} |
| 315 |
} |
| 316 |
/* weight by proximity */ |
| 317 |
wtot = 0; |
| 318 |
for (i = nsuns; i--;) |
| 319 |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
| 320 |
/* add to nearest patch radiances */ |
| 321 |
for (i = nsuns; i--;) { |
| 322 |
float *pdest = parr + NSSAMP * near_patch[i]; |
| 323 |
for (int k = 0; k < NSSAMP; k++) { |
| 324 |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
| 325 |
} |
| 326 |
} |
| 327 |
} |
| 328 |
|
| 329 |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, double ccover, |
| 330 |
float *parr) { |
| 331 |
int i; |
| 332 |
double mu_sky; /* Sun-sky point azimuthal angle */ |
| 333 |
double sspa; /* Sun-sky point angle */ |
| 334 |
double zsa; /* Zenithal sun angle */ |
| 335 |
FVECT view_point = {0, 0, ER}; |
| 336 |
for (i = 1; i < nskypatch; i++) { |
| 337 |
FVECT rdir_sky; |
| 338 |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
| 339 |
mu_sky = fdot(view_point, rdir_sky) / ER; |
| 340 |
sspa = fdot(rdir_sky, sundir); |
| 341 |
SCOLOR sky_radiance = {0}; |
| 342 |
|
| 343 |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
| 344 |
for (int k = 0; k < NSSAMP; ++k) { |
| 345 |
sky_radiance[k] *= WVLSPAN; |
| 346 |
} |
| 347 |
|
| 348 |
if (ccover > 0) { |
| 349 |
double zenithbr = get_zenith_brightness(sundir); |
| 350 |
double grndbr = zenithbr * GNORM; |
| 351 |
double skybr = get_overcast_brightness(rdir_sky[2], zenithbr); |
| 352 |
for (int k = 0; k < NSSAMP; ++k) { |
| 353 |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
| 354 |
} |
| 355 |
} |
| 356 |
|
| 357 |
for (int k = 0; k < NSSAMP; ++k) { |
| 358 |
parr[NSSAMP * i + k] = sky_radiance[k]; |
| 359 |
} |
| 360 |
} |
| 361 |
} |
| 362 |
|
| 363 |
/* Return maximum of two doubles */ |
| 364 |
static inline double dmax(double a, double b) { return (a > b) ? a : b; } |
| 365 |
|
| 366 |
/* Compute sky patch radiance values (modified by GW) */ |
| 367 |
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
| 368 |
DATARRAY *irrad, double ccover, float *parr) { |
| 369 |
int index; /* Category index */ |
| 370 |
int i; |
| 371 |
float sun_zenith; |
| 372 |
SCOLOR sky_radiance = {0}; |
| 373 |
SCOLOR ground_radiance = {0}; |
| 374 |
SCOLR sky_sclr = {0}; |
| 375 |
SCOLR ground_sclr = {0}; |
| 376 |
FVECT view_point = {0, 0, ER}; |
| 377 |
const double radius = VLEN(view_point); |
| 378 |
const double sun_ct = fdot(view_point, sundir) / radius; |
| 379 |
const FVECT rdir_grnd = {0, 0, -1}; |
| 380 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
| 381 |
const double nu_grnd = fdot(rdir_grnd, sundir); |
| 382 |
|
| 383 |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
| 384 |
/* Also limit minimum angle to keep circumsolar off zenith */ |
| 385 |
if (altitude <= 0.0) |
| 386 |
sun_zenith = DegToRad(90.0); |
| 387 |
else if (altitude >= DegToRad(87.0)) |
| 388 |
sun_zenith = DegToRad(3.0); |
| 389 |
else |
| 390 |
sun_zenith = DegToRad(90.0) - altitude; |
| 391 |
|
| 392 |
/* Compute ground radiance (include solar contribution if any) */ |
| 393 |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
| 394 |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
| 395 |
for (int j = 0; j < NSSAMP; j++) { |
| 396 |
parr[j] *= WVLSPAN; |
| 397 |
} |
| 398 |
calc_sky_patch_radiance(scat, scat1m, ccover, parr); |
| 399 |
} |
| 400 |
|
| 401 |
int main(int argc, char *argv[]) { |
| 402 |
|
| 403 |
char buf[256]; |
| 404 |
int doheader = 1; /* output header? */ |
| 405 |
double rotation = 0.0; |
| 406 |
double elevation = 0; |
| 407 |
int leap_day = 0; /* add leap day? */ |
| 408 |
int sun_hours_only = 0; /* only output sun hours? */ |
| 409 |
float *mtx_data = NULL; |
| 410 |
int ntsteps = 0; /* number of time steps */ |
| 411 |
int tstorage = 0; /* number of allocated time steps */ |
| 412 |
int nstored = 0; /* number of time steps in matrix */ |
| 413 |
int last_monthly = 0; /* month of last report */ |
| 414 |
int mo, da; |
| 415 |
double hr, aod, cc; |
| 416 |
double dni, dhi; |
| 417 |
int mtx_offset = 0; |
| 418 |
int i, j; |
| 419 |
char lstag[3]; |
| 420 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
| 421 |
char *ddir = "."; |
| 422 |
char mie_name[20] = "mie_ca"; |
| 423 |
int num_threads = 1; |
| 424 |
int sorder = 4; |
| 425 |
int solar_only = 0; |
| 426 |
int sky_only = 0; |
| 427 |
FVECT view_point = {0, 0, ER}; |
| 428 |
|
| 429 |
progname = argv[0]; |
| 430 |
|
| 431 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
| 432 |
switch (argv[i][1]) { |
| 433 |
case 'd': /* solar (direct) only */ |
| 434 |
solar_only = 1; |
| 435 |
break; |
| 436 |
case 's': /* sky only (no direct) */ |
| 437 |
sky_only = 1; |
| 438 |
break; |
| 439 |
case 'g': |
| 440 |
grefl = atof(argv[++i]); |
| 441 |
break; |
| 442 |
case 'm': |
| 443 |
rhsubdiv = atoi(argv[++i]); |
| 444 |
break; |
| 445 |
case 'n': |
| 446 |
num_threads = atoi(argv[++i]); |
| 447 |
break; |
| 448 |
case 'r': /* rotate distribution */ |
| 449 |
if (argv[i][2] && argv[i][2] != 'z') |
| 450 |
goto userr; |
| 451 |
rotation = atof(argv[++i]); |
| 452 |
break; |
| 453 |
case 'u': /* solar hours only */ |
| 454 |
sun_hours_only = 1; |
| 455 |
break; |
| 456 |
case 'p': |
| 457 |
ddir = argv[++i]; |
| 458 |
break; |
| 459 |
case 'v': /* verbose progress reports */ |
| 460 |
verbose++; |
| 461 |
break; |
| 462 |
case 'h': /* turn off header */ |
| 463 |
doheader = 0; |
| 464 |
break; |
| 465 |
case '5': /* 5-phase calculation */ |
| 466 |
nsuns = 1; |
| 467 |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
| 468 |
if (fixed_sun_sa <= 0) { |
| 469 |
fprintf(stderr, |
| 470 |
"%s: missing solar disk size argument for '-5' option\n", |
| 471 |
progname); |
| 472 |
exit(1); |
| 473 |
} |
| 474 |
fixed_sun_sa *= fixed_sun_sa * PI; |
| 475 |
break; |
| 476 |
case 'o': /* output format */ |
| 477 |
switch (argv[i][2]) { |
| 478 |
case 'f': |
| 479 |
case 'd': |
| 480 |
case 'a': |
| 481 |
outfmt = argv[i][2]; |
| 482 |
break; |
| 483 |
default: |
| 484 |
goto userr; |
| 485 |
} |
| 486 |
break; |
| 487 |
default: |
| 488 |
goto userr; |
| 489 |
} |
| 490 |
} |
| 491 |
if (i < argc - 1) |
| 492 |
goto userr; |
| 493 |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
| 494 |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
| 495 |
exit(1); |
| 496 |
} |
| 497 |
if (verbose) { |
| 498 |
if (i == argc - 1) |
| 499 |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
| 500 |
else |
| 501 |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
| 502 |
} |
| 503 |
/* read weather tape header */ |
| 504 |
if (scanf("place %[^\r\n] ", buf) != 1) |
| 505 |
goto fmterr; |
| 506 |
if (scanf("latitude %lf\n", &s_latitude) != 1) |
| 507 |
goto fmterr; |
| 508 |
if (scanf("longitude %lf\n", &s_longitude) != 1) |
| 509 |
goto fmterr; |
| 510 |
if (scanf("time_zone %lf\n", &s_meridian) != 1) |
| 511 |
goto fmterr; |
| 512 |
if (scanf("site_elevation %lf\n", &elevation) != 1) |
| 513 |
goto fmterr; |
| 514 |
if (scanf("weather_data_file_units %d\n", &input) != 1) |
| 515 |
goto fmterr; |
| 516 |
|
| 517 |
rh_init(); |
| 518 |
if (verbose) { |
| 519 |
fprintf(stderr, "%s: location '%s'\n", progname, buf); |
| 520 |
fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
| 521 |
progname, s_latitude, s_longitude); |
| 522 |
if (rotation != 0) |
| 523 |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
| 524 |
} |
| 525 |
|
| 526 |
s_latitude = DegToRad(s_latitude); |
| 527 |
s_longitude = DegToRad(s_longitude); |
| 528 |
s_meridian = DegToRad(s_meridian); |
| 529 |
/* initial allocation */ |
| 530 |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
| 531 |
|
| 532 |
/* Load mie density data */ |
| 533 |
DATARRAY *mie_dp = getdata(mie_path); |
| 534 |
if (mie_dp == NULL) { |
| 535 |
fprintf(stderr, "Error reading mie data\n"); |
| 536 |
return 0; |
| 537 |
} |
| 538 |
|
| 539 |
while (scanf("%d %d %lf %lf %lf %lf %lf\n", &mo, &da, &hr, &dni, &dhi, &aod, |
| 540 |
&cc) == 7) { |
| 541 |
double sda, sta; |
| 542 |
int sun_in_sky; |
| 543 |
/* compute solar position */ |
| 544 |
if ((mo == 2) & (da == 29)) { |
| 545 |
julian_date = 60; |
| 546 |
leap_day = 1; |
| 547 |
} else |
| 548 |
julian_date = jdate(mo, da) + leap_day; |
| 549 |
sda = sdec(julian_date); |
| 550 |
sta = stadj(julian_date); |
| 551 |
altitude = salt(sda, hr + sta); |
| 552 |
sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.)); |
| 553 |
|
| 554 |
azimuth = sazi(sda, hr + sta) + PI - DegToRad(rotation); |
| 555 |
|
| 556 |
vectorize(altitude, azimuth, sundir); |
| 557 |
if (sun_hours_only && sundir[2] <= 0.) { |
| 558 |
continue; /* skipping nighttime points */ |
| 559 |
} |
| 560 |
sun_ct = fdot(view_point, sundir) / ER; |
| 561 |
|
| 562 |
mtx_offset = NSSAMP * nskypatch * nstored; |
| 563 |
nstored += 1; |
| 564 |
/* make space for next row */ |
| 565 |
if (nstored > tstorage) { |
| 566 |
tstorage += (tstorage >> 1) + nstored + 7; |
| 567 |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
| 568 |
} |
| 569 |
ntsteps++; /* keep count of time steps */ |
| 570 |
/* compute sky patch values */ |
| 571 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
| 572 |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
| 573 |
if (s_latitude < 0) { |
| 574 |
is_summer = !is_summer; |
| 575 |
} |
| 576 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
| 577 |
|
| 578 |
clear_atmos.beta_m = mie_dp; |
| 579 |
|
| 580 |
char gsdir[PATH_MAX]; |
| 581 |
size_t siz = strlen(ddir); |
| 582 |
if (ISDIRSEP(ddir[siz - 1])) |
| 583 |
ddir[siz - 1] = '\0'; |
| 584 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
| 585 |
if (!make_directory(gsdir)) { |
| 586 |
fprintf(stderr, "Failed creating atmos_data directory"); |
| 587 |
exit(1); |
| 588 |
} |
| 589 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
| 590 |
|
| 591 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
| 592 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
| 593 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
| 594 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
| 595 |
printf("# Pre-computing...\n"); |
| 596 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
| 597 |
fprintf(stderr, "Pre-compute failed\n"); |
| 598 |
return 0; |
| 599 |
} |
| 600 |
} |
| 601 |
|
| 602 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
| 603 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
| 604 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
| 605 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
| 606 |
|
| 607 |
if (!solar_only) |
| 608 |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 609 |
cc, mtx_data + mtx_offset); |
| 610 |
if (!sky_only) |
| 611 |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 612 |
cc, mtx_data + mtx_offset); |
| 613 |
/* update cumulative sky? */ |
| 614 |
for (i = NSSAMP * nskypatch * (ntsteps > 1); i--;) |
| 615 |
mtx_data[i] += mtx_data[mtx_offset + i]; |
| 616 |
/* monthly reporting */ |
| 617 |
if (verbose && mo != last_monthly) |
| 618 |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
| 619 |
last_monthly = mo); |
| 620 |
/* note whether leap-day was given */ |
| 621 |
|
| 622 |
freedata(tau_clear_dp); |
| 623 |
freedata(irrad_clear_dp); |
| 624 |
freedata(scat_clear_dp); |
| 625 |
freedata(scat1m_clear_dp); |
| 626 |
} |
| 627 |
freedata(mie_dp); |
| 628 |
if (!ntsteps) { |
| 629 |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
| 630 |
exit(1); |
| 631 |
} |
| 632 |
/* check for junk at end */ |
| 633 |
while ((i = fgetc(stdin)) != EOF) |
| 634 |
if (!isspace(i)) { |
| 635 |
fprintf(stderr, "%s: warning - unexpected data past EOT: ", progname); |
| 636 |
buf[0] = i; |
| 637 |
buf[1] = '\0'; |
| 638 |
fgets(buf + 1, sizeof(buf) - 1, stdin); |
| 639 |
fputs(buf, stderr); |
| 640 |
fputc('\n', stderr); |
| 641 |
break; |
| 642 |
} |
| 643 |
/* write out matrix */ |
| 644 |
if (outfmt != 'a') |
| 645 |
SET_FILE_BINARY(stdout); |
| 646 |
#ifdef getc_unlocked |
| 647 |
flockfile(stdout); |
| 648 |
#endif |
| 649 |
if (verbose) |
| 650 |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
| 651 |
outfmt == 'a' ? "" : "binary ", nstored); |
| 652 |
if (doheader) { |
| 653 |
newheader("RADIANCE", stdout); |
| 654 |
printargs(argc, argv, stdout); |
| 655 |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
| 656 |
-RadToDeg(s_longitude)); |
| 657 |
printf("NROWS=%d\n", nskypatch); |
| 658 |
printf("NCOLS=%d\n", nstored); |
| 659 |
printf("NCOMP=%d\n", NSSAMP); |
| 660 |
if ((outfmt == 'f') | (outfmt == 'd')) |
| 661 |
fputendian(stdout); |
| 662 |
fputformat((char *)getfmtname(outfmt), stdout); |
| 663 |
putchar('\n'); |
| 664 |
} |
| 665 |
/* patches are rows (outer sort) */ |
| 666 |
for (i = 0; i < nskypatch; i++) { |
| 667 |
mtx_offset = NSSAMP * i; |
| 668 |
switch (outfmt) { |
| 669 |
case 'a': |
| 670 |
for (j = 0; j < nstored; j++) { |
| 671 |
for (int k = 0; k < NSSAMP; k++) { |
| 672 |
printf("%.3g \n", mtx_data[mtx_offset + k]); |
| 673 |
} |
| 674 |
printf("\n"); |
| 675 |
mtx_offset += NSSAMP * nskypatch; |
| 676 |
} |
| 677 |
if (nstored > 1) |
| 678 |
fputc('\n', stdout); |
| 679 |
break; |
| 680 |
case 'f': |
| 681 |
for (j = 0; j < nstored; j++) { |
| 682 |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
| 683 |
mtx_offset += NSSAMP * nskypatch; |
| 684 |
} |
| 685 |
break; |
| 686 |
case 'd': |
| 687 |
for (j = 0; j < nstored; j++) { |
| 688 |
double ment[NSSAMP]; |
| 689 |
for (j = 0; j < NSSAMP; j++) |
| 690 |
ment[j] = mtx_data[mtx_offset + j]; |
| 691 |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
| 692 |
mtx_offset += NSSAMP * nskypatch; |
| 693 |
} |
| 694 |
break; |
| 695 |
} |
| 696 |
if (ferror(stdout)) |
| 697 |
goto writerr; |
| 698 |
} |
| 699 |
alldone: |
| 700 |
if (fflush(NULL) == EOF) |
| 701 |
goto writerr; |
| 702 |
if (verbose) |
| 703 |
fprintf(stderr, "%s: done.\n", progname); |
| 704 |
exit(0); |
| 705 |
userr: |
| 706 |
fprintf(stderr, |
| 707 |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
| 708 |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
| 709 |
progname); |
| 710 |
exit(1); |
| 711 |
fmterr: |
| 712 |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
| 713 |
exit(1); |
| 714 |
writerr: |
| 715 |
fprintf(stderr, "%s: write error on output\n", progname); |
| 716 |
exit(1); |
| 717 |
} |