1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: gensdaymtx.c,v 1.8 2025/06/07 05:09:45 greg Exp $"; |
3 |
#endif |
4 |
|
5 |
#include <stdlib.h> |
6 |
#include <ctype.h> |
7 |
#ifdef _WIN32 |
8 |
#include <windows.h> |
9 |
#else |
10 |
#include <errno.h> |
11 |
#include <sys/stat.h> |
12 |
#include <sys/types.h> |
13 |
#endif |
14 |
|
15 |
#include "atmos.h" |
16 |
#include "copyright.h" |
17 |
#include "data.h" |
18 |
#include "platform.h" |
19 |
#include "rtio.h" |
20 |
#include "rtmath.h" |
21 |
#include "sun.h" |
22 |
#include "loadEPW.h" |
23 |
|
24 |
|
25 |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
26 |
const double ARCTIC_LAT = 67.; |
27 |
const double TROPIC_LAT = 23.; |
28 |
const int SUMMER_START = 4; |
29 |
const int SUMMER_END = 9; |
30 |
const double GNORM = 0.777778; |
31 |
const double M_PER_KM = 1e3; |
32 |
|
33 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
34 |
const double D6415[NSSAMP] = { |
35 |
0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
36 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
37 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
38 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925 |
39 |
}; |
40 |
|
41 |
enum { |
42 |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
43 |
}; |
44 |
|
45 |
double altitude; /* Solar altitude (radians) */ |
46 |
double azimuth; /* Solar azimuth (radians) */ |
47 |
int julian_date; /* Julian date */ |
48 |
double sun_zenith; /* Sun zenith angle (radians) */ |
49 |
int nskypatch; /* number of Reinhart patches */ |
50 |
float *rh_palt; /* sky patch altitudes (radians) */ |
51 |
float *rh_pazi; /* sky patch azimuths (radians) */ |
52 |
float *rh_dom; /* sky patch solid angle (sr) */ |
53 |
FVECT sundir; |
54 |
double sun_ct; /* cos(theta) of sun altitude angle */ |
55 |
|
56 |
int input = 0; /* Input type */ |
57 |
int output = 0; /* Output type */ |
58 |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
59 |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
60 |
int verbose = 0; /* progress reports to stderr? */ |
61 |
int outfmt = 'a'; /* output format */ |
62 |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
63 |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
64 |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
65 |
double grefl = .2; /* ground reflectance */ |
66 |
|
67 |
|
68 |
static inline double |
69 |
deg_to_rad |
70 |
( |
71 |
double deg |
72 |
) |
73 |
{ |
74 |
return deg * (PI / 180.); |
75 |
} |
76 |
|
77 |
static inline double |
78 |
rad_to_deg |
79 |
( |
80 |
double rad |
81 |
) |
82 |
{ |
83 |
return rad * (180. / PI); |
84 |
} |
85 |
|
86 |
static inline void |
87 |
vectorize |
88 |
( |
89 |
double altitude, |
90 |
double azimuth, |
91 |
FVECT v |
92 |
) |
93 |
{ |
94 |
v[1] = cos(altitude); |
95 |
v[0] = (v)[1] * sin(azimuth); |
96 |
v[1] *= cos(azimuth); |
97 |
v[2] = sin(altitude); |
98 |
} |
99 |
|
100 |
static inline double |
101 |
wmean2 |
102 |
( |
103 |
const double a, |
104 |
const double b, |
105 |
const double x |
106 |
) |
107 |
{ |
108 |
return a * (1 - x) + b * x; |
109 |
} |
110 |
|
111 |
static inline double |
112 |
wmean |
113 |
( |
114 |
const double a, |
115 |
const double x, |
116 |
const double b, |
117 |
const double y |
118 |
) |
119 |
{ |
120 |
return (a * x + b * y) / (a + b); |
121 |
} |
122 |
|
123 |
static int |
124 |
make_directory |
125 |
( |
126 |
const char *path |
127 |
) |
128 |
{ |
129 |
#ifdef _WIN32 |
130 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
131 |
return 1; |
132 |
} |
133 |
return 0; |
134 |
|
135 |
#else |
136 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
137 |
return 1; |
138 |
} |
139 |
return 0; |
140 |
|
141 |
#endif |
142 |
} |
143 |
|
144 |
static const char * |
145 |
getfmtname |
146 |
( |
147 |
int fmt |
148 |
) |
149 |
{ |
150 |
switch (fmt) { |
151 |
case 'a': |
152 |
return ("ascii"); |
153 |
|
154 |
case 'f': |
155 |
return ("float"); |
156 |
|
157 |
case 'd': |
158 |
return ("double"); |
159 |
} |
160 |
return ("unknown"); |
161 |
} |
162 |
|
163 |
|
164 |
static double |
165 |
get_overcast_zenith_brightness |
166 |
( |
167 |
const double sundir[3] |
168 |
) |
169 |
{ |
170 |
double zenithbr; |
171 |
if (sundir[2] < 0) { |
172 |
zenithbr = 0; |
173 |
} else { |
174 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFFICACY; |
175 |
} |
176 |
return zenithbr; |
177 |
} |
178 |
|
179 |
|
180 |
/* from gensky.c */ |
181 |
static double |
182 |
get_overcast_brightness |
183 |
( |
184 |
const double dz, |
185 |
const double zenithbr |
186 |
) |
187 |
{ |
188 |
double groundbr = zenithbr * GNORM; |
189 |
return wmean(pow(dz + 1.01, 10), |
190 |
zenithbr * (1 + 2 * dz) / 3, |
191 |
pow(dz + 1.01, -10), groundbr); |
192 |
} |
193 |
|
194 |
double |
195 |
solar_sunset |
196 |
( |
197 |
int month, |
198 |
int day |
199 |
) |
200 |
{ |
201 |
float W; |
202 |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
203 |
return 12 + (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
204 |
} |
205 |
|
206 |
|
207 |
double |
208 |
solar_sunrise |
209 |
( |
210 |
int month, |
211 |
int day |
212 |
) |
213 |
{ |
214 |
float W; |
215 |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
216 |
return 12 - (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
217 |
} |
218 |
|
219 |
int |
220 |
rh_init |
221 |
( |
222 |
void |
223 |
) |
224 |
{ |
225 |
#define NROW 7 |
226 |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
227 |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
228 |
int p, i, j; |
229 |
/* allocate patch angle arrays */ |
230 |
nskypatch = 0; |
231 |
for (p = 0; p < NROW; p++) { |
232 |
nskypatch += tnaz[p]; |
233 |
} |
234 |
nskypatch *= rhsubdiv * rhsubdiv; |
235 |
nskypatch += 2; |
236 |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
237 |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
238 |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
239 |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
240 |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
241 |
exit(1); |
242 |
} |
243 |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
244 |
rh_pazi[0] = 0.; |
245 |
rh_dom[0] = 2. * PI; |
246 |
rh_palt[nskypatch - 1] = PI / 2.; |
247 |
rh_pazi[nskypatch - 1] = 0.; |
248 |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
249 |
p = 1; /* "normal" patches */ |
250 |
for (i = 0; i < NROW * rhsubdiv; i++) { |
251 |
const float ralt = alpha * (i + .5); |
252 |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
253 |
const float dom = |
254 |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
255 |
for (j = 0; j < ninrow; j++) { |
256 |
rh_palt[p] = ralt; |
257 |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
258 |
rh_dom[p++] = dom; |
259 |
} |
260 |
} |
261 |
return nskypatch; |
262 |
|
263 |
#undef NROW |
264 |
} |
265 |
|
266 |
/* Resize daylight matrix (GW) */ |
267 |
float * |
268 |
resize_dmatrix |
269 |
( |
270 |
float *mtx_data, |
271 |
int nsteps, |
272 |
int npatch |
273 |
) |
274 |
{ |
275 |
if (mtx_data == NULL) { |
276 |
mtx_data = (float * ) malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
277 |
}else{ |
278 |
mtx_data = (float * ) realloc(mtx_data, |
279 |
sizeof(float) * NSSAMP * nsteps * npatch); |
280 |
} |
281 |
if (mtx_data == NULL) { |
282 |
fprintf(stderr, |
283 |
"%s: out of memory in resize_dmatrix(%d,%d)\n", |
284 |
progname, nsteps, npatch); |
285 |
exit(1); |
286 |
} |
287 |
return mtx_data; |
288 |
} |
289 |
|
290 |
static Atmosphere |
291 |
init_atmos |
292 |
( |
293 |
const double aod, |
294 |
const double grefl |
295 |
) |
296 |
{ |
297 |
Atmosphere atmos = { |
298 |
.ozone_density = { |
299 |
.layers = { |
300 |
{ |
301 |
.width = 25000.0, |
302 |
.exp_term = 0.0, |
303 |
.exp_scale = 0.0, |
304 |
.linear_term = 1.0 / 15000.0, |
305 |
.constant_term = -2.0 / 3.0 |
306 |
}, |
307 |
{ |
308 |
.width = AH, |
309 |
.exp_term = 0.0, |
310 |
.exp_scale = 0.0, |
311 |
.linear_term = -1.0 / 15000.0, |
312 |
.constant_term = 8.0 / 3.0 |
313 |
}, |
314 |
} |
315 |
}, |
316 |
.rayleigh_density = { |
317 |
.layers = { |
318 |
{ |
319 |
.width = AH, |
320 |
.exp_term = 1.0, |
321 |
.exp_scale = -1.0 / HR_MS, |
322 |
.linear_term = 0.0, |
323 |
.constant_term = 0.0 |
324 |
}, |
325 |
} |
326 |
}, |
327 |
.beta_r0 = BR0_MS, |
328 |
.beta_scale = aod / AOD0_CA, |
329 |
.beta_m = NULL, |
330 |
.grefl = grefl |
331 |
}; |
332 |
return atmos; |
333 |
} |
334 |
|
335 |
static DpPaths |
336 |
get_dppaths |
337 |
( |
338 |
const char *dir, |
339 |
const double aod, |
340 |
const char *mname, |
341 |
const char *tag |
342 |
) |
343 |
{ |
344 |
DpPaths paths; |
345 |
|
346 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", |
347 |
dir, DIRSEP, tag, mname, aod); |
348 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", |
349 |
dir, DIRSEP, tag, mname, aod); |
350 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", |
351 |
dir, DIRSEP, tag, mname, aod); |
352 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", |
353 |
dir, DIRSEP, tag, mname, aod); |
354 |
|
355 |
return paths; |
356 |
} |
357 |
|
358 |
|
359 |
static void |
360 |
set_rayleigh_density_profile |
361 |
( |
362 |
Atmosphere *atmos, |
363 |
char *tag, |
364 |
const int is_summer, |
365 |
const double s_latitude |
366 |
) |
367 |
{ |
368 |
/* Set rayleigh density profile */ |
369 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
370 |
tag[0] = 's'; |
371 |
if (is_summer) { |
372 |
tag[1] = 's'; |
373 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
374 |
atmos->beta_r0 = BR0_SS; |
375 |
} else { |
376 |
tag[1] = 'w'; |
377 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
378 |
atmos->beta_r0 = BR0_SW; |
379 |
} |
380 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
381 |
tag[0] = 'm'; |
382 |
if (is_summer) { |
383 |
tag[1] = 's'; |
384 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
385 |
atmos->beta_r0 = BR0_MS; |
386 |
} else { |
387 |
tag[1] = 'w'; |
388 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
389 |
atmos->beta_r0 = BR0_MW; |
390 |
} |
391 |
} else { |
392 |
tag[0] = 't'; |
393 |
tag[1] = 'r'; |
394 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
395 |
atmos->beta_r0 = BR0_T; |
396 |
} |
397 |
tag[2] = '\0'; |
398 |
} |
399 |
|
400 |
|
401 |
/* Add in solar direct to nearest sky patches (GW) */ |
402 |
void |
403 |
add_direct |
404 |
( |
405 |
DATARRAY *tau, |
406 |
DATARRAY *scat, |
407 |
DATARRAY *scat1m, |
408 |
DATARRAY *irrad, |
409 |
double ccover, |
410 |
double dirnorm, |
411 |
float *parr |
412 |
) |
413 |
{ |
414 |
FVECT svec; |
415 |
double near_dprod[NSUNPATCH]; |
416 |
int near_patch[NSUNPATCH]; |
417 |
double wta[NSUNPATCH], wtot; |
418 |
int i, j, p; |
419 |
|
420 |
/* identify nsuns closest patches */ |
421 |
for (i = nsuns; i--;) { |
422 |
near_dprod[i] = -1.; |
423 |
} |
424 |
vectorize(altitude, azimuth, svec); |
425 |
for (p = 1; p < nskypatch; p++) { |
426 |
FVECT pvec; |
427 |
double dprod; |
428 |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
429 |
dprod = DOT(pvec, svec); |
430 |
for (i = 0; i < nsuns; i++) { |
431 |
if (dprod > near_dprod[i]) { |
432 |
for (j = nsuns; --j > i;) { |
433 |
near_dprod[j] = near_dprod[j - 1]; |
434 |
near_patch[j] = near_patch[j - 1]; |
435 |
} |
436 |
near_dprod[i] = dprod; |
437 |
near_patch[i] = p; |
438 |
break; |
439 |
} |
440 |
} |
441 |
} |
442 |
/* Get solar radiance */ |
443 |
double sun_radiance[NSSAMP] = {0}; |
444 |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
445 |
if (ccover > 0) { |
446 |
double zenithbr = get_overcast_zenith_brightness(sundir); |
447 |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
448 |
int l; |
449 |
for (l = 0; l < NSSAMP; ++l) { |
450 |
sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
451 |
} |
452 |
} |
453 |
/* Normalize */ |
454 |
double sum = 0.0; |
455 |
for (i = 0; i < NSSAMP; ++i) { |
456 |
sum += sun_radiance[i]; |
457 |
} |
458 |
double mean = sum / NSSAMP; |
459 |
|
460 |
double intensity = mean * WVLSPAN; |
461 |
if (dirnorm > 0) { |
462 |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
463 |
} |
464 |
double dir_ratio = 1.; |
465 |
if (mean > 0) { |
466 |
dir_ratio = intensity / mean; |
467 |
} |
468 |
for (i = 0; i < NSSAMP; ++i) { |
469 |
sun_radiance[i] *= dir_ratio; |
470 |
} |
471 |
|
472 |
/* weight by proximity */ |
473 |
wtot = 0; |
474 |
for (i = nsuns; i--;) { |
475 |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
476 |
} |
477 |
/* add to nearest patch radiances */ |
478 |
for (i = nsuns; i--;) { |
479 |
float *pdest = parr + NSSAMP * near_patch[i]; |
480 |
int k; |
481 |
for (k = 0; k < NSSAMP; k++) { |
482 |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
483 |
} |
484 |
} |
485 |
} |
486 |
|
487 |
|
488 |
void |
489 |
calc_sky_patch_radiance |
490 |
( |
491 |
DATARRAY *scat, |
492 |
DATARRAY *scat1m, |
493 |
DATARRAY *irrad_clear, |
494 |
double ccover, |
495 |
double dif_ratio, |
496 |
double overcast_zenithbr, |
497 |
FVECT view_point, |
498 |
float *parr |
499 |
) |
500 |
{ |
501 |
double mu_sky; /* Sun-sky point azimuthal angle */ |
502 |
double sspa; /* Sun-sky point angle */ |
503 |
int i; |
504 |
for (i = 1; i < nskypatch; i++) { |
505 |
FVECT rdir_sky; |
506 |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
507 |
mu_sky = fdot(view_point, rdir_sky) / ER; |
508 |
sspa = fdot(rdir_sky, sundir); |
509 |
|
510 |
SCOLOR sky_radiance = {0}; |
511 |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
512 |
int k; |
513 |
for (k = 0; k < NSSAMP; ++k) { |
514 |
sky_radiance[k] *= WVLSPAN; |
515 |
} |
516 |
|
517 |
if (ccover > 0) { |
518 |
double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr); |
519 |
for (k = 0; k < NSSAMP; ++k) { |
520 |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
521 |
} |
522 |
} |
523 |
|
524 |
/* calibration */ |
525 |
for (k = 0; k < NSSAMP; ++k) { |
526 |
sky_radiance[k] *= dif_ratio; |
527 |
} |
528 |
|
529 |
for (k = 0; k < NSSAMP; ++k) { |
530 |
parr[NSSAMP * i + k] = sky_radiance[k]; |
531 |
} |
532 |
} |
533 |
} |
534 |
|
535 |
|
536 |
/* Compute sky patch radiance values (modified by GW) */ |
537 |
void |
538 |
compute_sky |
539 |
( |
540 |
DATARRAY *tau, |
541 |
DATARRAY *scat, |
542 |
DATARRAY *scat1m, |
543 |
DATARRAY *irrad, |
544 |
double ccover, |
545 |
double difhor, |
546 |
FVECT view_point, |
547 |
float *parr |
548 |
) |
549 |
{ |
550 |
float sun_zenith; |
551 |
SCOLOR sky_radiance = {0}; |
552 |
SCOLOR ground_radiance = {0}; |
553 |
SCOLR sky_sclr = {0}; |
554 |
SCOLR ground_sclr = {0}; |
555 |
const double radius = VLEN(view_point); |
556 |
const double sun_ct = fdot(view_point, sundir) / radius; |
557 |
const FVECT rdir_grnd = {0, 0, -1}; |
558 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
559 |
const double nu_grnd = fdot(rdir_grnd, sundir); |
560 |
|
561 |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
562 |
/* Also limit minimum angle to keep circumsolar off zenith */ |
563 |
if (altitude <= 0.0) { |
564 |
sun_zenith = deg_to_rad(90.0); |
565 |
}else if (altitude >= deg_to_rad(87.0)) { |
566 |
sun_zenith = deg_to_rad(3.0); |
567 |
}else{ |
568 |
sun_zenith = deg_to_rad(90.0) - altitude; |
569 |
} |
570 |
|
571 |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
572 |
|
573 |
/* diffuse calibration factor */ |
574 |
double dif_ratio = 1; |
575 |
if (difhor > 0) { |
576 |
DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct); |
577 |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
578 |
double diffuse_irradiance = 0; |
579 |
int l; |
580 |
for (l = 0; l < NSSAMP; ++l) { |
581 |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
582 |
} |
583 |
/* free(indirect_irradiance_clear); */ |
584 |
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
585 |
if (diffuse_irradiance > 0) { |
586 |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
587 |
} |
588 |
} |
589 |
|
590 |
/* Compute ground radiance (include solar contribution if any) */ |
591 |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
592 |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
593 |
int j; |
594 |
for (j = 0; j < NSSAMP; j++) { |
595 |
parr[j] *= WVLSPAN; |
596 |
} |
597 |
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, view_point, parr); |
598 |
} |
599 |
|
600 |
int |
601 |
main |
602 |
( |
603 |
int argc, |
604 |
char *argv[] |
605 |
) |
606 |
{ |
607 |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
608 |
EPWrecord erec; /* current EPW/WEA input record */ |
609 |
int doheader = 1; /* output header? */ |
610 |
double rotation = 0.0; /* site rotation (degrees) */ |
611 |
double elevation = 0; /* site elevation (meters) */ |
612 |
int leap_day = 0; /* add leap day? */ |
613 |
int sun_hours_only = 0; /* only output sun hours? */ |
614 |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
615 |
int ntsteps = 0; /* number of time steps */ |
616 |
int tstorage = 0; /* number of allocated time steps */ |
617 |
int nstored = 0; /* number of time steps in matrix */ |
618 |
int last_monthly = 0; /* month of last report */ |
619 |
double dni; /* direct normal illuminance */ |
620 |
double dhi; /* diffuse horizontal illuminance */ |
621 |
|
622 |
float *mtx_data = NULL; |
623 |
int mtx_offset = 0; |
624 |
double timeinterval = 0; |
625 |
char lstag[3]; |
626 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
627 |
char *ddir = "."; |
628 |
char mie_name[20] = "mie_ca"; |
629 |
int num_threads = 1; |
630 |
int sorder = 4; |
631 |
int solar_only = 0; |
632 |
int sky_only = 0; |
633 |
int i, j, k; |
634 |
FVECT view_point = {0, 0, ER}; |
635 |
|
636 |
fixargv0(argv[0]); |
637 |
|
638 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
639 |
switch (argv[i][1]) { |
640 |
case 'd': /* solar (direct) only */ |
641 |
solar_only = 1; |
642 |
break; |
643 |
case 's': /* sky only (no direct) */ |
644 |
sky_only = 1; |
645 |
break; |
646 |
case 'g': |
647 |
grefl = atof(argv[++i]); |
648 |
break; |
649 |
case 'm': |
650 |
rhsubdiv = atoi(argv[++i]); |
651 |
break; |
652 |
case 'n': |
653 |
num_threads = atoi(argv[++i]); |
654 |
break; |
655 |
case 'r': /* rotate distribution */ |
656 |
if (argv[i][2] && argv[i][2] != 'z') { |
657 |
goto userr; |
658 |
} |
659 |
rotation = atof(argv[++i]); |
660 |
break; |
661 |
case 'u': /* solar hours only */ |
662 |
sun_hours_only = 1; |
663 |
break; |
664 |
case 'p': |
665 |
ddir = argv[++i]; |
666 |
break; |
667 |
case 'v': /* verbose progress reports */ |
668 |
verbose++; |
669 |
break; |
670 |
case 'h': /* turn off header */ |
671 |
doheader = 0; |
672 |
break; |
673 |
case '5': /* 5-phase calculation */ |
674 |
nsuns = 1; |
675 |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
676 |
if (fixed_sun_sa <= 0) { |
677 |
fprintf( |
678 |
stderr, |
679 |
"%s: missing solar disk size argument for '-5' option\n", |
680 |
progname); |
681 |
exit(1); |
682 |
} |
683 |
fixed_sun_sa *= fixed_sun_sa * PI; |
684 |
break; |
685 |
case 'i': |
686 |
timeinterval = atof(argv[++i]); |
687 |
break; |
688 |
case 'o': /* output format */ |
689 |
switch (argv[i][2]) { |
690 |
case 'f': |
691 |
case 'd': |
692 |
case 'a': |
693 |
outfmt = argv[i][2]; |
694 |
break; |
695 |
default: |
696 |
goto userr; |
697 |
} |
698 |
break; |
699 |
default: |
700 |
goto userr; |
701 |
} |
702 |
} |
703 |
if (i < argc - 1) { |
704 |
goto userr; |
705 |
} |
706 |
|
707 |
epw = EPWopen(argv[i]); |
708 |
if (epw == NULL) { |
709 |
exit(1); |
710 |
} |
711 |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
712 |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
713 |
exit(1); |
714 |
} |
715 |
if (verbose) { |
716 |
if (i == argc - 1) { |
717 |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
718 |
}else{ |
719 |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
720 |
} |
721 |
} |
722 |
s_latitude = epw->loc.latitude; |
723 |
s_longitude = -epw->loc.longitude; |
724 |
s_meridian = -15.*epw->loc.timezone; |
725 |
elevation = epw->loc.elevation; |
726 |
switch (epw->isWEA) { /* translate units */ |
727 |
case WEAnot: |
728 |
case WEAradnorm: |
729 |
input = 1; /* radiometric quantities */ |
730 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
731 |
break; |
732 |
case WEAradhoriz: |
733 |
input = 1; /* radiometric quantities */ |
734 |
dir_is_horiz = 1; /* solar measured horizontally */ |
735 |
break; |
736 |
case WEAphotnorm: |
737 |
input = 2; /* photometric quantities */ |
738 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
739 |
break; |
740 |
default: |
741 |
goto fmterr; |
742 |
} |
743 |
|
744 |
rh_init(); |
745 |
|
746 |
if (verbose) { |
747 |
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
748 |
fprintf( |
749 |
stderr, |
750 |
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
751 |
progname, s_latitude, s_longitude); |
752 |
if (rotation != 0) { |
753 |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
754 |
} |
755 |
} |
756 |
|
757 |
s_latitude = deg_to_rad(s_latitude); |
758 |
s_longitude = deg_to_rad(s_longitude); |
759 |
s_meridian = deg_to_rad(s_meridian); |
760 |
/* initial allocation */ |
761 |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
762 |
|
763 |
/* Load mie density data */ |
764 |
DATARRAY *mie_dp = getdata(mie_path); |
765 |
if (mie_dp == NULL) { |
766 |
fprintf(stderr, "Error reading mie data\n"); |
767 |
return 0; |
768 |
} |
769 |
|
770 |
if (epw->isWEA == WEAnot) { |
771 |
fprintf(stderr, "EPW input\n"); |
772 |
} else if (epw->isWEA != WEAphotnorm) { |
773 |
fprintf(stderr, "need WEA in photopic unit\n"); |
774 |
exit(1); |
775 |
} |
776 |
|
777 |
while ((j = EPWread(epw, &erec)) > 0) { |
778 |
const int mo = erec.date.month+1; |
779 |
const int da = erec.date.day; |
780 |
const double hr = erec.date.hour; |
781 |
double aod = erec.optdepth * M_PER_KM; |
782 |
if (aod >= 999.0) { |
783 |
aod = AOD0_CA; |
784 |
fprintf(stderr, "aod is not set, using default value %.3f\n", AOD0_CA); |
785 |
} |
786 |
double cc = erec.skycover; |
787 |
if (cc >= 99.0) { |
788 |
cc = 0.0; |
789 |
fprintf(stderr, "skycover is not set, using default value %.3f\n", 0.0); |
790 |
} |
791 |
double sda, sta, st; |
792 |
int sun_in_sky; |
793 |
|
794 |
/* compute solar position */ |
795 |
if ((mo == 2) & (da == 29)) { |
796 |
julian_date = 60; |
797 |
leap_day = 1; |
798 |
} else{ |
799 |
julian_date = jdate(mo, da) + leap_day; |
800 |
} |
801 |
sda = sdec(julian_date); |
802 |
sta = stadj(julian_date); |
803 |
st = hr + sta; |
804 |
if (timeinterval > 0) { |
805 |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) { |
806 |
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
807 |
}else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) { |
808 |
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
809 |
} |
810 |
} |
811 |
altitude = salt(sda, st); |
812 |
sun_in_sky = (altitude > -deg_to_rad(SUN_ANG_DEG / 2.)); |
813 |
|
814 |
azimuth = sazi(sda, st) + PI - deg_to_rad(rotation); |
815 |
|
816 |
vectorize(altitude, azimuth, sundir); |
817 |
if (sun_hours_only && !sun_in_sky) { |
818 |
continue; /* skipping nighttime points */ |
819 |
} |
820 |
sun_ct = fdot(view_point, sundir) / ER; |
821 |
|
822 |
dni = erec.dirillum; |
823 |
dhi = erec.diffillum; |
824 |
|
825 |
mtx_offset = NSSAMP * nskypatch * nstored; |
826 |
nstored += 1; |
827 |
|
828 |
/* make space for next row */ |
829 |
if (nstored > tstorage) { |
830 |
tstorage += (tstorage >> 1) + nstored + 7; |
831 |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
832 |
} |
833 |
ntsteps++; /* keep count of time steps */ |
834 |
|
835 |
/* compute sky patch values */ |
836 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
837 |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
838 |
if (s_latitude < 0) { |
839 |
is_summer = !is_summer; |
840 |
} |
841 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
842 |
|
843 |
clear_atmos.beta_m = mie_dp; |
844 |
|
845 |
char gsdir[PATH_MAX]; |
846 |
size_t siz = strlen(ddir); |
847 |
if (ISDIRSEP(ddir[siz - 1])) { |
848 |
ddir[siz - 1] = '\0'; |
849 |
} |
850 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
851 |
if (!make_directory(gsdir)) { |
852 |
fprintf(stderr, "Failed creating atmos_data directory"); |
853 |
exit(1); |
854 |
} |
855 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
856 |
|
857 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
858 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
859 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
860 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
861 |
fprintf(stderr, "# Pre-computing...\n"); |
862 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
863 |
fprintf(stderr, "Pre-compute failed\n"); |
864 |
return 0; |
865 |
} |
866 |
} |
867 |
|
868 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
869 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
870 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
871 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
872 |
|
873 |
if (!solar_only) { |
874 |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
875 |
cc, dhi, view_point, mtx_data + mtx_offset); |
876 |
} |
877 |
if (!sky_only) { |
878 |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
879 |
cc, dni, mtx_data + mtx_offset); |
880 |
} |
881 |
/* monthly reporting */ |
882 |
if (verbose && mo != last_monthly) { |
883 |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
884 |
last_monthly = mo); |
885 |
} |
886 |
} |
887 |
if (j != EOF) { |
888 |
fprintf(stderr, "%s: error on input\n", progname); |
889 |
exit(1); |
890 |
} |
891 |
EPWclose(epw); epw = NULL; |
892 |
freedata(mie_dp); |
893 |
if (!ntsteps) { |
894 |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
895 |
exit(1); |
896 |
} |
897 |
/* write out matrix */ |
898 |
if (outfmt != 'a') { |
899 |
SET_FILE_BINARY(stdout); |
900 |
} |
901 |
#ifdef getc_unlocked |
902 |
flockfile(stdout); |
903 |
#endif |
904 |
if (verbose) { |
905 |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
906 |
outfmt == 'a' ? "" : "binary ", nstored); |
907 |
} |
908 |
if (doheader) { |
909 |
newheader("RADIANCE", stdout); |
910 |
printargs(argc, argv, stdout); |
911 |
printf("LATLONG= %.8f %.8f\n", rad_to_deg(s_latitude), |
912 |
-rad_to_deg(s_longitude)); |
913 |
printf("NROWS=%d\n", nskypatch); |
914 |
printf("NCOLS=%d\n", nstored); |
915 |
printf("NCOMP=%d\n", NSSAMP); |
916 |
fputwlsplit(WLPART, stdout); |
917 |
if ((outfmt == 'f') | (outfmt == 'd')) { |
918 |
fputendian(stdout); |
919 |
} |
920 |
fputformat((char *)getfmtname(outfmt), stdout); |
921 |
putchar('\n'); |
922 |
} |
923 |
/* patches are rows (outer sort) */ |
924 |
for (i = 0; i < nskypatch; i++) { |
925 |
mtx_offset = NSSAMP * i; |
926 |
switch (outfmt) { |
927 |
case 'a': |
928 |
for (j = 0; j < nstored; j++) { |
929 |
for (k = NSSAMP - 1; k >= 0; k--) { |
930 |
printf("%.3g ", mtx_data[mtx_offset + k]); |
931 |
} |
932 |
printf("\n"); |
933 |
mtx_offset += NSSAMP * nskypatch; |
934 |
} |
935 |
if (nstored > 1) { |
936 |
fputc('\n', stdout); |
937 |
} |
938 |
break; |
939 |
case 'f': |
940 |
for (j = 0; j < nstored; j++) { |
941 |
float ment[NSSAMP]; |
942 |
for (k = NSSAMP - 1; k >= 0; k--) { |
943 |
ment[k] = mtx_data[mtx_offset + k]; |
944 |
} |
945 |
putbinary(ment, sizeof(float), NSSAMP, stdout); |
946 |
mtx_offset += NSSAMP * nskypatch; |
947 |
} |
948 |
break; |
949 |
case 'd': |
950 |
for (j = 0; j < nstored; j++) { |
951 |
double ment[NSSAMP]; |
952 |
for (k = NSSAMP - 1; k >= 0; k--) { |
953 |
ment[j] = mtx_data[mtx_offset + k]; |
954 |
} |
955 |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
956 |
mtx_offset += NSSAMP * nskypatch; |
957 |
} |
958 |
break; |
959 |
} |
960 |
if (ferror(stdout)) { |
961 |
goto writerr; |
962 |
} |
963 |
} |
964 |
return 0; |
965 |
|
966 |
userr: |
967 |
fprintf(stderr, |
968 |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
969 |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
970 |
progname); |
971 |
exit(1); |
972 |
fmterr: |
973 |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
974 |
exit(1); |
975 |
writerr: |
976 |
fprintf(stderr, "%s: write error on output\n", progname); |
977 |
exit(1); |
978 |
} |