1 |
#include "atmos.h" |
2 |
#include "copyright.h" |
3 |
#include "data.h" |
4 |
#include "platform.h" |
5 |
#include "rtio.h" |
6 |
#include <ctype.h> |
7 |
#include <stdlib.h> |
8 |
#ifdef _WIN32 |
9 |
#include <windows.h> |
10 |
#else |
11 |
#include <errno.h> |
12 |
#include <sys/stat.h> |
13 |
#include <sys/types.h> |
14 |
#endif |
15 |
|
16 |
char *progname; |
17 |
|
18 |
double altitude; /* Solar altitude (radians) */ |
19 |
double azimuth; /* Solar azimuth (radians) */ |
20 |
int julian_date; /* Julian date */ |
21 |
double sun_zenith; /* Sun zenith angle (radians) */ |
22 |
int input = 0; /* Input type */ |
23 |
int output = 0; /* Output type */ |
24 |
FVECT sundir; |
25 |
|
26 |
const double ARCTIC_LAT = 67.; |
27 |
const double TROPIC_LAT = 23.; |
28 |
const int SUMMER_START = 4; |
29 |
const int SUMMER_END = 9; |
30 |
const double GNORM = 0.777778; |
31 |
|
32 |
const double D65EFF = 203.; /* standard illuminant D65 */ |
33 |
|
34 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
35 |
const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
36 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
37 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
38 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
39 |
/* Degrees into radians */ |
40 |
#define DegToRad(deg) ((deg) * (PI / 180.)) |
41 |
|
42 |
/* Radiuans into degrees */ |
43 |
#define RadToDeg(rad) ((rad) * (180. / PI)) |
44 |
|
45 |
#ifndef NSUNPATCH |
46 |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
47 |
#endif |
48 |
|
49 |
#define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */ |
50 |
|
51 |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
52 |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
53 |
|
54 |
int verbose = 0; /* progress reports to stderr? */ |
55 |
|
56 |
int outfmt = 'a'; /* output format */ |
57 |
|
58 |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
59 |
|
60 |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
61 |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
62 |
double grefl = .2; /* ground reflectance */ |
63 |
|
64 |
int nskypatch; /* number of Reinhart patches */ |
65 |
float *rh_palt; /* sky patch altitudes (radians) */ |
66 |
float *rh_pazi; /* sky patch azimuths (radians) */ |
67 |
float *rh_dom; /* sky patch solid angle (sr) */ |
68 |
|
69 |
double sun_ct; |
70 |
|
71 |
#define vector(v, alt, azi) \ |
72 |
((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \ |
73 |
(v)[2] = sin(alt)) |
74 |
|
75 |
#define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i]) |
76 |
|
77 |
#define rh_cos(i) tsin(rh_palt[i]) |
78 |
|
79 |
#define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5)) |
80 |
|
81 |
inline void vectorize(double altitude, double azimuth, FVECT v) { |
82 |
v[1] = cos(altitude); |
83 |
v[0] = (v)[1] * sin(azimuth); |
84 |
v[1] *= cos(azimuth); |
85 |
v[2] = sin(altitude); |
86 |
} |
87 |
|
88 |
static int make_directory(const char *path) { |
89 |
#ifdef _WIN32 |
90 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
91 |
return 1; |
92 |
} |
93 |
return 0; |
94 |
#else |
95 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
96 |
return 1; |
97 |
} |
98 |
return 0; |
99 |
#endif |
100 |
} |
101 |
|
102 |
static const char *getfmtname(int fmt) { |
103 |
switch (fmt) { |
104 |
case 'a': |
105 |
return ("ascii"); |
106 |
case 'f': |
107 |
return ("float"); |
108 |
case 'd': |
109 |
return ("double"); |
110 |
} |
111 |
return ("unknown"); |
112 |
} |
113 |
|
114 |
static inline double wmean2(const double a, const double b, const double x) { |
115 |
return a * (1 - x) + b * x; |
116 |
} |
117 |
|
118 |
static inline double wmean(const double a, const double x, const double b, |
119 |
const double y) { |
120 |
return (a * x + b * y) / (a + b); |
121 |
} |
122 |
|
123 |
static double get_zenith_brightness(const double sundir[3]) { |
124 |
double zenithbr; |
125 |
if (sundir[2] < 0) { |
126 |
zenithbr = 0; |
127 |
} else { |
128 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF; |
129 |
} |
130 |
return zenithbr; |
131 |
} |
132 |
|
133 |
/* from gensky.c */ |
134 |
static double get_overcast_brightness(const double dz, const double zenithbr) { |
135 |
double groundbr = zenithbr * GNORM; |
136 |
return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, |
137 |
pow(dz + 1.01, -10), groundbr); |
138 |
} |
139 |
|
140 |
int rh_init(void) { |
141 |
#define NROW 7 |
142 |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
143 |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
144 |
int p, i, j; |
145 |
/* allocate patch angle arrays */ |
146 |
nskypatch = 0; |
147 |
for (p = 0; p < NROW; p++) |
148 |
nskypatch += tnaz[p]; |
149 |
nskypatch *= rhsubdiv * rhsubdiv; |
150 |
nskypatch += 2; |
151 |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
152 |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
153 |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
154 |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
155 |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
156 |
exit(1); |
157 |
} |
158 |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
159 |
rh_pazi[0] = 0.; |
160 |
rh_dom[0] = 2. * PI; |
161 |
rh_palt[nskypatch - 1] = PI / 2.; |
162 |
rh_pazi[nskypatch - 1] = 0.; |
163 |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
164 |
p = 1; /* "normal" patches */ |
165 |
for (i = 0; i < NROW * rhsubdiv; i++) { |
166 |
const float ralt = alpha * (i + .5); |
167 |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
168 |
const float dom = |
169 |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
170 |
for (j = 0; j < ninrow; j++) { |
171 |
rh_palt[p] = ralt; |
172 |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
173 |
rh_dom[p++] = dom; |
174 |
} |
175 |
} |
176 |
return nskypatch; |
177 |
#undef NROW |
178 |
} |
179 |
|
180 |
/* Resize daylight matrix (GW) */ |
181 |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) { |
182 |
if (mtx_data == NULL) |
183 |
mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
184 |
else |
185 |
mtx_data = |
186 |
(float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch); |
187 |
if (mtx_data == NULL) { |
188 |
fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname, |
189 |
nsteps, npatch); |
190 |
exit(1); |
191 |
} |
192 |
return (mtx_data); |
193 |
} |
194 |
|
195 |
static Atmosphere init_atmos(const double aod, const double grefl) { |
196 |
Atmosphere atmos = {.ozone_density = {.layers = |
197 |
{ |
198 |
{.width = 25000.0, |
199 |
.exp_term = 0.0, |
200 |
.exp_scale = 0.0, |
201 |
.linear_term = 1.0 / 15000.0, |
202 |
.constant_term = -2.0 / 3.0}, |
203 |
{.width = AH, |
204 |
.exp_term = 0.0, |
205 |
.exp_scale = 0.0, |
206 |
.linear_term = -1.0 / 15000.0, |
207 |
.constant_term = 8.0 / 3.0}, |
208 |
}}, |
209 |
.rayleigh_density = {.layers = |
210 |
{ |
211 |
{.width = AH, |
212 |
.exp_term = 1.0, |
213 |
.exp_scale = -1.0 / HR_MS, |
214 |
.linear_term = 0.0, |
215 |
.constant_term = 0.0}, |
216 |
}}, |
217 |
.beta_r0 = BR0_MS, |
218 |
.beta_scale = aod / AOD0_CA, |
219 |
.beta_m = NULL, |
220 |
.grefl = grefl}; |
221 |
return atmos; |
222 |
} |
223 |
|
224 |
static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, |
225 |
const char *tag) { |
226 |
DpPaths paths; |
227 |
|
228 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
229 |
mname, aod); |
230 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
231 |
mname, aod); |
232 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, |
233 |
tag, mname, aod); |
234 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, |
235 |
mname, aod); |
236 |
|
237 |
return paths; |
238 |
} |
239 |
static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, |
240 |
const int is_summer, |
241 |
const double s_latitude) { |
242 |
/* Set rayleigh density profile */ |
243 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
244 |
tag[0] = 's'; |
245 |
if (is_summer) { |
246 |
tag[1] = 's'; |
247 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
248 |
atmos->beta_r0 = BR0_SS; |
249 |
} else { |
250 |
tag[1] = 'w'; |
251 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
252 |
atmos->beta_r0 = BR0_SW; |
253 |
} |
254 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
255 |
tag[0] = 'm'; |
256 |
if (is_summer) { |
257 |
tag[1] = 's'; |
258 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
259 |
atmos->beta_r0 = BR0_MS; |
260 |
} else { |
261 |
tag[1] = 'w'; |
262 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
263 |
atmos->beta_r0 = BR0_MW; |
264 |
} |
265 |
} else { |
266 |
tag[0] = 't'; |
267 |
tag[1] = 'r'; |
268 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
269 |
atmos->beta_r0 = BR0_T; |
270 |
} |
271 |
tag[2] = '\0'; |
272 |
} |
273 |
/* Add in solar direct to nearest sky patches (GW) */ |
274 |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
275 |
DATARRAY *irrad, double ccover, float *parr) { |
276 |
FVECT svec; |
277 |
double near_dprod[NSUNPATCH]; |
278 |
int near_patch[NSUNPATCH]; |
279 |
double wta[NSUNPATCH], wtot; |
280 |
int i, j, p; |
281 |
|
282 |
/* identify nsuns closest patches */ |
283 |
for (i = nsuns; i--;) |
284 |
near_dprod[i] = -1.; |
285 |
vectorize(altitude, azimuth, svec); |
286 |
for (p = 1; p < nskypatch; p++) { |
287 |
FVECT pvec; |
288 |
double dprod; |
289 |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
290 |
dprod = DOT(pvec, svec); |
291 |
for (i = 0; i < nsuns; i++) |
292 |
if (dprod > near_dprod[i]) { |
293 |
for (j = nsuns; --j > i;) { |
294 |
near_dprod[j] = near_dprod[j - 1]; |
295 |
near_patch[j] = near_patch[j - 1]; |
296 |
} |
297 |
near_dprod[i] = dprod; |
298 |
near_patch[i] = p; |
299 |
break; |
300 |
} |
301 |
} |
302 |
/* Get solar radiance */ |
303 |
double sun_radiance[NSSAMP] = {0}; |
304 |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
305 |
if (ccover > 0) { |
306 |
double zenithbr = get_zenith_brightness(sundir); |
307 |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
308 |
for (int l = 0; l < NSSAMP; ++l) { |
309 |
sun_radiance[l] = |
310 |
wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
311 |
} |
312 |
} |
313 |
/* weight by proximity */ |
314 |
wtot = 0; |
315 |
for (i = nsuns; i--;) |
316 |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
317 |
/* add to nearest patch radiances */ |
318 |
for (i = nsuns; i--;) { |
319 |
float *pdest = parr + NSSAMP * near_patch[i]; |
320 |
for (int k = 0; k < NSSAMP; k++) { |
321 |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
322 |
} |
323 |
} |
324 |
} |
325 |
|
326 |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, double ccover, |
327 |
float *parr) { |
328 |
int i; |
329 |
double mu_sky; /* Sun-sky point azimuthal angle */ |
330 |
double sspa; /* Sun-sky point angle */ |
331 |
double zsa; /* Zenithal sun angle */ |
332 |
FVECT view_point = {0, 0, ER}; |
333 |
for (i = 1; i < nskypatch; i++) { |
334 |
FVECT rdir_sky; |
335 |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
336 |
mu_sky = fdot(view_point, rdir_sky) / ER; |
337 |
sspa = fdot(rdir_sky, sundir); |
338 |
SCOLOR sky_radiance = {0}; |
339 |
|
340 |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
341 |
for (int k = 0; k < NSSAMP; ++k) { |
342 |
sky_radiance[k] *= WVLSPAN; |
343 |
} |
344 |
|
345 |
if (ccover > 0) { |
346 |
double zenithbr = get_zenith_brightness(sundir); |
347 |
double grndbr = zenithbr * GNORM; |
348 |
double skybr = get_overcast_brightness(rdir_sky[2], zenithbr); |
349 |
for (int k = 0; k < NSSAMP; ++k) { |
350 |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
351 |
} |
352 |
} |
353 |
|
354 |
for (int k = 0; k < NSSAMP; ++k) { |
355 |
parr[NSSAMP * i + k] = sky_radiance[k]; |
356 |
} |
357 |
} |
358 |
} |
359 |
|
360 |
/* Return maximum of two doubles */ |
361 |
static inline double dmax(double a, double b) { return (a > b) ? a : b; } |
362 |
|
363 |
/* Compute sky patch radiance values (modified by GW) */ |
364 |
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
365 |
DATARRAY *irrad, double ccover, float *parr) { |
366 |
int index; /* Category index */ |
367 |
int i; |
368 |
float sun_zenith; |
369 |
SCOLOR sky_radiance = {0}; |
370 |
SCOLOR ground_radiance = {0}; |
371 |
SCOLR sky_sclr = {0}; |
372 |
SCOLR ground_sclr = {0}; |
373 |
FVECT view_point = {0, 0, ER}; |
374 |
const double radius = VLEN(view_point); |
375 |
const double sun_ct = fdot(view_point, sundir) / radius; |
376 |
const FVECT rdir_grnd = {0, 0, -1}; |
377 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
378 |
const double nu_grnd = fdot(rdir_grnd, sundir); |
379 |
|
380 |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
381 |
/* Also limit minimum angle to keep circumsolar off zenith */ |
382 |
if (altitude <= 0.0) |
383 |
sun_zenith = DegToRad(90.0); |
384 |
else if (altitude >= DegToRad(87.0)) |
385 |
sun_zenith = DegToRad(3.0); |
386 |
else |
387 |
sun_zenith = DegToRad(90.0) - altitude; |
388 |
|
389 |
/* Compute ground radiance (include solar contribution if any) */ |
390 |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
391 |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
392 |
for (int j = 0; j < NSSAMP; j++) { |
393 |
parr[j] *= WVLSPAN; |
394 |
} |
395 |
calc_sky_patch_radiance(scat, scat1m, ccover, parr); |
396 |
} |
397 |
|
398 |
int main(int argc, char *argv[]) { |
399 |
|
400 |
char buf[256]; |
401 |
int doheader = 1; /* output header? */ |
402 |
double rotation = 0.0; |
403 |
double elevation = 0; |
404 |
int leap_day = 0; /* add leap day? */ |
405 |
int sun_hours_only = 0; /* only output sun hours? */ |
406 |
float *mtx_data = NULL; |
407 |
int ntsteps = 0; /* number of time steps */ |
408 |
int tstorage = 0; /* number of allocated time steps */ |
409 |
int nstored = 0; /* number of time steps in matrix */ |
410 |
int last_monthly = 0; /* month of last report */ |
411 |
int mo, da; |
412 |
double hr, aod, cc; |
413 |
double dni, dhi; |
414 |
int mtx_offset = 0; |
415 |
int i, j; |
416 |
char lstag[3]; |
417 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
418 |
char *ddir = "."; |
419 |
char mie_name[20] = "mie_ca"; |
420 |
int num_threads = 1; |
421 |
int sorder = 4; |
422 |
int solar_only = 0; |
423 |
int sky_only = 0; |
424 |
FVECT view_point = {0, 0, ER}; |
425 |
|
426 |
progname = argv[0]; |
427 |
|
428 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
429 |
switch (argv[i][1]) { |
430 |
case 'd': /* solar (direct) only */ |
431 |
solar_only = 1; |
432 |
break; |
433 |
case 's': /* sky only (no direct) */ |
434 |
sky_only = 1; |
435 |
break; |
436 |
case 'g': |
437 |
grefl = atof(argv[++i]); |
438 |
break; |
439 |
case 'm': |
440 |
rhsubdiv = atoi(argv[++i]); |
441 |
break; |
442 |
case 'n': |
443 |
num_threads = atoi(argv[++i]); |
444 |
break; |
445 |
case 'r': /* rotate distribution */ |
446 |
if (argv[i][2] && argv[i][2] != 'z') |
447 |
goto userr; |
448 |
rotation = atof(argv[++i]); |
449 |
break; |
450 |
case 'u': /* solar hours only */ |
451 |
sun_hours_only = 1; |
452 |
break; |
453 |
case 'p': |
454 |
ddir = argv[++i]; |
455 |
break; |
456 |
case 'v': /* verbose progress reports */ |
457 |
verbose++; |
458 |
break; |
459 |
case 'h': /* turn off header */ |
460 |
doheader = 0; |
461 |
break; |
462 |
case '5': /* 5-phase calculation */ |
463 |
nsuns = 1; |
464 |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
465 |
if (fixed_sun_sa <= 0) { |
466 |
fprintf(stderr, |
467 |
"%s: missing solar disk size argument for '-5' option\n", |
468 |
progname); |
469 |
exit(1); |
470 |
} |
471 |
fixed_sun_sa *= fixed_sun_sa * PI; |
472 |
break; |
473 |
case 'o': /* output format */ |
474 |
switch (argv[i][2]) { |
475 |
case 'f': |
476 |
case 'd': |
477 |
case 'a': |
478 |
outfmt = argv[i][2]; |
479 |
break; |
480 |
default: |
481 |
goto userr; |
482 |
} |
483 |
break; |
484 |
default: |
485 |
goto userr; |
486 |
} |
487 |
} |
488 |
if (i < argc - 1) |
489 |
goto userr; |
490 |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
491 |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
492 |
exit(1); |
493 |
} |
494 |
if (verbose) { |
495 |
if (i == argc - 1) |
496 |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
497 |
else |
498 |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
499 |
} |
500 |
/* read weather tape header */ |
501 |
if (scanf("place %[^\r\n] ", buf) != 1) |
502 |
goto fmterr; |
503 |
if (scanf("latitude %lf\n", &s_latitude) != 1) |
504 |
goto fmterr; |
505 |
if (scanf("longitude %lf\n", &s_longitude) != 1) |
506 |
goto fmterr; |
507 |
if (scanf("time_zone %lf\n", &s_meridian) != 1) |
508 |
goto fmterr; |
509 |
if (scanf("site_elevation %lf\n", &elevation) != 1) |
510 |
goto fmterr; |
511 |
if (scanf("weather_data_file_units %d\n", &input) != 1) |
512 |
goto fmterr; |
513 |
|
514 |
rh_init(); |
515 |
if (verbose) { |
516 |
fprintf(stderr, "%s: location '%s'\n", progname, buf); |
517 |
fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
518 |
progname, s_latitude, s_longitude); |
519 |
if (rotation != 0) |
520 |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
521 |
} |
522 |
|
523 |
s_latitude = DegToRad(s_latitude); |
524 |
s_longitude = DegToRad(s_longitude); |
525 |
s_meridian = DegToRad(s_meridian); |
526 |
/* initial allocation */ |
527 |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
528 |
|
529 |
/* Load mie density data */ |
530 |
DATARRAY *mie_dp = getdata(mie_path); |
531 |
if (mie_dp == NULL) { |
532 |
fprintf(stderr, "Error reading mie data\n"); |
533 |
return 0; |
534 |
} |
535 |
|
536 |
while (scanf("%d %d %lf %lf %lf %lf %lf\n", &mo, &da, &hr, &dni, &dhi, &aod, |
537 |
&cc) == 7) { |
538 |
double sda, sta; |
539 |
int sun_in_sky; |
540 |
/* compute solar position */ |
541 |
if ((mo == 2) & (da == 29)) { |
542 |
julian_date = 60; |
543 |
leap_day = 1; |
544 |
} else |
545 |
julian_date = jdate(mo, da) + leap_day; |
546 |
sda = sdec(julian_date); |
547 |
sta = stadj(julian_date); |
548 |
altitude = salt(sda, hr + sta); |
549 |
sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.)); |
550 |
|
551 |
azimuth = sazi(sda, hr + sta) + PI - DegToRad(rotation); |
552 |
|
553 |
vectorize(altitude, azimuth, sundir); |
554 |
if (sun_hours_only && sundir[2] <= 0.) { |
555 |
continue; /* skipping nighttime points */ |
556 |
} |
557 |
sun_ct = fdot(view_point, sundir) / ER; |
558 |
|
559 |
mtx_offset = NSSAMP * nskypatch * nstored; |
560 |
nstored += 1; |
561 |
/* make space for next row */ |
562 |
if (nstored > tstorage) { |
563 |
tstorage += (tstorage >> 1) + nstored + 7; |
564 |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
565 |
} |
566 |
ntsteps++; /* keep count of time steps */ |
567 |
/* compute sky patch values */ |
568 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
569 |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
570 |
if (s_latitude < 0) { |
571 |
is_summer = !is_summer; |
572 |
} |
573 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
574 |
|
575 |
clear_atmos.beta_m = mie_dp; |
576 |
|
577 |
char gsdir[PATH_MAX]; |
578 |
size_t siz = strlen(ddir); |
579 |
if (ISDIRSEP(ddir[siz - 1])) |
580 |
ddir[siz - 1] = '\0'; |
581 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
582 |
if (!make_directory(gsdir)) { |
583 |
fprintf(stderr, "Failed creating atmos_data directory"); |
584 |
exit(1); |
585 |
} |
586 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
587 |
|
588 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
589 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
590 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
591 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
592 |
printf("# Pre-computing...\n"); |
593 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
594 |
fprintf(stderr, "Pre-compute failed\n"); |
595 |
return 0; |
596 |
} |
597 |
} |
598 |
|
599 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
600 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
601 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
602 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
603 |
|
604 |
if (!solar_only) |
605 |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
606 |
cc, mtx_data + mtx_offset); |
607 |
if (!sky_only) |
608 |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
609 |
cc, mtx_data + mtx_offset); |
610 |
/* update cumulative sky? */ |
611 |
for (i = NSSAMP * nskypatch * (ntsteps > 1); i--;) |
612 |
mtx_data[i] += mtx_data[mtx_offset + i]; |
613 |
/* monthly reporting */ |
614 |
if (verbose && mo != last_monthly) |
615 |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
616 |
last_monthly = mo); |
617 |
/* note whether leap-day was given */ |
618 |
|
619 |
freedata(tau_clear_dp); |
620 |
freedata(irrad_clear_dp); |
621 |
freedata(scat_clear_dp); |
622 |
freedata(scat1m_clear_dp); |
623 |
} |
624 |
freedata(mie_dp); |
625 |
if (!ntsteps) { |
626 |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
627 |
exit(1); |
628 |
} |
629 |
/* check for junk at end */ |
630 |
while ((i = fgetc(stdin)) != EOF) |
631 |
if (!isspace(i)) { |
632 |
fprintf(stderr, "%s: warning - unexpected data past EOT: ", progname); |
633 |
buf[0] = i; |
634 |
buf[1] = '\0'; |
635 |
fgets(buf + 1, sizeof(buf) - 1, stdin); |
636 |
fputs(buf, stderr); |
637 |
fputc('\n', stderr); |
638 |
break; |
639 |
} |
640 |
/* write out matrix */ |
641 |
if (outfmt != 'a') |
642 |
SET_FILE_BINARY(stdout); |
643 |
#ifdef getc_unlocked |
644 |
flockfile(stdout); |
645 |
#endif |
646 |
if (verbose) |
647 |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
648 |
outfmt == 'a' ? "" : "binary ", nstored); |
649 |
if (doheader) { |
650 |
newheader("RADIANCE", stdout); |
651 |
printargs(argc, argv, stdout); |
652 |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
653 |
-RadToDeg(s_longitude)); |
654 |
printf("NROWS=%d\n", nskypatch); |
655 |
printf("NCOLS=%d\n", nstored); |
656 |
printf("NCOMP=%d\n", NSSAMP); |
657 |
if ((outfmt == 'f') | (outfmt == 'd')) |
658 |
fputendian(stdout); |
659 |
fputformat((char *)getfmtname(outfmt), stdout); |
660 |
putchar('\n'); |
661 |
} |
662 |
/* patches are rows (outer sort) */ |
663 |
for (i = 0; i < nskypatch; i++) { |
664 |
mtx_offset = NSSAMP * i; |
665 |
switch (outfmt) { |
666 |
case 'a': |
667 |
for (j = 0; j < nstored; j++) { |
668 |
for (int k = 0; k < NSSAMP; k++) { |
669 |
printf("%.3g \n", mtx_data[mtx_offset + k]); |
670 |
} |
671 |
printf("\n"); |
672 |
mtx_offset += NSSAMP * nskypatch; |
673 |
} |
674 |
if (nstored > 1) |
675 |
fputc('\n', stdout); |
676 |
break; |
677 |
case 'f': |
678 |
for (j = 0; j < nstored; j++) { |
679 |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
680 |
mtx_offset += NSSAMP * nskypatch; |
681 |
} |
682 |
break; |
683 |
case 'd': |
684 |
for (j = 0; j < nstored; j++) { |
685 |
double ment[NSSAMP]; |
686 |
for (j = 0; j < NSSAMP; j++) |
687 |
ment[j] = mtx_data[mtx_offset + j]; |
688 |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
689 |
mtx_offset += NSSAMP * nskypatch; |
690 |
} |
691 |
break; |
692 |
} |
693 |
if (ferror(stdout)) |
694 |
goto writerr; |
695 |
} |
696 |
alldone: |
697 |
if (fflush(NULL) == EOF) |
698 |
goto writerr; |
699 |
if (verbose) |
700 |
fprintf(stderr, "%s: done.\n", progname); |
701 |
exit(0); |
702 |
userr: |
703 |
fprintf(stderr, |
704 |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
705 |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
706 |
progname); |
707 |
exit(1); |
708 |
fmterr: |
709 |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
710 |
exit(1); |
711 |
writerr: |
712 |
fprintf(stderr, "%s: write error on output\n", progname); |
713 |
exit(1); |
714 |
} |