ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensdaymtx.c
Revision: 1.1
Committed: Fri Aug 2 18:59:26 2024 UTC (9 months ago) by greg
Content type: text/plain
Branch: MAIN
Log Message:
feat(gensdaymtx,epw2wea,genssky): Taoning added new gensdaymtx and updated others

File Contents

# Content
1 #include "atmos.h"
2 #include "copyright.h"
3 #include "data.h"
4 #include "platform.h"
5 #include "rtio.h"
6 #include <ctype.h>
7 #include <stdlib.h>
8 #ifdef _WIN32
9 #include <windows.h>
10 #else
11 #include <errno.h>
12 #include <sys/stat.h>
13 #include <sys/types.h>
14 #endif
15
16 char *progname;
17
18 double altitude; /* Solar altitude (radians) */
19 double azimuth; /* Solar azimuth (radians) */
20 int julian_date; /* Julian date */
21 double sun_zenith; /* Sun zenith angle (radians) */
22 int input = 0; /* Input type */
23 int output = 0; /* Output type */
24 FVECT sundir;
25
26 const double ARCTIC_LAT = 67.;
27 const double TROPIC_LAT = 23.;
28 const int SUMMER_START = 4;
29 const int SUMMER_END = 9;
30 const double GNORM = 0.777778;
31
32 const double D65EFF = 203.; /* standard illuminant D65 */
33
34 /* Mean normalized relative daylight spectra where CCT = 6415K for overcast */
35 const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
36 1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
37 1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
38 0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
39 /* Degrees into radians */
40 #define DegToRad(deg) ((deg) * (PI / 180.))
41
42 /* Radiuans into degrees */
43 #define RadToDeg(rad) ((rad) * (180. / PI))
44
45 #ifndef NSUNPATCH
46 #define NSUNPATCH 4 /* max. # patches to spread sun into */
47 #endif
48
49 #define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */
50
51 int nsuns = NSUNPATCH; /* number of sun patches to use */
52 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
53
54 int verbose = 0; /* progress reports to stderr? */
55
56 int outfmt = 'a'; /* output format */
57
58 int rhsubdiv = 1; /* Reinhart sky subdivisions */
59
60 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
61 COLOR suncolor = {1., 1., 1.}; /* sun color */
62 double grefl = .2; /* ground reflectance */
63
64 int nskypatch; /* number of Reinhart patches */
65 float *rh_palt; /* sky patch altitudes (radians) */
66 float *rh_pazi; /* sky patch azimuths (radians) */
67 float *rh_dom; /* sky patch solid angle (sr) */
68
69 double sun_ct;
70
71 #define vector(v, alt, azi) \
72 ((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \
73 (v)[2] = sin(alt))
74
75 #define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i])
76
77 #define rh_cos(i) tsin(rh_palt[i])
78
79 #define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5))
80
81 inline void vectorize(double altitude, double azimuth, FVECT v) {
82 v[1] = cos(altitude);
83 v[0] = (v)[1] * sin(azimuth);
84 v[1] *= cos(azimuth);
85 v[2] = sin(altitude);
86 }
87
88 static int make_directory(const char *path) {
89 #ifdef _WIN32
90 if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
91 return 1;
92 }
93 return 0;
94 #else
95 if (mkdir(path, 0777) == 0 || errno == EEXIST) {
96 return 1;
97 }
98 return 0;
99 #endif
100 }
101
102 static const char *getfmtname(int fmt) {
103 switch (fmt) {
104 case 'a':
105 return ("ascii");
106 case 'f':
107 return ("float");
108 case 'd':
109 return ("double");
110 }
111 return ("unknown");
112 }
113
114 static inline double wmean2(const double a, const double b, const double x) {
115 return a * (1 - x) + b * x;
116 }
117
118 static inline double wmean(const double a, const double x, const double b,
119 const double y) {
120 return (a * x + b * y) / (a + b);
121 }
122
123 static double get_zenith_brightness(const double sundir[3]) {
124 double zenithbr;
125 if (sundir[2] < 0) {
126 zenithbr = 0;
127 } else {
128 zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
129 }
130 return zenithbr;
131 }
132
133 /* from gensky.c */
134 static double get_overcast_brightness(const double dz, const double zenithbr) {
135 double groundbr = zenithbr * GNORM;
136 return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
137 pow(dz + 1.01, -10), groundbr);
138 }
139
140 int rh_init(void) {
141 #define NROW 7
142 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
143 const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5);
144 int p, i, j;
145 /* allocate patch angle arrays */
146 nskypatch = 0;
147 for (p = 0; p < NROW; p++)
148 nskypatch += tnaz[p];
149 nskypatch *= rhsubdiv * rhsubdiv;
150 nskypatch += 2;
151 rh_palt = (float *)malloc(sizeof(float) * nskypatch);
152 rh_pazi = (float *)malloc(sizeof(float) * nskypatch);
153 rh_dom = (float *)malloc(sizeof(float) * nskypatch);
154 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
155 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
156 exit(1);
157 }
158 rh_palt[0] = -PI / 2.; /* ground & zenith patches */
159 rh_pazi[0] = 0.;
160 rh_dom[0] = 2. * PI;
161 rh_palt[nskypatch - 1] = PI / 2.;
162 rh_pazi[nskypatch - 1] = 0.;
163 rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5));
164 p = 1; /* "normal" patches */
165 for (i = 0; i < NROW * rhsubdiv; i++) {
166 const float ralt = alpha * (i + .5);
167 const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv;
168 const float dom =
169 2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow;
170 for (j = 0; j < ninrow; j++) {
171 rh_palt[p] = ralt;
172 rh_pazi[p] = 2. * PI * j / (double)ninrow;
173 rh_dom[p++] = dom;
174 }
175 }
176 return nskypatch;
177 #undef NROW
178 }
179
180 /* Resize daylight matrix (GW) */
181 float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) {
182 if (mtx_data == NULL)
183 mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch);
184 else
185 mtx_data =
186 (float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch);
187 if (mtx_data == NULL) {
188 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname,
189 nsteps, npatch);
190 exit(1);
191 }
192 return (mtx_data);
193 }
194
195 static Atmosphere init_atmos(const double aod, const double grefl) {
196 Atmosphere atmos = {.ozone_density = {.layers =
197 {
198 {.width = 25000.0,
199 .exp_term = 0.0,
200 .exp_scale = 0.0,
201 .linear_term = 1.0 / 15000.0,
202 .constant_term = -2.0 / 3.0},
203 {.width = AH,
204 .exp_term = 0.0,
205 .exp_scale = 0.0,
206 .linear_term = -1.0 / 15000.0,
207 .constant_term = 8.0 / 3.0},
208 }},
209 .rayleigh_density = {.layers =
210 {
211 {.width = AH,
212 .exp_term = 1.0,
213 .exp_scale = -1.0 / HR_MS,
214 .linear_term = 0.0,
215 .constant_term = 0.0},
216 }},
217 .beta_r0 = BR0_MS,
218 .beta_scale = aod / AOD0_CA,
219 .beta_m = NULL,
220 .grefl = grefl};
221 return atmos;
222 }
223
224 static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
225 const char *tag) {
226 DpPaths paths;
227
228 snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
229 mname, aod);
230 snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
231 mname, aod);
232 snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
233 tag, mname, aod);
234 snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
235 mname, aod);
236
237 return paths;
238 }
239 static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
240 const int is_summer,
241 const double s_latitude) {
242 /* Set rayleigh density profile */
243 if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
244 tag[0] = 's';
245 if (is_summer) {
246 tag[1] = 's';
247 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
248 atmos->beta_r0 = BR0_SS;
249 } else {
250 tag[1] = 'w';
251 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
252 atmos->beta_r0 = BR0_SW;
253 }
254 } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
255 tag[0] = 'm';
256 if (is_summer) {
257 tag[1] = 's';
258 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
259 atmos->beta_r0 = BR0_MS;
260 } else {
261 tag[1] = 'w';
262 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
263 atmos->beta_r0 = BR0_MW;
264 }
265 } else {
266 tag[0] = 't';
267 tag[1] = 'r';
268 atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
269 atmos->beta_r0 = BR0_T;
270 }
271 tag[2] = '\0';
272 }
273 /* Add in solar direct to nearest sky patches (GW) */
274 void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m,
275 DATARRAY *irrad, double ccover, float *parr) {
276 FVECT svec;
277 double near_dprod[NSUNPATCH];
278 int near_patch[NSUNPATCH];
279 double wta[NSUNPATCH], wtot;
280 int i, j, p;
281
282 /* identify nsuns closest patches */
283 for (i = nsuns; i--;)
284 near_dprod[i] = -1.;
285 vectorize(altitude, azimuth, svec);
286 for (p = 1; p < nskypatch; p++) {
287 FVECT pvec;
288 double dprod;
289 vectorize(rh_palt[p], rh_pazi[p], pvec);
290 dprod = DOT(pvec, svec);
291 for (i = 0; i < nsuns; i++)
292 if (dprod > near_dprod[i]) {
293 for (j = nsuns; --j > i;) {
294 near_dprod[j] = near_dprod[j - 1];
295 near_patch[j] = near_patch[j - 1];
296 }
297 near_dprod[i] = dprod;
298 near_patch[i] = p;
299 break;
300 }
301 }
302 /* Get solar radiance */
303 double sun_radiance[NSSAMP] = {0};
304 get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance);
305 if (ccover > 0) {
306 double zenithbr = get_zenith_brightness(sundir);
307 double skybr = get_overcast_brightness(sundir[2], zenithbr);
308 for (int l = 0; l < NSSAMP; ++l) {
309 sun_radiance[l] =
310 wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover);
311 }
312 }
313 /* weight by proximity */
314 wtot = 0;
315 for (i = nsuns; i--;)
316 wtot += wta[i] = 1. / (1.002 - near_dprod[i]);
317 /* add to nearest patch radiances */
318 for (i = nsuns; i--;) {
319 float *pdest = parr + NSSAMP * near_patch[i];
320 for (int k = 0; k < NSSAMP; k++) {
321 *pdest++ = sun_radiance[k] * wta[i] / wtot;
322 }
323 }
324 }
325
326 void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, double ccover,
327 float *parr) {
328 int i;
329 double mu_sky; /* Sun-sky point azimuthal angle */
330 double sspa; /* Sun-sky point angle */
331 double zsa; /* Zenithal sun angle */
332 FVECT view_point = {0, 0, ER};
333 for (i = 1; i < nskypatch; i++) {
334 FVECT rdir_sky;
335 vectorize(rh_palt[i], rh_pazi[i], rdir_sky);
336 mu_sky = fdot(view_point, rdir_sky) / ER;
337 sspa = fdot(rdir_sky, sundir);
338 SCOLOR sky_radiance = {0};
339
340 get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance);
341 for (int k = 0; k < NSSAMP; ++k) {
342 sky_radiance[k] *= WVLSPAN;
343 }
344
345 if (ccover > 0) {
346 double zenithbr = get_zenith_brightness(sundir);
347 double grndbr = zenithbr * GNORM;
348 double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
349 for (int k = 0; k < NSSAMP; ++k) {
350 sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover);
351 }
352 }
353
354 for (int k = 0; k < NSSAMP; ++k) {
355 parr[NSSAMP * i + k] = sky_radiance[k];
356 }
357 }
358 }
359
360 /* Return maximum of two doubles */
361 static inline double dmax(double a, double b) { return (a > b) ? a : b; }
362
363 /* Compute sky patch radiance values (modified by GW) */
364 void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m,
365 DATARRAY *irrad, double ccover, float *parr) {
366 int index; /* Category index */
367 int i;
368 float sun_zenith;
369 SCOLOR sky_radiance = {0};
370 SCOLOR ground_radiance = {0};
371 SCOLR sky_sclr = {0};
372 SCOLR ground_sclr = {0};
373 FVECT view_point = {0, 0, ER};
374 const double radius = VLEN(view_point);
375 const double sun_ct = fdot(view_point, sundir) / radius;
376 const FVECT rdir_grnd = {0, 0, -1};
377 const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
378 const double nu_grnd = fdot(rdir_grnd, sundir);
379
380 /* Calculate sun zenith angle (don't let it dip below horizon) */
381 /* Also limit minimum angle to keep circumsolar off zenith */
382 if (altitude <= 0.0)
383 sun_zenith = DegToRad(90.0);
384 else if (altitude >= DegToRad(87.0))
385 sun_zenith = DegToRad(3.0);
386 else
387 sun_zenith = DegToRad(90.0) - altitude;
388
389 /* Compute ground radiance (include solar contribution if any) */
390 get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius,
391 mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr);
392 for (int j = 0; j < NSSAMP; j++) {
393 parr[j] *= WVLSPAN;
394 }
395 calc_sky_patch_radiance(scat, scat1m, ccover, parr);
396 }
397
398 int main(int argc, char *argv[]) {
399
400 char buf[256];
401 int doheader = 1; /* output header? */
402 double rotation = 0.0;
403 double elevation = 0;
404 int leap_day = 0; /* add leap day? */
405 int sun_hours_only = 0; /* only output sun hours? */
406 float *mtx_data = NULL;
407 int ntsteps = 0; /* number of time steps */
408 int tstorage = 0; /* number of allocated time steps */
409 int nstored = 0; /* number of time steps in matrix */
410 int last_monthly = 0; /* month of last report */
411 int mo, da;
412 double hr, aod, cc;
413 double dni, dhi;
414 int mtx_offset = 0;
415 int i, j;
416 char lstag[3];
417 char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
418 char *ddir = ".";
419 char mie_name[20] = "mie_ca";
420 int num_threads = 1;
421 int sorder = 4;
422 int solar_only = 0;
423 int sky_only = 0;
424 FVECT view_point = {0, 0, ER};
425
426 progname = argv[0];
427
428 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
429 switch (argv[i][1]) {
430 case 'd': /* solar (direct) only */
431 solar_only = 1;
432 break;
433 case 's': /* sky only (no direct) */
434 sky_only = 1;
435 break;
436 case 'g':
437 grefl = atof(argv[++i]);
438 break;
439 case 'm':
440 rhsubdiv = atoi(argv[++i]);
441 break;
442 case 'n':
443 num_threads = atoi(argv[++i]);
444 break;
445 case 'r': /* rotate distribution */
446 if (argv[i][2] && argv[i][2] != 'z')
447 goto userr;
448 rotation = atof(argv[++i]);
449 break;
450 case 'u': /* solar hours only */
451 sun_hours_only = 1;
452 break;
453 case 'p':
454 ddir = argv[++i];
455 break;
456 case 'v': /* verbose progress reports */
457 verbose++;
458 break;
459 case 'h': /* turn off header */
460 doheader = 0;
461 break;
462 case '5': /* 5-phase calculation */
463 nsuns = 1;
464 fixed_sun_sa = PI / 360. * atof(argv[++i]);
465 if (fixed_sun_sa <= 0) {
466 fprintf(stderr,
467 "%s: missing solar disk size argument for '-5' option\n",
468 progname);
469 exit(1);
470 }
471 fixed_sun_sa *= fixed_sun_sa * PI;
472 break;
473 case 'o': /* output format */
474 switch (argv[i][2]) {
475 case 'f':
476 case 'd':
477 case 'a':
478 outfmt = argv[i][2];
479 break;
480 default:
481 goto userr;
482 }
483 break;
484 default:
485 goto userr;
486 }
487 }
488 if (i < argc - 1)
489 goto userr;
490 if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) {
491 fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]);
492 exit(1);
493 }
494 if (verbose) {
495 if (i == argc - 1)
496 fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]);
497 else
498 fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname);
499 }
500 /* read weather tape header */
501 if (scanf("place %[^\r\n] ", buf) != 1)
502 goto fmterr;
503 if (scanf("latitude %lf\n", &s_latitude) != 1)
504 goto fmterr;
505 if (scanf("longitude %lf\n", &s_longitude) != 1)
506 goto fmterr;
507 if (scanf("time_zone %lf\n", &s_meridian) != 1)
508 goto fmterr;
509 if (scanf("site_elevation %lf\n", &elevation) != 1)
510 goto fmterr;
511 if (scanf("weather_data_file_units %d\n", &input) != 1)
512 goto fmterr;
513
514 rh_init();
515 if (verbose) {
516 fprintf(stderr, "%s: location '%s'\n", progname, buf);
517 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
518 progname, s_latitude, s_longitude);
519 if (rotation != 0)
520 fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation);
521 }
522
523 s_latitude = DegToRad(s_latitude);
524 s_longitude = DegToRad(s_longitude);
525 s_meridian = DegToRad(s_meridian);
526 /* initial allocation */
527 mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch);
528
529 /* Load mie density data */
530 DATARRAY *mie_dp = getdata(mie_path);
531 if (mie_dp == NULL) {
532 fprintf(stderr, "Error reading mie data\n");
533 return 0;
534 }
535
536 while (scanf("%d %d %lf %lf %lf %lf %lf\n", &mo, &da, &hr, &dni, &dhi, &aod,
537 &cc) == 7) {
538 double sda, sta;
539 int sun_in_sky;
540 /* compute solar position */
541 if ((mo == 2) & (da == 29)) {
542 julian_date = 60;
543 leap_day = 1;
544 } else
545 julian_date = jdate(mo, da) + leap_day;
546 sda = sdec(julian_date);
547 sta = stadj(julian_date);
548 altitude = salt(sda, hr + sta);
549 sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.));
550
551 azimuth = sazi(sda, hr + sta) + PI - DegToRad(rotation);
552
553 vectorize(altitude, azimuth, sundir);
554 if (sun_hours_only && sundir[2] <= 0.) {
555 continue; /* skipping nighttime points */
556 }
557 sun_ct = fdot(view_point, sundir) / ER;
558
559 mtx_offset = NSSAMP * nskypatch * nstored;
560 nstored += 1;
561 /* make space for next row */
562 if (nstored > tstorage) {
563 tstorage += (tstorage >> 1) + nstored + 7;
564 mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
565 }
566 ntsteps++; /* keep count of time steps */
567 /* compute sky patch values */
568 Atmosphere clear_atmos = init_atmos(aod, grefl);
569 int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END);
570 if (s_latitude < 0) {
571 is_summer = !is_summer;
572 }
573 set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
574
575 clear_atmos.beta_m = mie_dp;
576
577 char gsdir[PATH_MAX];
578 size_t siz = strlen(ddir);
579 if (ISDIRSEP(ddir[siz - 1]))
580 ddir[siz - 1] = '\0';
581 snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
582 if (!make_directory(gsdir)) {
583 fprintf(stderr, "Failed creating atmos_data directory");
584 exit(1);
585 }
586 DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
587
588 if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
589 getpath(clear_paths.scat, ".", R_OK) == NULL ||
590 getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
591 getpath(clear_paths.irrad, ".", R_OK) == NULL) {
592 printf("# Pre-computing...\n");
593 if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
594 fprintf(stderr, "Pre-compute failed\n");
595 return 0;
596 }
597 }
598
599 DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
600 DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
601 DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
602 DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
603
604 if (!solar_only)
605 compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp,
606 cc, mtx_data + mtx_offset);
607 if (!sky_only)
608 add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp,
609 cc, mtx_data + mtx_offset);
610 /* update cumulative sky? */
611 for (i = NSSAMP * nskypatch * (ntsteps > 1); i--;)
612 mtx_data[i] += mtx_data[mtx_offset + i];
613 /* monthly reporting */
614 if (verbose && mo != last_monthly)
615 fprintf(stderr, "%s: stepping through month %d...\n", progname,
616 last_monthly = mo);
617 /* note whether leap-day was given */
618
619 freedata(tau_clear_dp);
620 freedata(irrad_clear_dp);
621 freedata(scat_clear_dp);
622 freedata(scat1m_clear_dp);
623 }
624 freedata(mie_dp);
625 if (!ntsteps) {
626 fprintf(stderr, "%s: no valid time steps on input\n", progname);
627 exit(1);
628 }
629 /* check for junk at end */
630 while ((i = fgetc(stdin)) != EOF)
631 if (!isspace(i)) {
632 fprintf(stderr, "%s: warning - unexpected data past EOT: ", progname);
633 buf[0] = i;
634 buf[1] = '\0';
635 fgets(buf + 1, sizeof(buf) - 1, stdin);
636 fputs(buf, stderr);
637 fputc('\n', stderr);
638 break;
639 }
640 /* write out matrix */
641 if (outfmt != 'a')
642 SET_FILE_BINARY(stdout);
643 #ifdef getc_unlocked
644 flockfile(stdout);
645 #endif
646 if (verbose)
647 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname,
648 outfmt == 'a' ? "" : "binary ", nstored);
649 if (doheader) {
650 newheader("RADIANCE", stdout);
651 printargs(argc, argv, stdout);
652 printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
653 -RadToDeg(s_longitude));
654 printf("NROWS=%d\n", nskypatch);
655 printf("NCOLS=%d\n", nstored);
656 printf("NCOMP=%d\n", NSSAMP);
657 if ((outfmt == 'f') | (outfmt == 'd'))
658 fputendian(stdout);
659 fputformat((char *)getfmtname(outfmt), stdout);
660 putchar('\n');
661 }
662 /* patches are rows (outer sort) */
663 for (i = 0; i < nskypatch; i++) {
664 mtx_offset = NSSAMP * i;
665 switch (outfmt) {
666 case 'a':
667 for (j = 0; j < nstored; j++) {
668 for (int k = 0; k < NSSAMP; k++) {
669 printf("%.3g \n", mtx_data[mtx_offset + k]);
670 }
671 printf("\n");
672 mtx_offset += NSSAMP * nskypatch;
673 }
674 if (nstored > 1)
675 fputc('\n', stdout);
676 break;
677 case 'f':
678 for (j = 0; j < nstored; j++) {
679 putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout);
680 mtx_offset += NSSAMP * nskypatch;
681 }
682 break;
683 case 'd':
684 for (j = 0; j < nstored; j++) {
685 double ment[NSSAMP];
686 for (j = 0; j < NSSAMP; j++)
687 ment[j] = mtx_data[mtx_offset + j];
688 putbinary(ment, sizeof(double), NSSAMP, stdout);
689 mtx_offset += NSSAMP * nskypatch;
690 }
691 break;
692 }
693 if (ferror(stdout))
694 goto writerr;
695 }
696 alldone:
697 if (fflush(NULL) == EOF)
698 goto writerr;
699 if (verbose)
700 fprintf(stderr, "%s: done.\n", progname);
701 exit(0);
702 userr:
703 fprintf(stderr,
704 "Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r "
705 "deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
706 progname);
707 exit(1);
708 fmterr:
709 fprintf(stderr, "%s: weather tape format error in header\n", progname);
710 exit(1);
711 writerr:
712 fprintf(stderr, "%s: write error on output\n", progname);
713 exit(1);
714 }