22 |
|
#include "loadEPW.h" |
23 |
|
|
24 |
|
|
25 |
< |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
26 |
< |
const double ARCTIC_LAT = 67.; |
27 |
< |
const double TROPIC_LAT = 23.; |
28 |
< |
const int SUMMER_START = 4; |
29 |
< |
const int SUMMER_END = 9; |
30 |
< |
const double GNORM = 0.777778; |
25 |
> |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
26 |
> |
const double ARCTIC_LAT = 67.; |
27 |
> |
const double TROPIC_LAT = 23.; |
28 |
> |
const int SUMMER_START = 4; |
29 |
> |
const int SUMMER_END = 9; |
30 |
> |
const double GNORM = 0.777778; |
31 |
> |
const double M_PER_KM = 1e3; |
32 |
|
|
33 |
|
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
34 |
< |
const double D6415[NSSAMP] = { |
34 |
> |
const double D6415[NSSAMP] = { |
35 |
|
0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
36 |
|
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
37 |
|
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
38 |
< |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
38 |
> |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925 |
39 |
> |
}; |
40 |
|
|
41 |
|
enum { |
42 |
< |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
42 |
> |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
43 |
|
}; |
44 |
|
|
45 |
< |
double altitude; /* Solar altitude (radians) */ |
46 |
< |
double azimuth; /* Solar azimuth (radians) */ |
47 |
< |
int julian_date; /* Julian date */ |
48 |
< |
double sun_zenith; /* Sun zenith angle (radians) */ |
49 |
< |
int nskypatch; /* number of Reinhart patches */ |
50 |
< |
float *rh_palt; /* sky patch altitudes (radians) */ |
51 |
< |
float *rh_pazi; /* sky patch azimuths (radians) */ |
52 |
< |
float *rh_dom; /* sky patch solid angle (sr) */ |
53 |
< |
FVECT sundir; |
54 |
< |
double sun_ct; /* cos(theta) of sun altitude angle */ |
45 |
> |
double altitude; /* Solar altitude (radians) */ |
46 |
> |
double azimuth; /* Solar azimuth (radians) */ |
47 |
> |
int julian_date; /* Julian date */ |
48 |
> |
double sun_zenith; /* Sun zenith angle (radians) */ |
49 |
> |
int nskypatch; /* number of Reinhart patches */ |
50 |
> |
float *rh_palt; /* sky patch altitudes (radians) */ |
51 |
> |
float *rh_pazi; /* sky patch azimuths (radians) */ |
52 |
> |
float *rh_dom; /* sky patch solid angle (sr) */ |
53 |
> |
FVECT sundir; |
54 |
> |
double sun_ct; /* cos(theta) of sun altitude angle */ |
55 |
|
|
56 |
< |
int input = 0; /* Input type */ |
57 |
< |
int output = 0; /* Output type */ |
58 |
< |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
59 |
< |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
60 |
< |
int verbose = 0; /* progress reports to stderr? */ |
61 |
< |
int outfmt = 'a'; /* output format */ |
62 |
< |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
63 |
< |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
64 |
< |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
65 |
< |
double grefl = .2; /* ground reflectance */ |
56 |
> |
int input = 0; /* Input type */ |
57 |
> |
int output = 0; /* Output type */ |
58 |
> |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
59 |
> |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
60 |
> |
int verbose = 0; /* progress reports to stderr? */ |
61 |
> |
int outfmt = 'a'; /* output format */ |
62 |
> |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
63 |
> |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
64 |
> |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
65 |
> |
double grefl = .2; /* ground reflectance */ |
66 |
|
|
67 |
|
|
68 |
< |
static inline double deg_to_rad(double deg) |
68 |
> |
static inline double |
69 |
> |
deg_to_rad |
70 |
> |
( |
71 |
> |
double deg |
72 |
> |
) |
73 |
|
{ |
74 |
|
return deg * (PI / 180.); |
75 |
|
} |
76 |
|
|
77 |
< |
static inline double rad_to_deg(double rad) |
77 |
> |
static inline double |
78 |
> |
rad_to_deg |
79 |
> |
( |
80 |
> |
double rad |
81 |
> |
) |
82 |
|
{ |
83 |
|
return rad * (180. / PI); |
84 |
|
} |
85 |
|
|
86 |
< |
static inline void vectorize(double altitude, double azimuth, FVECT v) |
86 |
> |
static inline void |
87 |
> |
vectorize |
88 |
> |
( |
89 |
> |
double altitude, |
90 |
> |
double azimuth, |
91 |
> |
FVECT v |
92 |
> |
) |
93 |
|
{ |
94 |
|
v[1] = cos(altitude); |
95 |
|
v[0] = (v)[1] * sin(azimuth); |
97 |
|
v[2] = sin(altitude); |
98 |
|
} |
99 |
|
|
100 |
< |
static inline double wmean2(const double a, const double b, const double x) |
100 |
> |
static inline double |
101 |
> |
wmean2 |
102 |
> |
( |
103 |
> |
const double a, |
104 |
> |
const double b, |
105 |
> |
const double x |
106 |
> |
) |
107 |
|
{ |
108 |
|
return a * (1 - x) + b * x; |
109 |
|
} |
110 |
|
|
111 |
< |
static inline double wmean( |
112 |
< |
const double a, const double x, |
113 |
< |
const double b, const double y) |
111 |
> |
static inline double |
112 |
> |
wmean |
113 |
> |
( |
114 |
> |
const double a, |
115 |
> |
const double x, |
116 |
> |
const double b, |
117 |
> |
const double y |
118 |
> |
) |
119 |
|
{ |
120 |
|
return (a * x + b * y) / (a + b); |
121 |
|
} |
122 |
|
|
123 |
< |
static int make_directory(const char *path) |
123 |
> |
static int |
124 |
> |
make_directory |
125 |
> |
( |
126 |
> |
const char *path |
127 |
> |
) |
128 |
|
{ |
129 |
|
#ifdef _WIN32 |
130 |
|
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
131 |
|
return 1; |
132 |
|
} |
133 |
|
return 0; |
134 |
+ |
|
135 |
|
#else |
136 |
|
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
137 |
|
return 1; |
138 |
|
} |
139 |
|
return 0; |
140 |
+ |
|
141 |
|
#endif |
142 |
|
} |
143 |
|
|
144 |
< |
static const char *getfmtname(int fmt) |
144 |
> |
static const char * |
145 |
> |
getfmtname |
146 |
> |
( |
147 |
> |
int fmt |
148 |
> |
) |
149 |
|
{ |
150 |
|
switch (fmt) { |
151 |
|
case 'a': |
152 |
|
return ("ascii"); |
153 |
+ |
|
154 |
|
case 'f': |
155 |
|
return ("float"); |
156 |
+ |
|
157 |
|
case 'd': |
158 |
|
return ("double"); |
159 |
|
} |
161 |
|
} |
162 |
|
|
163 |
|
|
164 |
< |
static double get_overcast_zenith_brightness(const double sundir[3]) |
164 |
> |
static double |
165 |
> |
get_overcast_zenith_brightness |
166 |
> |
( |
167 |
> |
const double sundir[3] |
168 |
> |
) |
169 |
|
{ |
170 |
|
double zenithbr; |
171 |
|
if (sundir[2] < 0) { |
178 |
|
|
179 |
|
|
180 |
|
/* from gensky.c */ |
181 |
< |
static double get_overcast_brightness(const double dz, const double zenithbr) |
181 |
> |
static double |
182 |
> |
get_overcast_brightness |
183 |
> |
( |
184 |
> |
const double dz, |
185 |
> |
const double zenithbr |
186 |
> |
) |
187 |
|
{ |
188 |
< |
double groundbr = zenithbr * GNORM; |
189 |
< |
return wmean(pow(dz + 1.01, 10), |
190 |
< |
zenithbr * (1 + 2 * dz) / 3, |
191 |
< |
pow(dz + 1.01, -10), groundbr); |
188 |
> |
double groundbr = zenithbr * GNORM; |
189 |
> |
return wmean(pow(dz + 1.01, 10), |
190 |
> |
zenithbr * (1 + 2 * dz) / 3, |
191 |
> |
pow(dz + 1.01, -10), groundbr); |
192 |
|
} |
193 |
|
|
194 |
< |
double solar_sunset(int month, int day) |
194 |
> |
double |
195 |
> |
solar_sunset |
196 |
> |
( |
197 |
> |
int month, |
198 |
> |
int day |
199 |
> |
) |
200 |
|
{ |
201 |
|
float W; |
202 |
|
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
204 |
|
} |
205 |
|
|
206 |
|
|
207 |
< |
double solar_sunrise(int month, int day) |
207 |
> |
double |
208 |
> |
solar_sunrise |
209 |
> |
( |
210 |
> |
int month, |
211 |
> |
int day |
212 |
> |
) |
213 |
|
{ |
214 |
|
float W; |
215 |
|
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
216 |
|
return 12 - (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
217 |
|
} |
218 |
|
|
219 |
< |
int rh_init(void) |
219 |
> |
int |
220 |
> |
rh_init |
221 |
> |
( |
222 |
> |
void |
223 |
> |
) |
224 |
|
{ |
225 |
|
#define NROW 7 |
226 |
|
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
228 |
|
int p, i, j; |
229 |
|
/* allocate patch angle arrays */ |
230 |
|
nskypatch = 0; |
231 |
< |
for (p = 0; p < NROW; p++) |
231 |
> |
for (p = 0; p < NROW; p++) { |
232 |
|
nskypatch += tnaz[p]; |
233 |
+ |
} |
234 |
|
nskypatch *= rhsubdiv * rhsubdiv; |
235 |
|
nskypatch += 2; |
236 |
|
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
240 |
|
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
241 |
|
exit(1); |
242 |
|
} |
243 |
< |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
243 |
> |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
244 |
|
rh_pazi[0] = 0.; |
245 |
|
rh_dom[0] = 2. * PI; |
246 |
|
rh_palt[nskypatch - 1] = PI / 2.; |
247 |
|
rh_pazi[nskypatch - 1] = 0.; |
248 |
|
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
249 |
< |
p = 1; /* "normal" patches */ |
249 |
> |
p = 1; /* "normal" patches */ |
250 |
|
for (i = 0; i < NROW * rhsubdiv; i++) { |
251 |
|
const float ralt = alpha * (i + .5); |
252 |
|
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
253 |
|
const float dom = |
254 |
< |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
254 |
> |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
255 |
|
for (j = 0; j < ninrow; j++) { |
256 |
|
rh_palt[p] = ralt; |
257 |
|
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
259 |
|
} |
260 |
|
} |
261 |
|
return nskypatch; |
262 |
+ |
|
263 |
|
#undef NROW |
264 |
|
} |
265 |
|
|
266 |
|
/* Resize daylight matrix (GW) */ |
267 |
< |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) |
267 |
> |
float * |
268 |
> |
resize_dmatrix |
269 |
> |
( |
270 |
> |
float *mtx_data, |
271 |
> |
int nsteps, |
272 |
> |
int npatch |
273 |
> |
) |
274 |
|
{ |
275 |
< |
if (mtx_data == NULL) |
275 |
> |
if (mtx_data == NULL) { |
276 |
|
mtx_data = (float * ) malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
277 |
< |
else |
277 |
> |
}else{ |
278 |
|
mtx_data = (float * ) realloc(mtx_data, |
279 |
< |
sizeof(float) * NSSAMP * nsteps * npatch); |
279 |
> |
sizeof(float) * NSSAMP * nsteps * npatch); |
280 |
> |
} |
281 |
|
if (mtx_data == NULL) { |
282 |
|
fprintf(stderr, |
283 |
|
"%s: out of memory in resize_dmatrix(%d,%d)\n", |
284 |
|
progname, nsteps, npatch); |
285 |
|
exit(1); |
286 |
< |
} |
287 |
< |
return mtx_data; |
286 |
> |
} |
287 |
> |
return mtx_data; |
288 |
|
} |
289 |
|
|
290 |
< |
static Atmosphere init_atmos(const double aod, const double grefl) |
290 |
> |
static Atmosphere |
291 |
> |
init_atmos |
292 |
> |
( |
293 |
> |
const double aod, |
294 |
> |
const double grefl |
295 |
> |
) |
296 |
|
{ |
297 |
|
Atmosphere atmos = { |
298 |
|
.ozone_density = { |
332 |
|
return atmos; |
333 |
|
} |
334 |
|
|
335 |
< |
static DpPaths get_dppaths(const char *dir, const double aod, |
336 |
< |
const char *mname, const char *tag) |
335 |
> |
static DpPaths |
336 |
> |
get_dppaths |
337 |
> |
( |
338 |
> |
const char *dir, |
339 |
> |
const double aod, |
340 |
> |
const char *mname, |
341 |
> |
const char *tag |
342 |
> |
) |
343 |
|
{ |
344 |
|
DpPaths paths; |
345 |
|
|
346 |
|
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", |
347 |
< |
dir, DIRSEP, tag, mname, aod); |
347 |
> |
dir, DIRSEP, tag, mname, aod); |
348 |
|
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", |
349 |
< |
dir, DIRSEP, tag, mname, aod); |
349 |
> |
dir, DIRSEP, tag, mname, aod); |
350 |
|
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", |
351 |
< |
dir, DIRSEP, tag, mname, aod); |
351 |
> |
dir, DIRSEP, tag, mname, aod); |
352 |
|
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", |
353 |
< |
dir, DIRSEP, tag, mname, aod); |
353 |
> |
dir, DIRSEP, tag, mname, aod); |
354 |
|
|
355 |
|
return paths; |
356 |
|
} |
357 |
|
|
358 |
|
|
359 |
< |
static void set_rayleigh_density_profile(Atmosphere *atmos, |
360 |
< |
char *tag, const int is_summer, const double s_latitude) |
359 |
> |
static void |
360 |
> |
set_rayleigh_density_profile |
361 |
> |
( |
362 |
> |
Atmosphere *atmos, |
363 |
> |
char *tag, |
364 |
> |
const int is_summer, |
365 |
> |
const double s_latitude |
366 |
> |
) |
367 |
|
{ |
368 |
|
/* Set rayleigh density profile */ |
369 |
|
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
399 |
|
|
400 |
|
|
401 |
|
/* Add in solar direct to nearest sky patches (GW) */ |
402 |
< |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad, |
403 |
< |
double ccover, double dirnorm, float *parr) |
402 |
> |
void |
403 |
> |
add_direct |
404 |
> |
( |
405 |
> |
DATARRAY *tau, |
406 |
> |
DATARRAY *scat, |
407 |
> |
DATARRAY *scat1m, |
408 |
> |
DATARRAY *irrad, |
409 |
> |
double ccover, |
410 |
> |
double dirnorm, |
411 |
> |
float *parr |
412 |
> |
) |
413 |
|
{ |
414 |
|
FVECT svec; |
415 |
|
double near_dprod[NSUNPATCH]; |
418 |
|
int i, j, p; |
419 |
|
|
420 |
|
/* identify nsuns closest patches */ |
421 |
< |
for (i = nsuns; i--;) |
421 |
> |
for (i = nsuns; i--;) { |
422 |
|
near_dprod[i] = -1.; |
423 |
+ |
} |
424 |
|
vectorize(altitude, azimuth, svec); |
425 |
|
for (p = 1; p < nskypatch; p++) { |
426 |
|
FVECT pvec; |
427 |
|
double dprod; |
428 |
|
vectorize(rh_palt[p], rh_pazi[p], pvec); |
429 |
|
dprod = DOT(pvec, svec); |
430 |
< |
for (i = 0; i < nsuns; i++) |
430 |
> |
for (i = 0; i < nsuns; i++) { |
431 |
|
if (dprod > near_dprod[i]) { |
432 |
|
for (j = nsuns; --j > i;) { |
433 |
|
near_dprod[j] = near_dprod[j - 1]; |
437 |
|
near_patch[i] = p; |
438 |
|
break; |
439 |
|
} |
440 |
+ |
} |
441 |
|
} |
442 |
|
/* Get solar radiance */ |
443 |
|
double sun_radiance[NSSAMP] = {0}; |
462 |
|
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
463 |
|
} |
464 |
|
double dir_ratio = 1.; |
465 |
< |
if (mean > 0) |
465 |
> |
if (mean > 0) { |
466 |
|
dir_ratio = intensity / mean; |
467 |
+ |
} |
468 |
|
for (i = 0; i < NSSAMP; ++i) { |
469 |
|
sun_radiance[i] *= dir_ratio; |
470 |
|
} |
471 |
|
|
472 |
|
/* weight by proximity */ |
473 |
|
wtot = 0; |
474 |
< |
for (i = nsuns; i--;) |
474 |
> |
for (i = nsuns; i--;) { |
475 |
|
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
476 |
+ |
} |
477 |
|
/* add to nearest patch radiances */ |
478 |
|
for (i = nsuns; i--;) { |
479 |
|
float *pdest = parr + NSSAMP * near_patch[i]; |
485 |
|
} |
486 |
|
|
487 |
|
|
488 |
< |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, |
489 |
< |
DATARRAY *irrad_clear, double ccover, double dif_ratio, |
490 |
< |
double overcast_zenithbr, FVECT view_point, float *parr) |
488 |
> |
void |
489 |
> |
calc_sky_patch_radiance |
490 |
> |
( |
491 |
> |
DATARRAY *scat, |
492 |
> |
DATARRAY *scat1m, |
493 |
> |
DATARRAY *irrad_clear, |
494 |
> |
double ccover, |
495 |
> |
double dif_ratio, |
496 |
> |
double overcast_zenithbr, |
497 |
> |
FVECT view_point, |
498 |
> |
float *parr |
499 |
> |
) |
500 |
|
{ |
501 |
< |
double mu_sky; /* Sun-sky point azimuthal angle */ |
502 |
< |
double sspa; /* Sun-sky point angle */ |
503 |
< |
int i; |
501 |
> |
double mu_sky; /* Sun-sky point azimuthal angle */ |
502 |
> |
double sspa; /* Sun-sky point angle */ |
503 |
> |
int i; |
504 |
|
for (i = 1; i < nskypatch; i++) { |
505 |
< |
FVECT rdir_sky; |
505 |
> |
FVECT rdir_sky; |
506 |
|
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
507 |
|
mu_sky = fdot(view_point, rdir_sky) / ER; |
508 |
|
sspa = fdot(rdir_sky, sundir); |
509 |
|
|
510 |
< |
SCOLOR sky_radiance = {0}; |
510 |
> |
SCOLOR sky_radiance = {0}; |
511 |
|
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
512 |
< |
int k; |
512 |
> |
int k; |
513 |
|
for (k = 0; k < NSSAMP; ++k) { |
514 |
|
sky_radiance[k] *= WVLSPAN; |
515 |
|
} |
534 |
|
|
535 |
|
|
536 |
|
/* Compute sky patch radiance values (modified by GW) */ |
537 |
< |
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
538 |
< |
DATARRAY *irrad, double ccover, double difhor, FVECT view_point, float *parr) |
537 |
> |
void |
538 |
> |
compute_sky |
539 |
> |
( |
540 |
> |
DATARRAY *tau, |
541 |
> |
DATARRAY *scat, |
542 |
> |
DATARRAY *scat1m, |
543 |
> |
DATARRAY *irrad, |
544 |
> |
double ccover, |
545 |
> |
double difhor, |
546 |
> |
FVECT view_point, |
547 |
> |
float *parr |
548 |
> |
) |
549 |
|
{ |
550 |
|
float sun_zenith; |
551 |
|
SCOLOR sky_radiance = {0}; |
560 |
|
|
561 |
|
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
562 |
|
/* Also limit minimum angle to keep circumsolar off zenith */ |
563 |
< |
if (altitude <= 0.0) |
563 |
> |
if (altitude <= 0.0) { |
564 |
|
sun_zenith = deg_to_rad(90.0); |
565 |
< |
else if (altitude >= deg_to_rad(87.0)) |
565 |
> |
}else if (altitude >= deg_to_rad(87.0)) { |
566 |
|
sun_zenith = deg_to_rad(3.0); |
567 |
< |
else |
567 |
> |
}else{ |
568 |
|
sun_zenith = deg_to_rad(90.0) - altitude; |
569 |
+ |
} |
570 |
|
|
571 |
|
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
572 |
|
|
578 |
|
double diffuse_irradiance = 0; |
579 |
|
int l; |
580 |
|
for (l = 0; l < NSSAMP; ++l) { |
581 |
< |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
581 |
> |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
582 |
|
} |
583 |
|
/* free(indirect_irradiance_clear); */ |
584 |
|
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
585 |
|
if (diffuse_irradiance > 0) { |
586 |
< |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
586 |
> |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
587 |
|
} |
588 |
|
} |
589 |
|
|
597 |
|
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, view_point, parr); |
598 |
|
} |
599 |
|
|
600 |
< |
int main(int argc, char *argv[]) |
600 |
> |
int |
601 |
> |
main |
602 |
> |
( |
603 |
> |
int argc, |
604 |
> |
char *argv[] |
605 |
> |
) |
606 |
|
{ |
607 |
< |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
608 |
< |
EPWrecord erec; /* current EPW/WEA input record */ |
609 |
< |
int doheader = 1; /* output header? */ |
610 |
< |
double rotation = 0.0; /* site rotation (degrees) */ |
611 |
< |
double elevation = 0; /* site elevation (meters) */ |
612 |
< |
int leap_day = 0; /* add leap day? */ |
613 |
< |
int sun_hours_only = 0; /* only output sun hours? */ |
614 |
< |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
615 |
< |
int ntsteps = 0; /* number of time steps */ |
616 |
< |
int tstorage = 0; /* number of allocated time steps */ |
617 |
< |
int nstored = 0; /* number of time steps in matrix */ |
618 |
< |
int last_monthly = 0; /* month of last report */ |
619 |
< |
double dni; /* direct normal illuminance */ |
620 |
< |
double dhi; /* diffuse horizontal illuminance */ |
607 |
> |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
608 |
> |
EPWrecord erec; /* current EPW/WEA input record */ |
609 |
> |
int doheader = 1; /* output header? */ |
610 |
> |
double rotation = 0.0; /* site rotation (degrees) */ |
611 |
> |
double elevation = 0; /* site elevation (meters) */ |
612 |
> |
int leap_day = 0; /* add leap day? */ |
613 |
> |
int sun_hours_only = 0; /* only output sun hours? */ |
614 |
> |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
615 |
> |
int ntsteps = 0; /* number of time steps */ |
616 |
> |
int tstorage = 0; /* number of allocated time steps */ |
617 |
> |
int nstored = 0; /* number of time steps in matrix */ |
618 |
> |
int last_monthly = 0; /* month of last report */ |
619 |
> |
double dni; /* direct normal illuminance */ |
620 |
> |
double dhi; /* diffuse horizontal illuminance */ |
621 |
|
|
622 |
< |
float *mtx_data = NULL; |
623 |
< |
int mtx_offset = 0; |
624 |
< |
double timeinterval = 0; |
625 |
< |
char lstag[3]; |
626 |
< |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
627 |
< |
char *ddir = "."; |
628 |
< |
char mie_name[20] = "mie_ca"; |
629 |
< |
int num_threads = 1; |
630 |
< |
int sorder = 4; |
631 |
< |
int solar_only = 0; |
632 |
< |
int sky_only = 0; |
633 |
< |
int i, j; |
634 |
< |
FVECT view_point = {0, 0, ER}; |
622 |
> |
float *mtx_data = NULL; |
623 |
> |
int mtx_offset = 0; |
624 |
> |
double timeinterval = 0; |
625 |
> |
char lstag[3]; |
626 |
> |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
627 |
> |
char *ddir = "."; |
628 |
> |
char mie_name[20] = "mie_ca"; |
629 |
> |
int num_threads = 1; |
630 |
> |
int sorder = 4; |
631 |
> |
int solar_only = 0; |
632 |
> |
int sky_only = 0; |
633 |
> |
int i, j, k; |
634 |
> |
FVECT view_point = {0, 0, ER}; |
635 |
|
|
636 |
|
fixargv0(argv[0]); |
637 |
|
|
638 |
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
639 |
|
switch (argv[i][1]) { |
640 |
< |
case 'd': /* solar (direct) only */ |
640 |
> |
case 'd': /* solar (direct) only */ |
641 |
|
solar_only = 1; |
642 |
|
break; |
643 |
< |
case 's': /* sky only (no direct) */ |
643 |
> |
case 's': /* sky only (no direct) */ |
644 |
|
sky_only = 1; |
645 |
|
break; |
646 |
|
case 'g': |
652 |
|
case 'n': |
653 |
|
num_threads = atoi(argv[++i]); |
654 |
|
break; |
655 |
< |
case 'r': /* rotate distribution */ |
656 |
< |
if (argv[i][2] && argv[i][2] != 'z') |
655 |
> |
case 'r': /* rotate distribution */ |
656 |
> |
if (argv[i][2] && argv[i][2] != 'z') { |
657 |
|
goto userr; |
658 |
+ |
} |
659 |
|
rotation = atof(argv[++i]); |
660 |
|
break; |
661 |
< |
case 'u': /* solar hours only */ |
661 |
> |
case 'u': /* solar hours only */ |
662 |
|
sun_hours_only = 1; |
663 |
|
break; |
664 |
|
case 'p': |
665 |
|
ddir = argv[++i]; |
666 |
|
break; |
667 |
< |
case 'v': /* verbose progress reports */ |
667 |
> |
case 'v': /* verbose progress reports */ |
668 |
|
verbose++; |
669 |
|
break; |
670 |
< |
case 'h': /* turn off header */ |
670 |
> |
case 'h': /* turn off header */ |
671 |
|
doheader = 0; |
672 |
|
break; |
673 |
< |
case '5': /* 5-phase calculation */ |
673 |
> |
case '5': /* 5-phase calculation */ |
674 |
|
nsuns = 1; |
675 |
|
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
676 |
|
if (fixed_sun_sa <= 0) { |
677 |
|
fprintf( |
678 |
< |
stderr, |
678 |
> |
stderr, |
679 |
|
"%s: missing solar disk size argument for '-5' option\n", |
680 |
|
progname); |
681 |
|
exit(1); |
685 |
|
case 'i': |
686 |
|
timeinterval = atof(argv[++i]); |
687 |
|
break; |
688 |
< |
case 'o': /* output format */ |
688 |
> |
case 'o': /* output format */ |
689 |
|
switch (argv[i][2]) { |
690 |
|
case 'f': |
691 |
|
case 'd': |
700 |
|
goto userr; |
701 |
|
} |
702 |
|
} |
703 |
< |
if (i < argc - 1) |
703 |
> |
if (i < argc - 1) { |
704 |
|
goto userr; |
705 |
+ |
} |
706 |
|
|
707 |
|
epw = EPWopen(argv[i]); |
708 |
< |
if (epw == NULL) |
708 |
> |
if (epw == NULL) { |
709 |
|
exit(1); |
710 |
+ |
} |
711 |
|
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
712 |
|
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
713 |
|
exit(1); |
714 |
|
} |
715 |
|
if (verbose) { |
716 |
< |
if (i == argc - 1) |
716 |
> |
if (i == argc - 1) { |
717 |
|
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
718 |
< |
else |
718 |
> |
}else{ |
719 |
|
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
720 |
+ |
} |
721 |
|
} |
722 |
|
s_latitude = epw->loc.latitude; |
723 |
|
s_longitude = -epw->loc.longitude; |
724 |
|
s_meridian = -15.*epw->loc.timezone; |
725 |
|
elevation = epw->loc.elevation; |
726 |
< |
switch (epw->isWEA) { /* translate units */ |
726 |
> |
switch (epw->isWEA) { /* translate units */ |
727 |
|
case WEAnot: |
728 |
|
case WEAradnorm: |
729 |
< |
input = 1; /* radiometric quantities */ |
730 |
< |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
729 |
> |
input = 1; /* radiometric quantities */ |
730 |
> |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
731 |
|
break; |
732 |
|
case WEAradhoriz: |
733 |
< |
input = 1; /* radiometric quantities */ |
734 |
< |
dir_is_horiz = 1; /* solar measured horizontally */ |
733 |
> |
input = 1; /* radiometric quantities */ |
734 |
> |
dir_is_horiz = 1; /* solar measured horizontally */ |
735 |
|
break; |
736 |
|
case WEAphotnorm: |
737 |
< |
input = 2; /* photometric quantities */ |
738 |
< |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
737 |
> |
input = 2; /* photometric quantities */ |
738 |
> |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
739 |
|
break; |
740 |
|
default: |
741 |
|
goto fmterr; |
746 |
|
if (verbose) { |
747 |
|
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
748 |
|
fprintf( |
749 |
< |
stderr, |
749 |
> |
stderr, |
750 |
|
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
751 |
|
progname, s_latitude, s_longitude); |
752 |
< |
if (rotation != 0) |
752 |
> |
if (rotation != 0) { |
753 |
|
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
754 |
+ |
} |
755 |
|
} |
756 |
|
|
757 |
|
s_latitude = deg_to_rad(s_latitude); |
775 |
|
} |
776 |
|
|
777 |
|
while ((j = EPWread(epw, &erec)) > 0) { |
778 |
< |
const int mo = erec.date.month+1; |
779 |
< |
const int da = erec.date.day; |
780 |
< |
const double hr = erec.date.hour; |
781 |
< |
double aod = erec.optdepth * 1e3; |
778 |
> |
const int mo = erec.date.month+1; |
779 |
> |
const int da = erec.date.day; |
780 |
> |
const double hr = erec.date.hour; |
781 |
> |
double aod = erec.optdepth * M_PER_KM; |
782 |
|
if (aod >= 999.0) { |
652 |
– |
fprintf(stderr, "aod not set, using default value %.3f\n", AOD0_CA); |
783 |
|
aod = AOD0_CA; |
784 |
+ |
fprintf(stderr, "aod is not set, using default value %.3f\n", AOD0_CA); |
785 |
|
} |
786 |
|
double cc = erec.skycover; |
787 |
|
if (cc >= 99.0) { |
657 |
– |
fprintf(stderr, "skycover not set, using default value 0.0\n"); |
788 |
|
cc = 0.0; |
789 |
+ |
fprintf(stderr, "skycover is not set, using default value %.3f\n", 0.0); |
790 |
|
} |
791 |
< |
double sda, sta, st; |
792 |
< |
int sun_in_sky; |
791 |
> |
double sda, sta, st; |
792 |
> |
int sun_in_sky; |
793 |
|
|
794 |
|
/* compute solar position */ |
795 |
|
if ((mo == 2) & (da == 29)) { |
796 |
|
julian_date = 60; |
797 |
|
leap_day = 1; |
798 |
< |
} else |
798 |
> |
} else{ |
799 |
|
julian_date = jdate(mo, da) + leap_day; |
800 |
+ |
} |
801 |
|
sda = sdec(julian_date); |
802 |
|
sta = stadj(julian_date); |
803 |
|
st = hr + sta; |
804 |
|
if (timeinterval > 0) { |
805 |
< |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) |
805 |
> |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) { |
806 |
|
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
807 |
< |
else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) |
807 |
> |
}else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) { |
808 |
|
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
809 |
+ |
} |
810 |
|
} |
811 |
|
altitude = salt(sda, st); |
812 |
|
sun_in_sky = (altitude > -deg_to_rad(SUN_ANG_DEG / 2.)); |
815 |
|
|
816 |
|
vectorize(altitude, azimuth, sundir); |
817 |
|
if (sun_hours_only && !sun_in_sky) { |
818 |
< |
continue; /* skipping nighttime points */ |
818 |
> |
continue; /* skipping nighttime points */ |
819 |
|
} |
820 |
|
sun_ct = fdot(view_point, sundir) / ER; |
821 |
|
|
830 |
|
tstorage += (tstorage >> 1) + nstored + 7; |
831 |
|
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
832 |
|
} |
833 |
< |
ntsteps++; /* keep count of time steps */ |
833 |
> |
ntsteps++; /* keep count of time steps */ |
834 |
|
|
835 |
|
/* compute sky patch values */ |
836 |
|
Atmosphere clear_atmos = init_atmos(aod, grefl); |
844 |
|
|
845 |
|
char gsdir[PATH_MAX]; |
846 |
|
size_t siz = strlen(ddir); |
847 |
< |
if (ISDIRSEP(ddir[siz - 1])) |
847 |
> |
if (ISDIRSEP(ddir[siz - 1])) { |
848 |
|
ddir[siz - 1] = '\0'; |
849 |
< |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
849 |
> |
} |
850 |
> |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
851 |
|
if (!make_directory(gsdir)) { |
852 |
|
fprintf(stderr, "Failed creating atmos_data directory"); |
853 |
|
exit(1); |
870 |
|
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
871 |
|
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
872 |
|
|
873 |
< |
if (!solar_only) |
873 |
> |
if (!solar_only) { |
874 |
|
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
875 |
< |
cc, dhi, view_point, mtx_data + mtx_offset); |
876 |
< |
if (!sky_only) |
875 |
> |
cc, dhi, view_point, mtx_data + mtx_offset); |
876 |
> |
} |
877 |
> |
if (!sky_only) { |
878 |
|
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
879 |
< |
cc, dni, mtx_data + mtx_offset); |
879 |
> |
cc, dni, mtx_data + mtx_offset); |
880 |
> |
} |
881 |
|
/* monthly reporting */ |
882 |
< |
if (verbose && mo != last_monthly) |
882 |
> |
if (verbose && mo != last_monthly) { |
883 |
|
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
884 |
< |
last_monthly = mo); |
884 |
> |
last_monthly = mo); |
885 |
> |
} |
886 |
|
} |
887 |
|
if (j != EOF) { |
888 |
|
fprintf(stderr, "%s: error on input\n", progname); |
895 |
|
exit(1); |
896 |
|
} |
897 |
|
/* write out matrix */ |
898 |
< |
if (outfmt != 'a') |
898 |
> |
if (outfmt != 'a') { |
899 |
|
SET_FILE_BINARY(stdout); |
900 |
+ |
} |
901 |
|
#ifdef getc_unlocked |
902 |
|
flockfile(stdout); |
903 |
|
#endif |
904 |
< |
if (verbose) |
904 |
> |
if (verbose) { |
905 |
|
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
906 |
< |
outfmt == 'a' ? "" : "binary ", nstored); |
906 |
> |
outfmt == 'a' ? "" : "binary ", nstored); |
907 |
> |
} |
908 |
|
if (doheader) { |
909 |
|
newheader("RADIANCE", stdout); |
910 |
|
printargs(argc, argv, stdout); |
911 |
|
printf("LATLONG= %.8f %.8f\n", rad_to_deg(s_latitude), |
912 |
< |
-rad_to_deg(s_longitude)); |
912 |
> |
-rad_to_deg(s_longitude)); |
913 |
|
printf("NROWS=%d\n", nskypatch); |
914 |
|
printf("NCOLS=%d\n", nstored); |
915 |
|
printf("NCOMP=%d\n", NSSAMP); |
916 |
< |
float wvsplit[4] = {380, 480, 588, 780}; |
917 |
< |
fputwlsplit(wvsplit, stdout); |
779 |
< |
if ((outfmt == 'f') | (outfmt == 'd')) |
916 |
> |
fputwlsplit(WLPART, stdout); |
917 |
> |
if ((outfmt == 'f') | (outfmt == 'd')) { |
918 |
|
fputendian(stdout); |
919 |
+ |
} |
920 |
|
fputformat((char *)getfmtname(outfmt), stdout); |
921 |
|
putchar('\n'); |
922 |
|
} |
926 |
|
switch (outfmt) { |
927 |
|
case 'a': |
928 |
|
for (j = 0; j < nstored; j++) { |
929 |
< |
int k; |
791 |
< |
for (k = 0; k < NSSAMP; k++) { |
929 |
> |
for (k = NSSAMP - 1; k >= 0; k--) { |
930 |
|
printf("%.3g ", mtx_data[mtx_offset + k]); |
931 |
|
} |
932 |
|
printf("\n"); |
933 |
|
mtx_offset += NSSAMP * nskypatch; |
934 |
|
} |
935 |
< |
if (nstored > 1) |
935 |
> |
if (nstored > 1) { |
936 |
|
fputc('\n', stdout); |
937 |
+ |
} |
938 |
|
break; |
939 |
|
case 'f': |
940 |
|
for (j = 0; j < nstored; j++) { |
941 |
< |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
941 |
> |
float ment[NSSAMP]; |
942 |
> |
for (k = NSSAMP - 1; k >= 0; k--) { |
943 |
> |
ment[k] = mtx_data[mtx_offset + k]; |
944 |
> |
} |
945 |
> |
putbinary(ment, sizeof(float), NSSAMP, stdout); |
946 |
|
mtx_offset += NSSAMP * nskypatch; |
947 |
|
} |
948 |
|
break; |
949 |
|
case 'd': |
950 |
|
for (j = 0; j < nstored; j++) { |
951 |
|
double ment[NSSAMP]; |
952 |
< |
for (j = 0; j < NSSAMP; j++) |
953 |
< |
ment[j] = mtx_data[mtx_offset + j]; |
952 |
> |
for (k = NSSAMP - 1; k >= 0; k--) { |
953 |
> |
ment[j] = mtx_data[mtx_offset + k]; |
954 |
> |
} |
955 |
|
putbinary(ment, sizeof(double), NSSAMP, stdout); |
956 |
|
mtx_offset += NSSAMP * nskypatch; |
957 |
|
} |
958 |
|
break; |
959 |
|
} |
960 |
< |
if (ferror(stdout)) |
960 |
> |
if (ferror(stdout)) { |
961 |
|
goto writerr; |
962 |
+ |
} |
963 |
|
} |
964 |
|
return 0; |
965 |
+ |
|
966 |
|
userr: |
967 |
|
fprintf(stderr, |
968 |
< |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
969 |
< |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
970 |
< |
progname); |
968 |
> |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
969 |
> |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
970 |
> |
progname); |
971 |
|
exit(1); |
972 |
|
fmterr: |
973 |
|
fprintf(stderr, "%s: weather tape format error in header\n", progname); |