| 15 |
|
#include "atmos.h" |
| 16 |
|
#include "copyright.h" |
| 17 |
|
#include "data.h" |
| 18 |
– |
#include "paths.h" |
| 18 |
|
#include "platform.h" |
| 19 |
|
#include "rtio.h" |
| 20 |
|
#include "rtmath.h" |
| 22 |
|
#include "loadEPW.h" |
| 23 |
|
|
| 24 |
|
|
| 25 |
< |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
| 26 |
< |
const double ARCTIC_LAT = 67.; |
| 27 |
< |
const double TROPIC_LAT = 23.; |
| 28 |
< |
const int SUMMER_START = 4; |
| 29 |
< |
const int SUMMER_END = 9; |
| 30 |
< |
const double GNORM = 0.777778; |
| 25 |
> |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
| 26 |
> |
const double ARCTIC_LAT = 67.; |
| 27 |
> |
const double TROPIC_LAT = 23.; |
| 28 |
> |
const int SUMMER_START = 4; |
| 29 |
> |
const int SUMMER_END = 9; |
| 30 |
> |
const double GNORM = 0.777778; |
| 31 |
> |
const double M_PER_KM = 1e3; |
| 32 |
|
|
| 33 |
|
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
| 34 |
< |
const double D6415[NSSAMP] = { |
| 34 |
> |
const double D6415[NSSAMP] = { |
| 35 |
|
0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
| 36 |
|
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
| 37 |
|
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
| 38 |
< |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
| 38 |
> |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925 |
| 39 |
> |
}; |
| 40 |
|
|
| 41 |
|
enum { |
| 42 |
< |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
| 42 |
> |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
| 43 |
|
}; |
| 44 |
|
|
| 45 |
< |
double altitude; /* Solar altitude (radians) */ |
| 46 |
< |
double azimuth; /* Solar azimuth (radians) */ |
| 47 |
< |
int julian_date; /* Julian date */ |
| 48 |
< |
double sun_zenith; /* Sun zenith angle (radians) */ |
| 49 |
< |
int nskypatch; /* number of Reinhart patches */ |
| 50 |
< |
float *rh_palt; /* sky patch altitudes (radians) */ |
| 51 |
< |
float *rh_pazi; /* sky patch azimuths (radians) */ |
| 52 |
< |
float *rh_dom; /* sky patch solid angle (sr) */ |
| 53 |
< |
FVECT sundir; |
| 54 |
< |
double sun_ct; /* cos(theta) of sun altitude angle */ |
| 45 |
> |
double altitude; /* Solar altitude (radians) */ |
| 46 |
> |
double azimuth; /* Solar azimuth (radians) */ |
| 47 |
> |
int julian_date; /* Julian date */ |
| 48 |
> |
double sun_zenith; /* Sun zenith angle (radians) */ |
| 49 |
> |
int nskypatch; /* number of Reinhart patches */ |
| 50 |
> |
float *rh_palt; /* sky patch altitudes (radians) */ |
| 51 |
> |
float *rh_pazi; /* sky patch azimuths (radians) */ |
| 52 |
> |
float *rh_dom; /* sky patch solid angle (sr) */ |
| 53 |
> |
FVECT sundir; |
| 54 |
> |
double sun_ct; /* cos(theta) of sun altitude angle */ |
| 55 |
|
|
| 56 |
< |
int input = 0; /* Input type */ |
| 57 |
< |
int output = 0; /* Output type */ |
| 58 |
< |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
| 59 |
< |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
| 60 |
< |
int verbose = 0; /* progress reports to stderr? */ |
| 61 |
< |
int outfmt = 'a'; /* output format */ |
| 62 |
< |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
| 63 |
< |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
| 64 |
< |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
| 65 |
< |
double grefl = .2; /* ground reflectance */ |
| 56 |
> |
int input = 0; /* Input type */ |
| 57 |
> |
int output = 0; /* Output type */ |
| 58 |
> |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
| 59 |
> |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
| 60 |
> |
int verbose = 0; /* progress reports to stderr? */ |
| 61 |
> |
int outfmt = 'a'; /* output format */ |
| 62 |
> |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
| 63 |
> |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
| 64 |
> |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
| 65 |
> |
double grefl = .2; /* ground reflectance */ |
| 66 |
|
|
| 67 |
|
|
| 68 |
< |
static inline double deg_to_rad(double deg) |
| 68 |
> |
static inline double |
| 69 |
> |
deg_to_rad |
| 70 |
> |
( |
| 71 |
> |
double deg |
| 72 |
> |
) |
| 73 |
|
{ |
| 74 |
|
return deg * (PI / 180.); |
| 75 |
|
} |
| 76 |
|
|
| 77 |
< |
static inline double rad_to_deg(double rad) |
| 77 |
> |
static inline double |
| 78 |
> |
rad_to_deg |
| 79 |
> |
( |
| 80 |
> |
double rad |
| 81 |
> |
) |
| 82 |
|
{ |
| 83 |
|
return rad * (180. / PI); |
| 84 |
|
} |
| 85 |
|
|
| 86 |
< |
static inline void vectorize(double altitude, double azimuth, FVECT v) |
| 86 |
> |
static inline void |
| 87 |
> |
vectorize |
| 88 |
> |
( |
| 89 |
> |
double altitude, |
| 90 |
> |
double azimuth, |
| 91 |
> |
FVECT v |
| 92 |
> |
) |
| 93 |
|
{ |
| 94 |
|
v[1] = cos(altitude); |
| 95 |
|
v[0] = (v)[1] * sin(azimuth); |
| 97 |
|
v[2] = sin(altitude); |
| 98 |
|
} |
| 99 |
|
|
| 100 |
< |
static inline double wmean2(const double a, const double b, const double x) |
| 100 |
> |
static inline double |
| 101 |
> |
wmean2 |
| 102 |
> |
( |
| 103 |
> |
const double a, |
| 104 |
> |
const double b, |
| 105 |
> |
const double x |
| 106 |
> |
) |
| 107 |
|
{ |
| 108 |
|
return a * (1 - x) + b * x; |
| 109 |
|
} |
| 110 |
|
|
| 111 |
< |
static inline double wmean( |
| 112 |
< |
const double a, const double x, |
| 113 |
< |
const double b, const double y) |
| 111 |
> |
static inline double |
| 112 |
> |
wmean |
| 113 |
> |
( |
| 114 |
> |
const double a, |
| 115 |
> |
const double x, |
| 116 |
> |
const double b, |
| 117 |
> |
const double y |
| 118 |
> |
) |
| 119 |
|
{ |
| 120 |
|
return (a * x + b * y) / (a + b); |
| 121 |
|
} |
| 122 |
|
|
| 123 |
< |
static int make_directory(const char *path) |
| 123 |
> |
static int |
| 124 |
> |
make_directory |
| 125 |
> |
( |
| 126 |
> |
const char *path |
| 127 |
> |
) |
| 128 |
|
{ |
| 129 |
|
#ifdef _WIN32 |
| 130 |
|
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
| 131 |
|
return 1; |
| 132 |
|
} |
| 133 |
|
return 0; |
| 134 |
+ |
|
| 135 |
|
#else |
| 136 |
|
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
| 137 |
|
return 1; |
| 138 |
|
} |
| 139 |
|
return 0; |
| 140 |
+ |
|
| 141 |
|
#endif |
| 142 |
|
} |
| 143 |
|
|
| 144 |
< |
static const char *getfmtname(int fmt) |
| 144 |
> |
static const char * |
| 145 |
> |
getfmtname |
| 146 |
> |
( |
| 147 |
> |
int fmt |
| 148 |
> |
) |
| 149 |
|
{ |
| 150 |
|
switch (fmt) { |
| 151 |
|
case 'a': |
| 152 |
|
return ("ascii"); |
| 153 |
+ |
|
| 154 |
|
case 'f': |
| 155 |
|
return ("float"); |
| 156 |
+ |
|
| 157 |
|
case 'd': |
| 158 |
|
return ("double"); |
| 159 |
|
} |
| 161 |
|
} |
| 162 |
|
|
| 163 |
|
|
| 164 |
< |
static double get_overcast_zenith_brightness(const double sundir[3]) |
| 164 |
> |
static double |
| 165 |
> |
get_overcast_zenith_brightness |
| 166 |
> |
( |
| 167 |
> |
const double sundir[3] |
| 168 |
> |
) |
| 169 |
|
{ |
| 170 |
|
double zenithbr; |
| 171 |
|
if (sundir[2] < 0) { |
| 178 |
|
|
| 179 |
|
|
| 180 |
|
/* from gensky.c */ |
| 181 |
< |
static double get_overcast_brightness(const double dz, const double zenithbr) |
| 181 |
> |
static double |
| 182 |
> |
get_overcast_brightness |
| 183 |
> |
( |
| 184 |
> |
const double dz, |
| 185 |
> |
const double zenithbr |
| 186 |
> |
) |
| 187 |
|
{ |
| 188 |
< |
double groundbr = zenithbr * GNORM; |
| 189 |
< |
return wmean(pow(dz + 1.01, 10), |
| 190 |
< |
zenithbr * (1 + 2 * dz) / 3, |
| 191 |
< |
pow(dz + 1.01, -10), groundbr); |
| 188 |
> |
double groundbr = zenithbr * GNORM; |
| 189 |
> |
return wmean(pow(dz + 1.01, 10), |
| 190 |
> |
zenithbr * (1 + 2 * dz) / 3, |
| 191 |
> |
pow(dz + 1.01, -10), groundbr); |
| 192 |
|
} |
| 193 |
|
|
| 194 |
< |
double solar_sunset(int month, int day) |
| 194 |
> |
double |
| 195 |
> |
solar_sunset |
| 196 |
> |
( |
| 197 |
> |
int month, |
| 198 |
> |
int day |
| 199 |
> |
) |
| 200 |
|
{ |
| 201 |
|
float W; |
| 202 |
|
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
| 204 |
|
} |
| 205 |
|
|
| 206 |
|
|
| 207 |
< |
double solar_sunrise(int month, int day) |
| 207 |
> |
double |
| 208 |
> |
solar_sunrise |
| 209 |
> |
( |
| 210 |
> |
int month, |
| 211 |
> |
int day |
| 212 |
> |
) |
| 213 |
|
{ |
| 214 |
|
float W; |
| 215 |
|
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
| 216 |
|
return 12 - (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
| 217 |
|
} |
| 218 |
|
|
| 219 |
< |
int rh_init(void) |
| 219 |
> |
int |
| 220 |
> |
rh_init |
| 221 |
> |
( |
| 222 |
> |
void |
| 223 |
> |
) |
| 224 |
|
{ |
| 225 |
|
#define NROW 7 |
| 226 |
|
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
| 228 |
|
int p, i, j; |
| 229 |
|
/* allocate patch angle arrays */ |
| 230 |
|
nskypatch = 0; |
| 231 |
< |
for (p = 0; p < NROW; p++) |
| 231 |
> |
for (p = 0; p < NROW; p++) { |
| 232 |
|
nskypatch += tnaz[p]; |
| 233 |
+ |
} |
| 234 |
|
nskypatch *= rhsubdiv * rhsubdiv; |
| 235 |
|
nskypatch += 2; |
| 236 |
|
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
| 240 |
|
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
| 241 |
|
exit(1); |
| 242 |
|
} |
| 243 |
< |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
| 243 |
> |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
| 244 |
|
rh_pazi[0] = 0.; |
| 245 |
|
rh_dom[0] = 2. * PI; |
| 246 |
|
rh_palt[nskypatch - 1] = PI / 2.; |
| 247 |
|
rh_pazi[nskypatch - 1] = 0.; |
| 248 |
|
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
| 249 |
< |
p = 1; /* "normal" patches */ |
| 249 |
> |
p = 1; /* "normal" patches */ |
| 250 |
|
for (i = 0; i < NROW * rhsubdiv; i++) { |
| 251 |
|
const float ralt = alpha * (i + .5); |
| 252 |
|
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
| 253 |
|
const float dom = |
| 254 |
< |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
| 254 |
> |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
| 255 |
|
for (j = 0; j < ninrow; j++) { |
| 256 |
|
rh_palt[p] = ralt; |
| 257 |
|
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
| 259 |
|
} |
| 260 |
|
} |
| 261 |
|
return nskypatch; |
| 262 |
+ |
|
| 263 |
|
#undef NROW |
| 264 |
|
} |
| 265 |
|
|
| 266 |
|
/* Resize daylight matrix (GW) */ |
| 267 |
< |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) |
| 267 |
> |
float * |
| 268 |
> |
resize_dmatrix |
| 269 |
> |
( |
| 270 |
> |
float *mtx_data, |
| 271 |
> |
int nsteps, |
| 272 |
> |
int npatch |
| 273 |
> |
) |
| 274 |
|
{ |
| 275 |
< |
if (mtx_data == NULL) |
| 275 |
> |
if (mtx_data == NULL) { |
| 276 |
|
mtx_data = (float * ) malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
| 277 |
< |
else |
| 277 |
> |
}else{ |
| 278 |
|
mtx_data = (float * ) realloc(mtx_data, |
| 279 |
< |
sizeof(float) * NSSAMP * nsteps * npatch); |
| 279 |
> |
sizeof(float) * NSSAMP * nsteps * npatch); |
| 280 |
> |
} |
| 281 |
|
if (mtx_data == NULL) { |
| 282 |
|
fprintf(stderr, |
| 283 |
|
"%s: out of memory in resize_dmatrix(%d,%d)\n", |
| 284 |
|
progname, nsteps, npatch); |
| 285 |
|
exit(1); |
| 286 |
< |
} |
| 287 |
< |
return mtx_data; |
| 286 |
> |
} |
| 287 |
> |
return mtx_data; |
| 288 |
|
} |
| 289 |
|
|
| 290 |
< |
static Atmosphere init_atmos(const double aod, const double grefl) |
| 290 |
> |
static Atmosphere |
| 291 |
> |
init_atmos |
| 292 |
> |
( |
| 293 |
> |
const double aod, |
| 294 |
> |
const double grefl |
| 295 |
> |
) |
| 296 |
|
{ |
| 297 |
|
Atmosphere atmos = { |
| 298 |
|
.ozone_density = { |
| 332 |
|
return atmos; |
| 333 |
|
} |
| 334 |
|
|
| 335 |
< |
static DpPaths get_dppaths(const char *dir, const double aod, |
| 336 |
< |
const char *mname, const char *tag) |
| 335 |
> |
static DpPaths |
| 336 |
> |
get_dppaths |
| 337 |
> |
( |
| 338 |
> |
const char *dir, |
| 339 |
> |
const double aod, |
| 340 |
> |
const char *mname, |
| 341 |
> |
const char *tag |
| 342 |
> |
) |
| 343 |
|
{ |
| 344 |
|
DpPaths paths; |
| 345 |
|
|
| 346 |
|
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", |
| 347 |
< |
dir, DIRSEP, tag, mname, aod); |
| 347 |
> |
dir, DIRSEP, tag, mname, aod); |
| 348 |
|
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", |
| 349 |
< |
dir, DIRSEP, tag, mname, aod); |
| 349 |
> |
dir, DIRSEP, tag, mname, aod); |
| 350 |
|
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", |
| 351 |
< |
dir, DIRSEP, tag, mname, aod); |
| 351 |
> |
dir, DIRSEP, tag, mname, aod); |
| 352 |
|
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", |
| 353 |
< |
dir, DIRSEP, tag, mname, aod); |
| 353 |
> |
dir, DIRSEP, tag, mname, aod); |
| 354 |
|
|
| 355 |
|
return paths; |
| 356 |
|
} |
| 357 |
|
|
| 358 |
|
|
| 359 |
< |
static void set_rayleigh_density_profile(Atmosphere *atmos, |
| 360 |
< |
char *tag, const int is_summer, const double s_latitude) |
| 359 |
> |
static void |
| 360 |
> |
set_rayleigh_density_profile |
| 361 |
> |
( |
| 362 |
> |
Atmosphere *atmos, |
| 363 |
> |
char *tag, |
| 364 |
> |
const int is_summer, |
| 365 |
> |
const double s_latitude |
| 366 |
> |
) |
| 367 |
|
{ |
| 368 |
|
/* Set rayleigh density profile */ |
| 369 |
|
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
| 399 |
|
|
| 400 |
|
|
| 401 |
|
/* Add in solar direct to nearest sky patches (GW) */ |
| 402 |
< |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad, |
| 403 |
< |
double ccover, double dirnorm, float *parr) |
| 402 |
> |
void |
| 403 |
> |
add_direct |
| 404 |
> |
( |
| 405 |
> |
DATARRAY *tau, |
| 406 |
> |
DATARRAY *scat, |
| 407 |
> |
DATARRAY *scat1m, |
| 408 |
> |
DATARRAY *irrad, |
| 409 |
> |
double ccover, |
| 410 |
> |
double dirnorm, |
| 411 |
> |
float *parr |
| 412 |
> |
) |
| 413 |
|
{ |
| 414 |
|
FVECT svec; |
| 415 |
|
double near_dprod[NSUNPATCH]; |
| 418 |
|
int i, j, p; |
| 419 |
|
|
| 420 |
|
/* identify nsuns closest patches */ |
| 421 |
< |
for (i = nsuns; i--;) |
| 421 |
> |
for (i = nsuns; i--;) { |
| 422 |
|
near_dprod[i] = -1.; |
| 423 |
+ |
} |
| 424 |
|
vectorize(altitude, azimuth, svec); |
| 425 |
|
for (p = 1; p < nskypatch; p++) { |
| 426 |
|
FVECT pvec; |
| 427 |
|
double dprod; |
| 428 |
|
vectorize(rh_palt[p], rh_pazi[p], pvec); |
| 429 |
|
dprod = DOT(pvec, svec); |
| 430 |
< |
for (i = 0; i < nsuns; i++) |
| 430 |
> |
for (i = 0; i < nsuns; i++) { |
| 431 |
|
if (dprod > near_dprod[i]) { |
| 432 |
|
for (j = nsuns; --j > i;) { |
| 433 |
|
near_dprod[j] = near_dprod[j - 1]; |
| 437 |
|
near_patch[i] = p; |
| 438 |
|
break; |
| 439 |
|
} |
| 440 |
+ |
} |
| 441 |
|
} |
| 442 |
|
/* Get solar radiance */ |
| 443 |
|
double sun_radiance[NSSAMP] = {0}; |
| 462 |
|
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
| 463 |
|
} |
| 464 |
|
double dir_ratio = 1.; |
| 465 |
< |
if (mean > 0) |
| 465 |
> |
if (mean > 0) { |
| 466 |
|
dir_ratio = intensity / mean; |
| 467 |
+ |
} |
| 468 |
|
for (i = 0; i < NSSAMP; ++i) { |
| 469 |
|
sun_radiance[i] *= dir_ratio; |
| 470 |
|
} |
| 471 |
|
|
| 472 |
|
/* weight by proximity */ |
| 473 |
|
wtot = 0; |
| 474 |
< |
for (i = nsuns; i--;) |
| 474 |
> |
for (i = nsuns; i--;) { |
| 475 |
|
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
| 476 |
+ |
} |
| 477 |
|
/* add to nearest patch radiances */ |
| 478 |
|
for (i = nsuns; i--;) { |
| 479 |
|
float *pdest = parr + NSSAMP * near_patch[i]; |
| 485 |
|
} |
| 486 |
|
|
| 487 |
|
|
| 488 |
< |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, |
| 489 |
< |
DATARRAY *irrad_clear, double ccover, double dif_ratio, |
| 490 |
< |
double overcast_zenithbr, FVECT view_point, float *parr) |
| 488 |
> |
void |
| 489 |
> |
calc_sky_patch_radiance |
| 490 |
> |
( |
| 491 |
> |
DATARRAY *scat, |
| 492 |
> |
DATARRAY *scat1m, |
| 493 |
> |
DATARRAY *irrad_clear, |
| 494 |
> |
double ccover, |
| 495 |
> |
double dif_ratio, |
| 496 |
> |
double overcast_zenithbr, |
| 497 |
> |
FVECT view_point, |
| 498 |
> |
float *parr |
| 499 |
> |
) |
| 500 |
|
{ |
| 501 |
< |
double mu_sky; /* Sun-sky point azimuthal angle */ |
| 502 |
< |
double sspa; /* Sun-sky point angle */ |
| 503 |
< |
int i; |
| 501 |
> |
double mu_sky; /* Sun-sky point azimuthal angle */ |
| 502 |
> |
double sspa; /* Sun-sky point angle */ |
| 503 |
> |
int i; |
| 504 |
|
for (i = 1; i < nskypatch; i++) { |
| 505 |
< |
FVECT rdir_sky; |
| 505 |
> |
FVECT rdir_sky; |
| 506 |
|
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
| 507 |
|
mu_sky = fdot(view_point, rdir_sky) / ER; |
| 508 |
|
sspa = fdot(rdir_sky, sundir); |
| 509 |
|
|
| 510 |
< |
SCOLOR sky_radiance = {0}; |
| 510 |
> |
SCOLOR sky_radiance = {0}; |
| 511 |
|
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
| 512 |
< |
int k; |
| 512 |
> |
int k; |
| 513 |
|
for (k = 0; k < NSSAMP; ++k) { |
| 514 |
|
sky_radiance[k] *= WVLSPAN; |
| 515 |
|
} |
| 534 |
|
|
| 535 |
|
|
| 536 |
|
/* Compute sky patch radiance values (modified by GW) */ |
| 537 |
< |
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
| 538 |
< |
DATARRAY *irrad, double ccover, double difhor, FVECT view_point, float *parr) |
| 537 |
> |
void |
| 538 |
> |
compute_sky |
| 539 |
> |
( |
| 540 |
> |
DATARRAY *tau, |
| 541 |
> |
DATARRAY *scat, |
| 542 |
> |
DATARRAY *scat1m, |
| 543 |
> |
DATARRAY *irrad, |
| 544 |
> |
double ccover, |
| 545 |
> |
double difhor, |
| 546 |
> |
FVECT view_point, |
| 547 |
> |
float *parr |
| 548 |
> |
) |
| 549 |
|
{ |
| 550 |
|
float sun_zenith; |
| 551 |
|
SCOLOR sky_radiance = {0}; |
| 560 |
|
|
| 561 |
|
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
| 562 |
|
/* Also limit minimum angle to keep circumsolar off zenith */ |
| 563 |
< |
if (altitude <= 0.0) |
| 563 |
> |
if (altitude <= 0.0) { |
| 564 |
|
sun_zenith = deg_to_rad(90.0); |
| 565 |
< |
else if (altitude >= deg_to_rad(87.0)) |
| 565 |
> |
}else if (altitude >= deg_to_rad(87.0)) { |
| 566 |
|
sun_zenith = deg_to_rad(3.0); |
| 567 |
< |
else |
| 567 |
> |
}else{ |
| 568 |
|
sun_zenith = deg_to_rad(90.0) - altitude; |
| 569 |
+ |
} |
| 570 |
|
|
| 571 |
|
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
| 572 |
|
|
| 578 |
|
double diffuse_irradiance = 0; |
| 579 |
|
int l; |
| 580 |
|
for (l = 0; l < NSSAMP; ++l) { |
| 581 |
< |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
| 581 |
> |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
| 582 |
|
} |
| 583 |
|
/* free(indirect_irradiance_clear); */ |
| 584 |
|
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
| 585 |
|
if (diffuse_irradiance > 0) { |
| 586 |
< |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
| 586 |
> |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
| 587 |
|
} |
| 588 |
|
} |
| 589 |
|
|
| 597 |
|
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, view_point, parr); |
| 598 |
|
} |
| 599 |
|
|
| 600 |
< |
int main(int argc, char *argv[]) |
| 600 |
> |
int |
| 601 |
> |
main |
| 602 |
> |
( |
| 603 |
> |
int argc, |
| 604 |
> |
char *argv[] |
| 605 |
> |
) |
| 606 |
|
{ |
| 607 |
< |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
| 608 |
< |
EPWrecord erec; /* current EPW/WEA input record */ |
| 609 |
< |
int doheader = 1; /* output header? */ |
| 610 |
< |
double rotation = 0.0; /* site rotation (degrees) */ |
| 611 |
< |
double elevation = 0; /* site elevation (meters) */ |
| 612 |
< |
int leap_day = 0; /* add leap day? */ |
| 613 |
< |
int sun_hours_only = 0; /* only output sun hours? */ |
| 614 |
< |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
| 615 |
< |
int ntsteps = 0; /* number of time steps */ |
| 616 |
< |
int tstorage = 0; /* number of allocated time steps */ |
| 617 |
< |
int nstored = 0; /* number of time steps in matrix */ |
| 618 |
< |
int last_monthly = 0; /* month of last report */ |
| 619 |
< |
double dni; /* direct normal illuminance */ |
| 620 |
< |
double dhi; /* diffuse horizontal illuminance */ |
| 607 |
> |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
| 608 |
> |
EPWrecord erec; /* current EPW/WEA input record */ |
| 609 |
> |
int doheader = 1; /* output header? */ |
| 610 |
> |
double rotation = 0.0; /* site rotation (degrees) */ |
| 611 |
> |
double elevation = 0; /* site elevation (meters) */ |
| 612 |
> |
int leap_day = 0; /* add leap day? */ |
| 613 |
> |
int sun_hours_only = 0; /* only output sun hours? */ |
| 614 |
> |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
| 615 |
> |
int ntsteps = 0; /* number of time steps */ |
| 616 |
> |
int tstorage = 0; /* number of allocated time steps */ |
| 617 |
> |
int nstored = 0; /* number of time steps in matrix */ |
| 618 |
> |
int last_monthly = 0; /* month of last report */ |
| 619 |
> |
double dni; /* direct normal illuminance */ |
| 620 |
> |
double dhi; /* diffuse horizontal illuminance */ |
| 621 |
|
|
| 622 |
< |
float *mtx_data = NULL; |
| 623 |
< |
int mtx_offset = 0; |
| 624 |
< |
double timeinterval = 0; |
| 625 |
< |
char lstag[3]; |
| 626 |
< |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
| 627 |
< |
char *ddir = "."; |
| 628 |
< |
char mie_name[20] = "mie_ca"; |
| 629 |
< |
int num_threads = 1; |
| 630 |
< |
int sorder = 4; |
| 631 |
< |
int solar_only = 0; |
| 632 |
< |
int sky_only = 0; |
| 633 |
< |
int i, j; |
| 634 |
< |
FVECT view_point = {0, 0, ER}; |
| 622 |
> |
float *mtx_data = NULL; |
| 623 |
> |
int mtx_offset = 0; |
| 624 |
> |
double timeinterval = 0; |
| 625 |
> |
char lstag[3]; |
| 626 |
> |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
| 627 |
> |
char *ddir = "."; |
| 628 |
> |
char mie_name[20] = "mie_ca"; |
| 629 |
> |
int num_threads = 1; |
| 630 |
> |
int sorder = 4; |
| 631 |
> |
int solar_only = 0; |
| 632 |
> |
int sky_only = 0; |
| 633 |
> |
int i, j, k; |
| 634 |
> |
FVECT view_point = {0, 0, ER}; |
| 635 |
|
|
| 636 |
|
fixargv0(argv[0]); |
| 637 |
|
|
| 638 |
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
| 639 |
|
switch (argv[i][1]) { |
| 640 |
< |
case 'd': /* solar (direct) only */ |
| 640 |
> |
case 'd': /* solar (direct) only */ |
| 641 |
|
solar_only = 1; |
| 642 |
|
break; |
| 643 |
< |
case 's': /* sky only (no direct) */ |
| 643 |
> |
case 's': /* sky only (no direct) */ |
| 644 |
|
sky_only = 1; |
| 645 |
|
break; |
| 646 |
|
case 'g': |
| 652 |
|
case 'n': |
| 653 |
|
num_threads = atoi(argv[++i]); |
| 654 |
|
break; |
| 655 |
< |
case 'r': /* rotate distribution */ |
| 656 |
< |
if (argv[i][2] && argv[i][2] != 'z') |
| 655 |
> |
case 'r': /* rotate distribution */ |
| 656 |
> |
if (argv[i][2] && argv[i][2] != 'z') { |
| 657 |
|
goto userr; |
| 658 |
+ |
} |
| 659 |
|
rotation = atof(argv[++i]); |
| 660 |
|
break; |
| 661 |
< |
case 'u': /* solar hours only */ |
| 661 |
> |
case 'u': /* solar hours only */ |
| 662 |
|
sun_hours_only = 1; |
| 663 |
|
break; |
| 664 |
|
case 'p': |
| 665 |
|
ddir = argv[++i]; |
| 666 |
|
break; |
| 667 |
< |
case 'v': /* verbose progress reports */ |
| 667 |
> |
case 'v': /* verbose progress reports */ |
| 668 |
|
verbose++; |
| 669 |
|
break; |
| 670 |
< |
case 'h': /* turn off header */ |
| 670 |
> |
case 'h': /* turn off header */ |
| 671 |
|
doheader = 0; |
| 672 |
|
break; |
| 673 |
< |
case '5': /* 5-phase calculation */ |
| 673 |
> |
case '5': /* 5-phase calculation */ |
| 674 |
|
nsuns = 1; |
| 675 |
|
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
| 676 |
|
if (fixed_sun_sa <= 0) { |
| 677 |
|
fprintf( |
| 678 |
< |
stderr, |
| 678 |
> |
stderr, |
| 679 |
|
"%s: missing solar disk size argument for '-5' option\n", |
| 680 |
|
progname); |
| 681 |
|
exit(1); |
| 685 |
|
case 'i': |
| 686 |
|
timeinterval = atof(argv[++i]); |
| 687 |
|
break; |
| 688 |
< |
case 'o': /* output format */ |
| 688 |
> |
case 'o': /* output format */ |
| 689 |
|
switch (argv[i][2]) { |
| 690 |
|
case 'f': |
| 691 |
|
case 'd': |
| 700 |
|
goto userr; |
| 701 |
|
} |
| 702 |
|
} |
| 703 |
< |
if (i < argc - 1) |
| 703 |
> |
if (i < argc - 1) { |
| 704 |
|
goto userr; |
| 705 |
+ |
} |
| 706 |
|
|
| 707 |
|
epw = EPWopen(argv[i]); |
| 708 |
< |
if (epw == NULL) |
| 708 |
> |
if (epw == NULL) { |
| 709 |
|
exit(1); |
| 710 |
+ |
} |
| 711 |
|
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
| 712 |
|
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
| 713 |
|
exit(1); |
| 714 |
|
} |
| 715 |
|
if (verbose) { |
| 716 |
< |
if (i == argc - 1) |
| 716 |
> |
if (i == argc - 1) { |
| 717 |
|
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
| 718 |
< |
else |
| 718 |
> |
}else{ |
| 719 |
|
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
| 720 |
+ |
} |
| 721 |
|
} |
| 722 |
|
s_latitude = epw->loc.latitude; |
| 723 |
|
s_longitude = -epw->loc.longitude; |
| 724 |
|
s_meridian = -15.*epw->loc.timezone; |
| 725 |
|
elevation = epw->loc.elevation; |
| 726 |
< |
switch (epw->isWEA) { /* translate units */ |
| 726 |
> |
switch (epw->isWEA) { /* translate units */ |
| 727 |
|
case WEAnot: |
| 728 |
|
case WEAradnorm: |
| 729 |
< |
input = 1; /* radiometric quantities */ |
| 730 |
< |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 729 |
> |
input = 1; /* radiometric quantities */ |
| 730 |
> |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 731 |
|
break; |
| 732 |
|
case WEAradhoriz: |
| 733 |
< |
input = 1; /* radiometric quantities */ |
| 734 |
< |
dir_is_horiz = 1; /* solar measured horizontally */ |
| 733 |
> |
input = 1; /* radiometric quantities */ |
| 734 |
> |
dir_is_horiz = 1; /* solar measured horizontally */ |
| 735 |
|
break; |
| 736 |
|
case WEAphotnorm: |
| 737 |
< |
input = 2; /* photometric quantities */ |
| 738 |
< |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 737 |
> |
input = 2; /* photometric quantities */ |
| 738 |
> |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
| 739 |
|
break; |
| 740 |
|
default: |
| 741 |
|
goto fmterr; |
| 746 |
|
if (verbose) { |
| 747 |
|
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
| 748 |
|
fprintf( |
| 749 |
< |
stderr, |
| 749 |
> |
stderr, |
| 750 |
|
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
| 751 |
|
progname, s_latitude, s_longitude); |
| 752 |
< |
if (rotation != 0) |
| 752 |
> |
if (rotation != 0) { |
| 753 |
|
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
| 754 |
+ |
} |
| 755 |
|
} |
| 756 |
|
|
| 757 |
|
s_latitude = deg_to_rad(s_latitude); |
| 764 |
|
DATARRAY *mie_dp = getdata(mie_path); |
| 765 |
|
if (mie_dp == NULL) { |
| 766 |
|
fprintf(stderr, "Error reading mie data\n"); |
| 767 |
< |
return 0; |
| 767 |
> |
return 1; |
| 768 |
|
} |
| 769 |
|
|
| 770 |
|
if (epw->isWEA == WEAnot) { |
| 775 |
|
} |
| 776 |
|
|
| 777 |
|
while ((j = EPWread(epw, &erec)) > 0) { |
| 778 |
< |
const int mo = erec.date.month+1; |
| 779 |
< |
const int da = erec.date.day; |
| 780 |
< |
const double hr = erec.date.hour; |
| 781 |
< |
double aod = erec.optdepth; |
| 782 |
< |
double cc = erec.skycover; |
| 653 |
< |
double sda, sta, st; |
| 654 |
< |
int sun_in_sky; |
| 655 |
< |
|
| 656 |
< |
if (aod == 0.0) { |
| 778 |
> |
const int mo = erec.date.month+1; |
| 779 |
> |
const int da = erec.date.day; |
| 780 |
> |
const double hr = erec.date.hour; |
| 781 |
> |
double aod = erec.optdepth * M_PER_KM; |
| 782 |
> |
if (aod >= 999.0) { |
| 783 |
|
aod = AOD0_CA; |
| 784 |
< |
fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA); |
| 784 |
> |
fprintf(stderr, "aod is not set, using default value %.3f\n", AOD0_CA); |
| 785 |
|
} |
| 786 |
+ |
double cc = erec.skycover; |
| 787 |
+ |
if (cc >= 99.0) { |
| 788 |
+ |
cc = 0.0; |
| 789 |
+ |
fprintf(stderr, "skycover is not set, using default value %.3f\n", 0.0); |
| 790 |
+ |
} |
| 791 |
+ |
double sda, sta, st; |
| 792 |
+ |
int sun_in_sky; |
| 793 |
+ |
|
| 794 |
|
/* compute solar position */ |
| 795 |
|
if ((mo == 2) & (da == 29)) { |
| 796 |
|
julian_date = 60; |
| 797 |
|
leap_day = 1; |
| 798 |
< |
} else |
| 798 |
> |
} else{ |
| 799 |
|
julian_date = jdate(mo, da) + leap_day; |
| 800 |
+ |
} |
| 801 |
|
sda = sdec(julian_date); |
| 802 |
|
sta = stadj(julian_date); |
| 803 |
|
st = hr + sta; |
| 804 |
|
if (timeinterval > 0) { |
| 805 |
< |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) |
| 805 |
> |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) { |
| 806 |
|
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
| 807 |
< |
else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) |
| 807 |
> |
}else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) { |
| 808 |
|
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
| 809 |
+ |
} |
| 810 |
|
} |
| 811 |
|
altitude = salt(sda, st); |
| 812 |
|
sun_in_sky = (altitude > -deg_to_rad(SUN_ANG_DEG / 2.)); |
| 815 |
|
|
| 816 |
|
vectorize(altitude, azimuth, sundir); |
| 817 |
|
if (sun_hours_only && !sun_in_sky) { |
| 818 |
< |
continue; /* skipping nighttime points */ |
| 818 |
> |
continue; /* skipping nighttime points */ |
| 819 |
|
} |
| 820 |
|
sun_ct = fdot(view_point, sundir) / ER; |
| 821 |
|
|
| 830 |
|
tstorage += (tstorage >> 1) + nstored + 7; |
| 831 |
|
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
| 832 |
|
} |
| 833 |
< |
ntsteps++; /* keep count of time steps */ |
| 833 |
> |
ntsteps++; /* keep count of time steps */ |
| 834 |
|
|
| 835 |
|
/* compute sky patch values */ |
| 836 |
|
Atmosphere clear_atmos = init_atmos(aod, grefl); |
| 844 |
|
|
| 845 |
|
char gsdir[PATH_MAX]; |
| 846 |
|
size_t siz = strlen(ddir); |
| 847 |
< |
if (ISDIRSEP(ddir[siz - 1])) |
| 847 |
> |
if (ISDIRSEP(ddir[siz - 1])) { |
| 848 |
|
ddir[siz - 1] = '\0'; |
| 849 |
< |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
| 849 |
> |
} |
| 850 |
> |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
| 851 |
|
if (!make_directory(gsdir)) { |
| 852 |
|
fprintf(stderr, "Failed creating atmos_data directory"); |
| 853 |
|
exit(1); |
| 861 |
|
fprintf(stderr, "# Pre-computing...\n"); |
| 862 |
|
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
| 863 |
|
fprintf(stderr, "Pre-compute failed\n"); |
| 864 |
< |
return 0; |
| 864 |
> |
return 1; |
| 865 |
|
} |
| 866 |
|
} |
| 867 |
|
|
| 870 |
|
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
| 871 |
|
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
| 872 |
|
|
| 873 |
< |
if (!solar_only) |
| 873 |
> |
if (!solar_only) { |
| 874 |
|
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 875 |
< |
cc, dhi, view_point, mtx_data + mtx_offset); |
| 876 |
< |
if (!sky_only) |
| 875 |
> |
cc, dhi, view_point, mtx_data + mtx_offset); |
| 876 |
> |
} |
| 877 |
> |
if (!sky_only) { |
| 878 |
|
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
| 879 |
< |
cc, dni, mtx_data + mtx_offset); |
| 879 |
> |
cc, dni, mtx_data + mtx_offset); |
| 880 |
> |
} |
| 881 |
|
/* monthly reporting */ |
| 882 |
< |
if (verbose && mo != last_monthly) |
| 882 |
> |
if (verbose && mo != last_monthly) { |
| 883 |
|
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
| 884 |
< |
last_monthly = mo); |
| 884 |
> |
last_monthly = mo); |
| 885 |
> |
} |
| 886 |
|
} |
| 887 |
|
if (j != EOF) { |
| 888 |
|
fprintf(stderr, "%s: error on input\n", progname); |
| 895 |
|
exit(1); |
| 896 |
|
} |
| 897 |
|
/* write out matrix */ |
| 898 |
< |
if (outfmt != 'a') |
| 898 |
> |
if (outfmt != 'a') { |
| 899 |
|
SET_FILE_BINARY(stdout); |
| 900 |
+ |
} |
| 901 |
|
#ifdef getc_unlocked |
| 902 |
|
flockfile(stdout); |
| 903 |
|
#endif |
| 904 |
< |
if (verbose) |
| 904 |
> |
if (verbose) { |
| 905 |
|
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
| 906 |
< |
outfmt == 'a' ? "" : "binary ", nstored); |
| 906 |
> |
outfmt == 'a' ? "" : "binary ", nstored); |
| 907 |
> |
} |
| 908 |
|
if (doheader) { |
| 909 |
|
newheader("RADIANCE", stdout); |
| 910 |
|
printargs(argc, argv, stdout); |
| 911 |
|
printf("LATLONG= %.8f %.8f\n", rad_to_deg(s_latitude), |
| 912 |
< |
-rad_to_deg(s_longitude)); |
| 912 |
> |
-rad_to_deg(s_longitude)); |
| 913 |
|
printf("NROWS=%d\n", nskypatch); |
| 914 |
|
printf("NCOLS=%d\n", nstored); |
| 915 |
|
printf("NCOMP=%d\n", NSSAMP); |
| 916 |
< |
float wvsplit[4] = {380, 480, 588, 780}; |
| 917 |
< |
fputwlsplit(wvsplit, stdout); |
| 776 |
< |
if ((outfmt == 'f') | (outfmt == 'd')) |
| 916 |
> |
fputwlsplit(WLPART, stdout); |
| 917 |
> |
if ((outfmt == 'f') | (outfmt == 'd')) { |
| 918 |
|
fputendian(stdout); |
| 919 |
+ |
} |
| 920 |
|
fputformat((char *)getfmtname(outfmt), stdout); |
| 921 |
|
putchar('\n'); |
| 922 |
|
} |
| 926 |
|
switch (outfmt) { |
| 927 |
|
case 'a': |
| 928 |
|
for (j = 0; j < nstored; j++) { |
| 929 |
< |
int k; |
| 788 |
< |
for (k = 0; k < NSSAMP; k++) { |
| 929 |
> |
for (k = NSSAMP - 1; k >= 0; k--) { |
| 930 |
|
printf("%.3g ", mtx_data[mtx_offset + k]); |
| 931 |
|
} |
| 932 |
|
printf("\n"); |
| 933 |
|
mtx_offset += NSSAMP * nskypatch; |
| 934 |
|
} |
| 935 |
< |
if (nstored > 1) |
| 935 |
> |
if (nstored > 1) { |
| 936 |
|
fputc('\n', stdout); |
| 937 |
+ |
} |
| 938 |
|
break; |
| 939 |
|
case 'f': |
| 940 |
|
for (j = 0; j < nstored; j++) { |
| 941 |
< |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
| 941 |
> |
float ment[NSSAMP]; |
| 942 |
> |
for (k = NSSAMP - 1; k >= 0; k--) { |
| 943 |
> |
ment[k] = mtx_data[mtx_offset + k]; |
| 944 |
> |
} |
| 945 |
> |
putbinary(ment, sizeof(float), NSSAMP, stdout); |
| 946 |
|
mtx_offset += NSSAMP * nskypatch; |
| 947 |
|
} |
| 948 |
|
break; |
| 949 |
|
case 'd': |
| 950 |
|
for (j = 0; j < nstored; j++) { |
| 951 |
|
double ment[NSSAMP]; |
| 952 |
< |
for (j = 0; j < NSSAMP; j++) |
| 953 |
< |
ment[j] = mtx_data[mtx_offset + j]; |
| 952 |
> |
for (k = NSSAMP - 1; k >= 0; k--) { |
| 953 |
> |
ment[j] = mtx_data[mtx_offset + k]; |
| 954 |
> |
} |
| 955 |
|
putbinary(ment, sizeof(double), NSSAMP, stdout); |
| 956 |
|
mtx_offset += NSSAMP * nskypatch; |
| 957 |
|
} |
| 958 |
|
break; |
| 959 |
|
} |
| 960 |
< |
if (ferror(stdout)) |
| 960 |
> |
if (ferror(stdout)) { |
| 961 |
|
goto writerr; |
| 962 |
+ |
} |
| 963 |
|
} |
| 964 |
|
return 0; |
| 965 |
+ |
|
| 966 |
|
userr: |
| 967 |
|
fprintf(stderr, |
| 968 |
< |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
| 969 |
< |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
| 970 |
< |
progname); |
| 968 |
> |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
| 969 |
> |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
| 970 |
> |
progname); |
| 971 |
|
exit(1); |
| 972 |
|
fmterr: |
| 973 |
|
fprintf(stderr, "%s: weather tape format error in header\n", progname); |