1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: gensdaymtx.c,v 1.7 2025/06/06 19:11:21 greg Exp $"; |
3 |
#endif |
4 |
|
5 |
#include <stdlib.h> |
6 |
#include <ctype.h> |
7 |
#ifdef _WIN32 |
8 |
#include <windows.h> |
9 |
#else |
10 |
#include <errno.h> |
11 |
#include <sys/stat.h> |
12 |
#include <sys/types.h> |
13 |
#endif |
14 |
|
15 |
#include "atmos.h" |
16 |
#include "copyright.h" |
17 |
#include "data.h" |
18 |
#include "platform.h" |
19 |
#include "rtio.h" |
20 |
#include "rtmath.h" |
21 |
#include "sun.h" |
22 |
#include "loadEPW.h" |
23 |
|
24 |
|
25 |
const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ |
26 |
const double ARCTIC_LAT = 67.; |
27 |
const double TROPIC_LAT = 23.; |
28 |
const int SUMMER_START = 4; |
29 |
const int SUMMER_END = 9; |
30 |
const double GNORM = 0.777778; |
31 |
|
32 |
/* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ |
33 |
const double D6415[NSSAMP] = { |
34 |
0.63231, 1.06171, 1.00779, 1.36423, 1.34133, |
35 |
1.27258, 1.26276, 1.26352, 1.22201, 1.13246, |
36 |
1.0434, 1.05547, 0.98212, 0.94445, 0.9722, |
37 |
0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; |
38 |
|
39 |
enum { |
40 |
NSUNPATCH = 4 /* max. # patches to spread sun into */ |
41 |
}; |
42 |
|
43 |
double altitude; /* Solar altitude (radians) */ |
44 |
double azimuth; /* Solar azimuth (radians) */ |
45 |
int julian_date; /* Julian date */ |
46 |
double sun_zenith; /* Sun zenith angle (radians) */ |
47 |
int nskypatch; /* number of Reinhart patches */ |
48 |
float *rh_palt; /* sky patch altitudes (radians) */ |
49 |
float *rh_pazi; /* sky patch azimuths (radians) */ |
50 |
float *rh_dom; /* sky patch solid angle (sr) */ |
51 |
FVECT sundir; |
52 |
double sun_ct; /* cos(theta) of sun altitude angle */ |
53 |
|
54 |
int input = 0; /* Input type */ |
55 |
int output = 0; /* Output type */ |
56 |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
57 |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
58 |
int verbose = 0; /* progress reports to stderr? */ |
59 |
int outfmt = 'a'; /* output format */ |
60 |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
61 |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
62 |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
63 |
double grefl = .2; /* ground reflectance */ |
64 |
|
65 |
|
66 |
static inline double deg_to_rad(double deg) |
67 |
{ |
68 |
return deg * (PI / 180.); |
69 |
} |
70 |
|
71 |
static inline double rad_to_deg(double rad) |
72 |
{ |
73 |
return rad * (180. / PI); |
74 |
} |
75 |
|
76 |
static inline void vectorize(double altitude, double azimuth, FVECT v) |
77 |
{ |
78 |
v[1] = cos(altitude); |
79 |
v[0] = (v)[1] * sin(azimuth); |
80 |
v[1] *= cos(azimuth); |
81 |
v[2] = sin(altitude); |
82 |
} |
83 |
|
84 |
static inline double wmean2(const double a, const double b, const double x) |
85 |
{ |
86 |
return a * (1 - x) + b * x; |
87 |
} |
88 |
|
89 |
static inline double wmean( |
90 |
const double a, const double x, |
91 |
const double b, const double y) |
92 |
{ |
93 |
return (a * x + b * y) / (a + b); |
94 |
} |
95 |
|
96 |
static int make_directory(const char *path) |
97 |
{ |
98 |
#ifdef _WIN32 |
99 |
if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { |
100 |
return 1; |
101 |
} |
102 |
return 0; |
103 |
#else |
104 |
if (mkdir(path, 0777) == 0 || errno == EEXIST) { |
105 |
return 1; |
106 |
} |
107 |
return 0; |
108 |
#endif |
109 |
} |
110 |
|
111 |
static const char *getfmtname(int fmt) |
112 |
{ |
113 |
switch (fmt) { |
114 |
case 'a': |
115 |
return ("ascii"); |
116 |
case 'f': |
117 |
return ("float"); |
118 |
case 'd': |
119 |
return ("double"); |
120 |
} |
121 |
return ("unknown"); |
122 |
} |
123 |
|
124 |
|
125 |
static double get_overcast_zenith_brightness(const double sundir[3]) |
126 |
{ |
127 |
double zenithbr; |
128 |
if (sundir[2] < 0) { |
129 |
zenithbr = 0; |
130 |
} else { |
131 |
zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFFICACY; |
132 |
} |
133 |
return zenithbr; |
134 |
} |
135 |
|
136 |
|
137 |
/* from gensky.c */ |
138 |
static double get_overcast_brightness(const double dz, const double zenithbr) |
139 |
{ |
140 |
double groundbr = zenithbr * GNORM; |
141 |
return wmean(pow(dz + 1.01, 10), |
142 |
zenithbr * (1 + 2 * dz) / 3, |
143 |
pow(dz + 1.01, -10), groundbr); |
144 |
} |
145 |
|
146 |
double solar_sunset(int month, int day) |
147 |
{ |
148 |
float W; |
149 |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
150 |
return 12 + (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
151 |
} |
152 |
|
153 |
|
154 |
double solar_sunrise(int month, int day) |
155 |
{ |
156 |
float W; |
157 |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
158 |
return 12 - (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); |
159 |
} |
160 |
|
161 |
int rh_init(void) |
162 |
{ |
163 |
#define NROW 7 |
164 |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
165 |
const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); |
166 |
int p, i, j; |
167 |
/* allocate patch angle arrays */ |
168 |
nskypatch = 0; |
169 |
for (p = 0; p < NROW; p++) |
170 |
nskypatch += tnaz[p]; |
171 |
nskypatch *= rhsubdiv * rhsubdiv; |
172 |
nskypatch += 2; |
173 |
rh_palt = (float *)malloc(sizeof(float) * nskypatch); |
174 |
rh_pazi = (float *)malloc(sizeof(float) * nskypatch); |
175 |
rh_dom = (float *)malloc(sizeof(float) * nskypatch); |
176 |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
177 |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
178 |
exit(1); |
179 |
} |
180 |
rh_palt[0] = -PI / 2.; /* ground & zenith patches */ |
181 |
rh_pazi[0] = 0.; |
182 |
rh_dom[0] = 2. * PI; |
183 |
rh_palt[nskypatch - 1] = PI / 2.; |
184 |
rh_pazi[nskypatch - 1] = 0.; |
185 |
rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); |
186 |
p = 1; /* "normal" patches */ |
187 |
for (i = 0; i < NROW * rhsubdiv; i++) { |
188 |
const float ralt = alpha * (i + .5); |
189 |
const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; |
190 |
const float dom = |
191 |
2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; |
192 |
for (j = 0; j < ninrow; j++) { |
193 |
rh_palt[p] = ralt; |
194 |
rh_pazi[p] = 2. * PI * j / (double)ninrow; |
195 |
rh_dom[p++] = dom; |
196 |
} |
197 |
} |
198 |
return nskypatch; |
199 |
#undef NROW |
200 |
} |
201 |
|
202 |
/* Resize daylight matrix (GW) */ |
203 |
float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) |
204 |
{ |
205 |
if (mtx_data == NULL) |
206 |
mtx_data = (float * ) malloc(sizeof(float) * NSSAMP * nsteps * npatch); |
207 |
else |
208 |
mtx_data = (float * ) realloc(mtx_data, |
209 |
sizeof(float) * NSSAMP * nsteps * npatch); |
210 |
if (mtx_data == NULL) { |
211 |
fprintf(stderr, |
212 |
"%s: out of memory in resize_dmatrix(%d,%d)\n", |
213 |
progname, nsteps, npatch); |
214 |
exit(1); |
215 |
} |
216 |
return mtx_data; |
217 |
} |
218 |
|
219 |
static Atmosphere init_atmos(const double aod, const double grefl) |
220 |
{ |
221 |
Atmosphere atmos = { |
222 |
.ozone_density = { |
223 |
.layers = { |
224 |
{ |
225 |
.width = 25000.0, |
226 |
.exp_term = 0.0, |
227 |
.exp_scale = 0.0, |
228 |
.linear_term = 1.0 / 15000.0, |
229 |
.constant_term = -2.0 / 3.0 |
230 |
}, |
231 |
{ |
232 |
.width = AH, |
233 |
.exp_term = 0.0, |
234 |
.exp_scale = 0.0, |
235 |
.linear_term = -1.0 / 15000.0, |
236 |
.constant_term = 8.0 / 3.0 |
237 |
}, |
238 |
} |
239 |
}, |
240 |
.rayleigh_density = { |
241 |
.layers = { |
242 |
{ |
243 |
.width = AH, |
244 |
.exp_term = 1.0, |
245 |
.exp_scale = -1.0 / HR_MS, |
246 |
.linear_term = 0.0, |
247 |
.constant_term = 0.0 |
248 |
}, |
249 |
} |
250 |
}, |
251 |
.beta_r0 = BR0_MS, |
252 |
.beta_scale = aod / AOD0_CA, |
253 |
.beta_m = NULL, |
254 |
.grefl = grefl |
255 |
}; |
256 |
return atmos; |
257 |
} |
258 |
|
259 |
static DpPaths get_dppaths(const char *dir, const double aod, |
260 |
const char *mname, const char *tag) |
261 |
{ |
262 |
DpPaths paths; |
263 |
|
264 |
snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", |
265 |
dir, DIRSEP, tag, mname, aod); |
266 |
snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", |
267 |
dir, DIRSEP, tag, mname, aod); |
268 |
snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", |
269 |
dir, DIRSEP, tag, mname, aod); |
270 |
snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", |
271 |
dir, DIRSEP, tag, mname, aod); |
272 |
|
273 |
return paths; |
274 |
} |
275 |
|
276 |
|
277 |
static void set_rayleigh_density_profile(Atmosphere *atmos, |
278 |
char *tag, const int is_summer, const double s_latitude) |
279 |
{ |
280 |
/* Set rayleigh density profile */ |
281 |
if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { |
282 |
tag[0] = 's'; |
283 |
if (is_summer) { |
284 |
tag[1] = 's'; |
285 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; |
286 |
atmos->beta_r0 = BR0_SS; |
287 |
} else { |
288 |
tag[1] = 'w'; |
289 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; |
290 |
atmos->beta_r0 = BR0_SW; |
291 |
} |
292 |
} else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { |
293 |
tag[0] = 'm'; |
294 |
if (is_summer) { |
295 |
tag[1] = 's'; |
296 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; |
297 |
atmos->beta_r0 = BR0_MS; |
298 |
} else { |
299 |
tag[1] = 'w'; |
300 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; |
301 |
atmos->beta_r0 = BR0_MW; |
302 |
} |
303 |
} else { |
304 |
tag[0] = 't'; |
305 |
tag[1] = 'r'; |
306 |
atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; |
307 |
atmos->beta_r0 = BR0_T; |
308 |
} |
309 |
tag[2] = '\0'; |
310 |
} |
311 |
|
312 |
|
313 |
/* Add in solar direct to nearest sky patches (GW) */ |
314 |
void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad, |
315 |
double ccover, double dirnorm, float *parr) |
316 |
{ |
317 |
FVECT svec; |
318 |
double near_dprod[NSUNPATCH]; |
319 |
int near_patch[NSUNPATCH]; |
320 |
double wta[NSUNPATCH], wtot; |
321 |
int i, j, p; |
322 |
|
323 |
/* identify nsuns closest patches */ |
324 |
for (i = nsuns; i--;) |
325 |
near_dprod[i] = -1.; |
326 |
vectorize(altitude, azimuth, svec); |
327 |
for (p = 1; p < nskypatch; p++) { |
328 |
FVECT pvec; |
329 |
double dprod; |
330 |
vectorize(rh_palt[p], rh_pazi[p], pvec); |
331 |
dprod = DOT(pvec, svec); |
332 |
for (i = 0; i < nsuns; i++) |
333 |
if (dprod > near_dprod[i]) { |
334 |
for (j = nsuns; --j > i;) { |
335 |
near_dprod[j] = near_dprod[j - 1]; |
336 |
near_patch[j] = near_patch[j - 1]; |
337 |
} |
338 |
near_dprod[i] = dprod; |
339 |
near_patch[i] = p; |
340 |
break; |
341 |
} |
342 |
} |
343 |
/* Get solar radiance */ |
344 |
double sun_radiance[NSSAMP] = {0}; |
345 |
get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); |
346 |
if (ccover > 0) { |
347 |
double zenithbr = get_overcast_zenith_brightness(sundir); |
348 |
double skybr = get_overcast_brightness(sundir[2], zenithbr); |
349 |
int l; |
350 |
for (l = 0; l < NSSAMP; ++l) { |
351 |
sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); |
352 |
} |
353 |
} |
354 |
/* Normalize */ |
355 |
double sum = 0.0; |
356 |
for (i = 0; i < NSSAMP; ++i) { |
357 |
sum += sun_radiance[i]; |
358 |
} |
359 |
double mean = sum / NSSAMP; |
360 |
|
361 |
double intensity = mean * WVLSPAN; |
362 |
if (dirnorm > 0) { |
363 |
intensity = dirnorm / SOLOMG / WHTEFFICACY; |
364 |
} |
365 |
double dir_ratio = 1.; |
366 |
if (mean > 0) |
367 |
dir_ratio = intensity / mean; |
368 |
for (i = 0; i < NSSAMP; ++i) { |
369 |
sun_radiance[i] *= dir_ratio; |
370 |
} |
371 |
|
372 |
/* weight by proximity */ |
373 |
wtot = 0; |
374 |
for (i = nsuns; i--;) |
375 |
wtot += wta[i] = 1. / (1.002 - near_dprod[i]); |
376 |
/* add to nearest patch radiances */ |
377 |
for (i = nsuns; i--;) { |
378 |
float *pdest = parr + NSSAMP * near_patch[i]; |
379 |
int k; |
380 |
for (k = 0; k < NSSAMP; k++) { |
381 |
*pdest++ = sun_radiance[k] * wta[i] / wtot; |
382 |
} |
383 |
} |
384 |
} |
385 |
|
386 |
|
387 |
void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, |
388 |
DATARRAY *irrad_clear, double ccover, double dif_ratio, |
389 |
double overcast_zenithbr, FVECT view_point, float *parr) |
390 |
{ |
391 |
double mu_sky; /* Sun-sky point azimuthal angle */ |
392 |
double sspa; /* Sun-sky point angle */ |
393 |
int i; |
394 |
for (i = 1; i < nskypatch; i++) { |
395 |
FVECT rdir_sky; |
396 |
vectorize(rh_palt[i], rh_pazi[i], rdir_sky); |
397 |
mu_sky = fdot(view_point, rdir_sky) / ER; |
398 |
sspa = fdot(rdir_sky, sundir); |
399 |
|
400 |
SCOLOR sky_radiance = {0}; |
401 |
get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); |
402 |
int k; |
403 |
for (k = 0; k < NSSAMP; ++k) { |
404 |
sky_radiance[k] *= WVLSPAN; |
405 |
} |
406 |
|
407 |
if (ccover > 0) { |
408 |
double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr); |
409 |
for (k = 0; k < NSSAMP; ++k) { |
410 |
sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); |
411 |
} |
412 |
} |
413 |
|
414 |
/* calibration */ |
415 |
for (k = 0; k < NSSAMP; ++k) { |
416 |
sky_radiance[k] *= dif_ratio; |
417 |
} |
418 |
|
419 |
for (k = 0; k < NSSAMP; ++k) { |
420 |
parr[NSSAMP * i + k] = sky_radiance[k]; |
421 |
} |
422 |
} |
423 |
} |
424 |
|
425 |
|
426 |
/* Compute sky patch radiance values (modified by GW) */ |
427 |
void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, |
428 |
DATARRAY *irrad, double ccover, double difhor, FVECT view_point, float *parr) |
429 |
{ |
430 |
float sun_zenith; |
431 |
SCOLOR sky_radiance = {0}; |
432 |
SCOLOR ground_radiance = {0}; |
433 |
SCOLR sky_sclr = {0}; |
434 |
SCOLR ground_sclr = {0}; |
435 |
const double radius = VLEN(view_point); |
436 |
const double sun_ct = fdot(view_point, sundir) / radius; |
437 |
const FVECT rdir_grnd = {0, 0, -1}; |
438 |
const double mu_grnd = fdot(view_point, rdir_grnd) / radius; |
439 |
const double nu_grnd = fdot(rdir_grnd, sundir); |
440 |
|
441 |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
442 |
/* Also limit minimum angle to keep circumsolar off zenith */ |
443 |
if (altitude <= 0.0) |
444 |
sun_zenith = deg_to_rad(90.0); |
445 |
else if (altitude >= deg_to_rad(87.0)) |
446 |
sun_zenith = deg_to_rad(3.0); |
447 |
else |
448 |
sun_zenith = deg_to_rad(90.0) - altitude; |
449 |
|
450 |
double overcast_zenithbr = get_overcast_zenith_brightness(sundir); |
451 |
|
452 |
/* diffuse calibration factor */ |
453 |
double dif_ratio = 1; |
454 |
if (difhor > 0) { |
455 |
DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct); |
456 |
double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; |
457 |
double diffuse_irradiance = 0; |
458 |
int l; |
459 |
for (l = 0; l < NSSAMP; ++l) { |
460 |
diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ |
461 |
} |
462 |
/* free(indirect_irradiance_clear); */ |
463 |
diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); |
464 |
if (diffuse_irradiance > 0) { |
465 |
dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ |
466 |
} |
467 |
} |
468 |
|
469 |
/* Compute ground radiance (include solar contribution if any) */ |
470 |
get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, |
471 |
mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); |
472 |
int j; |
473 |
for (j = 0; j < NSSAMP; j++) { |
474 |
parr[j] *= WVLSPAN; |
475 |
} |
476 |
calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, view_point, parr); |
477 |
} |
478 |
|
479 |
int main(int argc, char *argv[]) |
480 |
{ |
481 |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
482 |
EPWrecord erec; /* current EPW/WEA input record */ |
483 |
int doheader = 1; /* output header? */ |
484 |
double rotation = 0.0; /* site rotation (degrees) */ |
485 |
double elevation = 0; /* site elevation (meters) */ |
486 |
int leap_day = 0; /* add leap day? */ |
487 |
int sun_hours_only = 0; /* only output sun hours? */ |
488 |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
489 |
int ntsteps = 0; /* number of time steps */ |
490 |
int tstorage = 0; /* number of allocated time steps */ |
491 |
int nstored = 0; /* number of time steps in matrix */ |
492 |
int last_monthly = 0; /* month of last report */ |
493 |
double dni; /* direct normal illuminance */ |
494 |
double dhi; /* diffuse horizontal illuminance */ |
495 |
|
496 |
float *mtx_data = NULL; |
497 |
int mtx_offset = 0; |
498 |
double timeinterval = 0; |
499 |
char lstag[3]; |
500 |
char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); |
501 |
char *ddir = "."; |
502 |
char mie_name[20] = "mie_ca"; |
503 |
int num_threads = 1; |
504 |
int sorder = 4; |
505 |
int solar_only = 0; |
506 |
int sky_only = 0; |
507 |
int i, j; |
508 |
FVECT view_point = {0, 0, ER}; |
509 |
|
510 |
fixargv0(argv[0]); |
511 |
|
512 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) { |
513 |
switch (argv[i][1]) { |
514 |
case 'd': /* solar (direct) only */ |
515 |
solar_only = 1; |
516 |
break; |
517 |
case 's': /* sky only (no direct) */ |
518 |
sky_only = 1; |
519 |
break; |
520 |
case 'g': |
521 |
grefl = atof(argv[++i]); |
522 |
break; |
523 |
case 'm': |
524 |
rhsubdiv = atoi(argv[++i]); |
525 |
break; |
526 |
case 'n': |
527 |
num_threads = atoi(argv[++i]); |
528 |
break; |
529 |
case 'r': /* rotate distribution */ |
530 |
if (argv[i][2] && argv[i][2] != 'z') |
531 |
goto userr; |
532 |
rotation = atof(argv[++i]); |
533 |
break; |
534 |
case 'u': /* solar hours only */ |
535 |
sun_hours_only = 1; |
536 |
break; |
537 |
case 'p': |
538 |
ddir = argv[++i]; |
539 |
break; |
540 |
case 'v': /* verbose progress reports */ |
541 |
verbose++; |
542 |
break; |
543 |
case 'h': /* turn off header */ |
544 |
doheader = 0; |
545 |
break; |
546 |
case '5': /* 5-phase calculation */ |
547 |
nsuns = 1; |
548 |
fixed_sun_sa = PI / 360. * atof(argv[++i]); |
549 |
if (fixed_sun_sa <= 0) { |
550 |
fprintf( |
551 |
stderr, |
552 |
"%s: missing solar disk size argument for '-5' option\n", |
553 |
progname); |
554 |
exit(1); |
555 |
} |
556 |
fixed_sun_sa *= fixed_sun_sa * PI; |
557 |
break; |
558 |
case 'i': |
559 |
timeinterval = atof(argv[++i]); |
560 |
break; |
561 |
case 'o': /* output format */ |
562 |
switch (argv[i][2]) { |
563 |
case 'f': |
564 |
case 'd': |
565 |
case 'a': |
566 |
outfmt = argv[i][2]; |
567 |
break; |
568 |
default: |
569 |
goto userr; |
570 |
} |
571 |
break; |
572 |
default: |
573 |
goto userr; |
574 |
} |
575 |
} |
576 |
if (i < argc - 1) |
577 |
goto userr; |
578 |
|
579 |
epw = EPWopen(argv[i]); |
580 |
if (epw == NULL) |
581 |
exit(1); |
582 |
if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { |
583 |
fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); |
584 |
exit(1); |
585 |
} |
586 |
if (verbose) { |
587 |
if (i == argc - 1) |
588 |
fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); |
589 |
else |
590 |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname); |
591 |
} |
592 |
s_latitude = epw->loc.latitude; |
593 |
s_longitude = -epw->loc.longitude; |
594 |
s_meridian = -15.*epw->loc.timezone; |
595 |
elevation = epw->loc.elevation; |
596 |
switch (epw->isWEA) { /* translate units */ |
597 |
case WEAnot: |
598 |
case WEAradnorm: |
599 |
input = 1; /* radiometric quantities */ |
600 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
601 |
break; |
602 |
case WEAradhoriz: |
603 |
input = 1; /* radiometric quantities */ |
604 |
dir_is_horiz = 1; /* solar measured horizontally */ |
605 |
break; |
606 |
case WEAphotnorm: |
607 |
input = 2; /* photometric quantities */ |
608 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
609 |
break; |
610 |
default: |
611 |
goto fmterr; |
612 |
} |
613 |
|
614 |
rh_init(); |
615 |
|
616 |
if (verbose) { |
617 |
fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); |
618 |
fprintf( |
619 |
stderr, |
620 |
"%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
621 |
progname, s_latitude, s_longitude); |
622 |
if (rotation != 0) |
623 |
fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); |
624 |
} |
625 |
|
626 |
s_latitude = deg_to_rad(s_latitude); |
627 |
s_longitude = deg_to_rad(s_longitude); |
628 |
s_meridian = deg_to_rad(s_meridian); |
629 |
/* initial allocation */ |
630 |
mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); |
631 |
|
632 |
/* Load mie density data */ |
633 |
DATARRAY *mie_dp = getdata(mie_path); |
634 |
if (mie_dp == NULL) { |
635 |
fprintf(stderr, "Error reading mie data\n"); |
636 |
return 0; |
637 |
} |
638 |
|
639 |
if (epw->isWEA == WEAnot) { |
640 |
fprintf(stderr, "EPW input\n"); |
641 |
} else if (epw->isWEA != WEAphotnorm) { |
642 |
fprintf(stderr, "need WEA in photopic unit\n"); |
643 |
exit(1); |
644 |
} |
645 |
|
646 |
while ((j = EPWread(epw, &erec)) > 0) { |
647 |
const int mo = erec.date.month+1; |
648 |
const int da = erec.date.day; |
649 |
const double hr = erec.date.hour; |
650 |
double aod = erec.optdepth; |
651 |
double cc = erec.skycover; |
652 |
double sda, sta, st; |
653 |
int sun_in_sky; |
654 |
|
655 |
if (aod == 0.0) { |
656 |
aod = AOD0_CA; |
657 |
fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA); |
658 |
} |
659 |
/* compute solar position */ |
660 |
if ((mo == 2) & (da == 29)) { |
661 |
julian_date = 60; |
662 |
leap_day = 1; |
663 |
} else |
664 |
julian_date = jdate(mo, da) + leap_day; |
665 |
sda = sdec(julian_date); |
666 |
sta = stadj(julian_date); |
667 |
st = hr + sta; |
668 |
if (timeinterval > 0) { |
669 |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) |
670 |
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
671 |
else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) |
672 |
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
673 |
} |
674 |
altitude = salt(sda, st); |
675 |
sun_in_sky = (altitude > -deg_to_rad(SUN_ANG_DEG / 2.)); |
676 |
|
677 |
azimuth = sazi(sda, st) + PI - deg_to_rad(rotation); |
678 |
|
679 |
vectorize(altitude, azimuth, sundir); |
680 |
if (sun_hours_only && !sun_in_sky) { |
681 |
continue; /* skipping nighttime points */ |
682 |
} |
683 |
sun_ct = fdot(view_point, sundir) / ER; |
684 |
|
685 |
dni = erec.dirillum; |
686 |
dhi = erec.diffillum; |
687 |
|
688 |
mtx_offset = NSSAMP * nskypatch * nstored; |
689 |
nstored += 1; |
690 |
|
691 |
/* make space for next row */ |
692 |
if (nstored > tstorage) { |
693 |
tstorage += (tstorage >> 1) + nstored + 7; |
694 |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
695 |
} |
696 |
ntsteps++; /* keep count of time steps */ |
697 |
|
698 |
/* compute sky patch values */ |
699 |
Atmosphere clear_atmos = init_atmos(aod, grefl); |
700 |
int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); |
701 |
if (s_latitude < 0) { |
702 |
is_summer = !is_summer; |
703 |
} |
704 |
set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); |
705 |
|
706 |
clear_atmos.beta_m = mie_dp; |
707 |
|
708 |
char gsdir[PATH_MAX]; |
709 |
size_t siz = strlen(ddir); |
710 |
if (ISDIRSEP(ddir[siz - 1])) |
711 |
ddir[siz - 1] = '\0'; |
712 |
snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); |
713 |
if (!make_directory(gsdir)) { |
714 |
fprintf(stderr, "Failed creating atmos_data directory"); |
715 |
exit(1); |
716 |
} |
717 |
DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); |
718 |
|
719 |
if (getpath(clear_paths.tau, ".", R_OK) == NULL || |
720 |
getpath(clear_paths.scat, ".", R_OK) == NULL || |
721 |
getpath(clear_paths.scat1m, ".", R_OK) == NULL || |
722 |
getpath(clear_paths.irrad, ".", R_OK) == NULL) { |
723 |
fprintf(stderr, "# Pre-computing...\n"); |
724 |
if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { |
725 |
fprintf(stderr, "Pre-compute failed\n"); |
726 |
return 0; |
727 |
} |
728 |
} |
729 |
|
730 |
DATARRAY *tau_clear_dp = getdata(clear_paths.tau); |
731 |
DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); |
732 |
DATARRAY *scat_clear_dp = getdata(clear_paths.scat); |
733 |
DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); |
734 |
|
735 |
if (!solar_only) |
736 |
compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
737 |
cc, dhi, view_point, mtx_data + mtx_offset); |
738 |
if (!sky_only) |
739 |
add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, |
740 |
cc, dni, mtx_data + mtx_offset); |
741 |
/* monthly reporting */ |
742 |
if (verbose && mo != last_monthly) |
743 |
fprintf(stderr, "%s: stepping through month %d...\n", progname, |
744 |
last_monthly = mo); |
745 |
} |
746 |
if (j != EOF) { |
747 |
fprintf(stderr, "%s: error on input\n", progname); |
748 |
exit(1); |
749 |
} |
750 |
EPWclose(epw); epw = NULL; |
751 |
freedata(mie_dp); |
752 |
if (!ntsteps) { |
753 |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
754 |
exit(1); |
755 |
} |
756 |
/* write out matrix */ |
757 |
if (outfmt != 'a') |
758 |
SET_FILE_BINARY(stdout); |
759 |
#ifdef getc_unlocked |
760 |
flockfile(stdout); |
761 |
#endif |
762 |
if (verbose) |
763 |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, |
764 |
outfmt == 'a' ? "" : "binary ", nstored); |
765 |
if (doheader) { |
766 |
newheader("RADIANCE", stdout); |
767 |
printargs(argc, argv, stdout); |
768 |
printf("LATLONG= %.8f %.8f\n", rad_to_deg(s_latitude), |
769 |
-rad_to_deg(s_longitude)); |
770 |
printf("NROWS=%d\n", nskypatch); |
771 |
printf("NCOLS=%d\n", nstored); |
772 |
printf("NCOMP=%d\n", NSSAMP); |
773 |
float wvsplit[4] = {380, 480, 588, 780}; |
774 |
fputwlsplit(wvsplit, stdout); |
775 |
if ((outfmt == 'f') | (outfmt == 'd')) |
776 |
fputendian(stdout); |
777 |
fputformat((char *)getfmtname(outfmt), stdout); |
778 |
putchar('\n'); |
779 |
} |
780 |
/* patches are rows (outer sort) */ |
781 |
for (i = 0; i < nskypatch; i++) { |
782 |
mtx_offset = NSSAMP * i; |
783 |
switch (outfmt) { |
784 |
case 'a': |
785 |
for (j = 0; j < nstored; j++) { |
786 |
int k; |
787 |
for (k = 0; k < NSSAMP; k++) { |
788 |
printf("%.3g ", mtx_data[mtx_offset + k]); |
789 |
} |
790 |
printf("\n"); |
791 |
mtx_offset += NSSAMP * nskypatch; |
792 |
} |
793 |
if (nstored > 1) |
794 |
fputc('\n', stdout); |
795 |
break; |
796 |
case 'f': |
797 |
for (j = 0; j < nstored; j++) { |
798 |
putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); |
799 |
mtx_offset += NSSAMP * nskypatch; |
800 |
} |
801 |
break; |
802 |
case 'd': |
803 |
for (j = 0; j < nstored; j++) { |
804 |
double ment[NSSAMP]; |
805 |
for (j = 0; j < NSSAMP; j++) |
806 |
ment[j] = mtx_data[mtx_offset + j]; |
807 |
putbinary(ment, sizeof(double), NSSAMP, stdout); |
808 |
mtx_offset += NSSAMP * nskypatch; |
809 |
} |
810 |
break; |
811 |
} |
812 |
if (ferror(stdout)) |
813 |
goto writerr; |
814 |
} |
815 |
return 0; |
816 |
userr: |
817 |
fprintf(stderr, |
818 |
"Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " |
819 |
"deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
820 |
progname); |
821 |
exit(1); |
822 |
fmterr: |
823 |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
824 |
exit(1); |
825 |
writerr: |
826 |
fprintf(stderr, "%s: write error on output\n", progname); |
827 |
exit(1); |
828 |
} |