#ifndef lint static const char RCSid[] = "$Id: gensdaymtx.c,v 1.6 2025/04/15 20:15:50 greg Exp $"; #endif #include #include #ifdef _WIN32 #include #else #include #include #include #endif #include "atmos.h" #include "copyright.h" #include "data.h" #include "platform.h" #include "rtio.h" #include "rtmath.h" #include "sun.h" #include "loadEPW.h" const double SUN_ANG_DEG = 0.533; /* sun full-angle in degrees */ const double ARCTIC_LAT = 67.; const double TROPIC_LAT = 23.; const int SUMMER_START = 4; const int SUMMER_END = 9; const double GNORM = 0.777778; /* Mean normalized relative daylight spectra where CCT = 6415K for overcast */ const double D6415[NSSAMP] = { 0.63231, 1.06171, 1.00779, 1.36423, 1.34133, 1.27258, 1.26276, 1.26352, 1.22201, 1.13246, 1.0434, 1.05547, 0.98212, 0.94445, 0.9722, 0.82387, 0.87853, 0.82559, 0.75111, 0.78925}; enum { NSUNPATCH = 4 /* max. # patches to spread sun into */ }; char *progname; double altitude; /* Solar altitude (radians) */ double azimuth; /* Solar azimuth (radians) */ int julian_date; /* Julian date */ double sun_zenith; /* Sun zenith angle (radians) */ int nskypatch; /* number of Reinhart patches */ float *rh_palt; /* sky patch altitudes (radians) */ float *rh_pazi; /* sky patch azimuths (radians) */ float *rh_dom; /* sky patch solid angle (sr) */ FVECT sundir; double sun_ct; /* cos(theta) of sun altitude angle */ int input = 0; /* Input type */ int output = 0; /* Output type */ int nsuns = NSUNPATCH; /* number of sun patches to use */ double fixed_sun_sa = -1; /* fixed solid angle per sun? */ int verbose = 0; /* progress reports to stderr? */ int outfmt = 'a'; /* output format */ int rhsubdiv = 1; /* Reinhart sky subdivisions */ COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ COLOR suncolor = {1., 1., 1.}; /* sun color */ double grefl = .2; /* ground reflectance */ static inline double deg_to_rad(double deg) { return deg * (PI / 180.); } static inline double rad_to_deg(double rad) { return rad * (180. / PI); } static inline void vectorize(double altitude, double azimuth, FVECT v) { v[1] = cos(altitude); v[0] = (v)[1] * sin(azimuth); v[1] *= cos(azimuth); v[2] = sin(altitude); } static inline double wmean2(const double a, const double b, const double x) { return a * (1 - x) + b * x; } static inline double wmean( const double a, const double x, const double b, const double y) { return (a * x + b * y) / (a + b); } static int make_directory(const char *path) { #ifdef _WIN32 if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) { return 1; } return 0; #else if (mkdir(path, 0777) == 0 || errno == EEXIST) { return 1; } return 0; #endif } static const char *getfmtname(int fmt) { switch (fmt) { case 'a': return ("ascii"); case 'f': return ("float"); case 'd': return ("double"); } return ("unknown"); } static double get_overcast_zenith_brightness(const double sundir[3]) { double zenithbr; if (sundir[2] < 0) { zenithbr = 0; } else { zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFFICACY; } return zenithbr; } /* from gensky.c */ static double get_overcast_brightness(const double dz, const double zenithbr) { double groundbr = zenithbr * GNORM; return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3, pow(dz + 1.01, -10), groundbr); } double solar_sunset(int month, int day) { float W; W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); return 12 + (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); } double solar_sunrise(int month, int day) { float W; W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); return 12 - (PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (PI * 15); } int rh_init(void) { #define NROW 7 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5); int p, i, j; /* allocate patch angle arrays */ nskypatch = 0; for (p = 0; p < NROW; p++) nskypatch += tnaz[p]; nskypatch *= rhsubdiv * rhsubdiv; nskypatch += 2; rh_palt = (float *)malloc(sizeof(float) * nskypatch); rh_pazi = (float *)malloc(sizeof(float) * nskypatch); rh_dom = (float *)malloc(sizeof(float) * nskypatch); if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { fprintf(stderr, "%s: out of memory in rh_init()\n", progname); exit(1); } rh_palt[0] = -PI / 2.; /* ground & zenith patches */ rh_pazi[0] = 0.; rh_dom[0] = 2. * PI; rh_palt[nskypatch - 1] = PI / 2.; rh_pazi[nskypatch - 1] = 0.; rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5)); p = 1; /* "normal" patches */ for (i = 0; i < NROW * rhsubdiv; i++) { const float ralt = alpha * (i + .5); const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv; const float dom = 2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow; for (j = 0; j < ninrow; j++) { rh_palt[p] = ralt; rh_pazi[p] = 2. * PI * j / (double)ninrow; rh_dom[p++] = dom; } } return nskypatch; #undef NROW } /* Resize daylight matrix (GW) */ float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) { if (mtx_data == NULL) mtx_data = (float * ) malloc(sizeof(float) * NSSAMP * nsteps * npatch); else mtx_data = (float * ) realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch); if (mtx_data == NULL) { fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname, nsteps, npatch); exit(1); } return mtx_data; } static Atmosphere init_atmos(const double aod, const double grefl) { Atmosphere atmos = { .ozone_density = { .layers = { { .width = 25000.0, .exp_term = 0.0, .exp_scale = 0.0, .linear_term = 1.0 / 15000.0, .constant_term = -2.0 / 3.0 }, { .width = AH, .exp_term = 0.0, .exp_scale = 0.0, .linear_term = -1.0 / 15000.0, .constant_term = 8.0 / 3.0 }, } }, .rayleigh_density = { .layers = { { .width = AH, .exp_term = 1.0, .exp_scale = -1.0 / HR_MS, .linear_term = 0.0, .constant_term = 0.0 }, } }, .beta_r0 = BR0_MS, .beta_scale = aod / AOD0_CA, .beta_m = NULL, .grefl = grefl }; return atmos; } static DpPaths get_dppaths(const char *dir, const double aod, const char *mname, const char *tag) { DpPaths paths; snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag, mname, aod); snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag, mname, aod); snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP, tag, mname, aod); snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag, mname, aod); return paths; } static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag, const int is_summer, const double s_latitude) { /* Set rayleigh density profile */ if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) { tag[0] = 's'; if (is_summer) { tag[1] = 's'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS; atmos->beta_r0 = BR0_SS; } else { tag[1] = 'w'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW; atmos->beta_r0 = BR0_SW; } } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) { tag[0] = 'm'; if (is_summer) { tag[1] = 's'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS; atmos->beta_r0 = BR0_MS; } else { tag[1] = 'w'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW; atmos->beta_r0 = BR0_MW; } } else { tag[0] = 't'; tag[1] = 'r'; atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T; atmos->beta_r0 = BR0_T; } tag[2] = '\0'; } /* Add in solar direct to nearest sky patches (GW) */ void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad, double ccover, double dirnorm, float *parr) { FVECT svec; double near_dprod[NSUNPATCH]; int near_patch[NSUNPATCH]; double wta[NSUNPATCH], wtot; int i, j, p; /* identify nsuns closest patches */ for (i = nsuns; i--;) near_dprod[i] = -1.; vectorize(altitude, azimuth, svec); for (p = 1; p < nskypatch; p++) { FVECT pvec; double dprod; vectorize(rh_palt[p], rh_pazi[p], pvec); dprod = DOT(pvec, svec); for (i = 0; i < nsuns; i++) if (dprod > near_dprod[i]) { for (j = nsuns; --j > i;) { near_dprod[j] = near_dprod[j - 1]; near_patch[j] = near_patch[j - 1]; } near_dprod[i] = dprod; near_patch[i] = p; break; } } /* Get solar radiance */ double sun_radiance[NSSAMP] = {0}; get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance); if (ccover > 0) { double zenithbr = get_overcast_zenith_brightness(sundir); double skybr = get_overcast_brightness(sundir[2], zenithbr); int l; for (l = 0; l < NSSAMP; ++l) { sun_radiance[l] = wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover); } } /* Normalize */ double sum = 0.0; for (i = 0; i < NSSAMP; ++i) { sum += sun_radiance[i]; } double mean = sum / NSSAMP; double intensity = mean * WVLSPAN; if (dirnorm > 0) { intensity = dirnorm / SOLOMG / WHTEFFICACY; } double dir_ratio = 1.; if (mean > 0) dir_ratio = intensity / mean; for (i = 0; i < NSSAMP; ++i) { sun_radiance[i] *= dir_ratio; } /* weight by proximity */ wtot = 0; for (i = nsuns; i--;) wtot += wta[i] = 1. / (1.002 - near_dprod[i]); /* add to nearest patch radiances */ for (i = nsuns; i--;) { float *pdest = parr + NSSAMP * near_patch[i]; int k; for (k = 0; k < NSSAMP; k++) { *pdest++ = sun_radiance[k] * wta[i] / wtot; } } } void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad_clear, double ccover, double dif_ratio, double overcast_zenithbr, FVECT view_point, float *parr) { double mu_sky; /* Sun-sky point azimuthal angle */ double sspa; /* Sun-sky point angle */ int i; for (i = 1; i < nskypatch; i++) { FVECT rdir_sky; vectorize(rh_palt[i], rh_pazi[i], rdir_sky); mu_sky = fdot(view_point, rdir_sky) / ER; sspa = fdot(rdir_sky, sundir); SCOLOR sky_radiance = {0}; get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance); int k; for (k = 0; k < NSSAMP; ++k) { sky_radiance[k] *= WVLSPAN; } if (ccover > 0) { double skybr = get_overcast_brightness(rdir_sky[2], overcast_zenithbr); for (k = 0; k < NSSAMP; ++k) { sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover); } } /* calibration */ for (k = 0; k < NSSAMP; ++k) { sky_radiance[k] *= dif_ratio; } for (k = 0; k < NSSAMP; ++k) { parr[NSSAMP * i + k] = sky_radiance[k]; } } } /* Compute sky patch radiance values (modified by GW) */ void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m, DATARRAY *irrad, double ccover, double difhor, FVECT view_point, float *parr) { float sun_zenith; SCOLOR sky_radiance = {0}; SCOLOR ground_radiance = {0}; SCOLR sky_sclr = {0}; SCOLR ground_sclr = {0}; const double radius = VLEN(view_point); const double sun_ct = fdot(view_point, sundir) / radius; const FVECT rdir_grnd = {0, 0, -1}; const double mu_grnd = fdot(view_point, rdir_grnd) / radius; const double nu_grnd = fdot(rdir_grnd, sundir); /* Calculate sun zenith angle (don't let it dip below horizon) */ /* Also limit minimum angle to keep circumsolar off zenith */ if (altitude <= 0.0) sun_zenith = deg_to_rad(90.0); else if (altitude >= deg_to_rad(87.0)) sun_zenith = deg_to_rad(3.0); else sun_zenith = deg_to_rad(90.0) - altitude; double overcast_zenithbr = get_overcast_zenith_brightness(sundir); /* diffuse calibration factor */ double dif_ratio = 1; if (difhor > 0) { DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad, radius, sun_ct); double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0; double diffuse_irradiance = 0; int l; for (l = 0; l < NSSAMP; ++l) { diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */ } /* free(indirect_irradiance_clear); */ diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, ccover); if (diffuse_irradiance > 0) { dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */ } } /* Compute ground radiance (include solar contribution if any) */ get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius, mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr); int j; for (j = 0; j < NSSAMP; j++) { parr[j] *= WVLSPAN; } calc_sky_patch_radiance(scat, scat1m, irrad, ccover, dif_ratio, overcast_zenithbr, view_point, parr); } int main(int argc, char *argv[]) { EPWheader *epw = NULL; /* EPW/WEA input file */ EPWrecord erec; /* current EPW/WEA input record */ int doheader = 1; /* output header? */ double rotation = 0.0; /* site rotation (degrees) */ double elevation = 0; /* site elevation (meters) */ int leap_day = 0; /* add leap day? */ int sun_hours_only = 0; /* only output sun hours? */ int dir_is_horiz; /* direct is meas. on horizontal? */ int ntsteps = 0; /* number of time steps */ int tstorage = 0; /* number of allocated time steps */ int nstored = 0; /* number of time steps in matrix */ int last_monthly = 0; /* month of last report */ double dni; /* direct normal illuminance */ double dhi; /* diffuse horizontal illuminance */ float *mtx_data = NULL; int mtx_offset = 0; double timeinterval = 0; char lstag[3]; char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK); char *ddir = "."; char mie_name[20] = "mie_ca"; int num_threads = 1; int sorder = 4; int solar_only = 0; int sky_only = 0; int i, j; FVECT view_point = {0, 0, ER}; progname = argv[0]; for (i = 1; i < argc && argv[i][0] == '-'; i++) { switch (argv[i][1]) { case 'd': /* solar (direct) only */ solar_only = 1; break; case 's': /* sky only (no direct) */ sky_only = 1; break; case 'g': grefl = atof(argv[++i]); break; case 'm': rhsubdiv = atoi(argv[++i]); break; case 'n': num_threads = atoi(argv[++i]); break; case 'r': /* rotate distribution */ if (argv[i][2] && argv[i][2] != 'z') goto userr; rotation = atof(argv[++i]); break; case 'u': /* solar hours only */ sun_hours_only = 1; break; case 'p': ddir = argv[++i]; break; case 'v': /* verbose progress reports */ verbose++; break; case 'h': /* turn off header */ doheader = 0; break; case '5': /* 5-phase calculation */ nsuns = 1; fixed_sun_sa = PI / 360. * atof(argv[++i]); if (fixed_sun_sa <= 0) { fprintf( stderr, "%s: missing solar disk size argument for '-5' option\n", progname); exit(1); } fixed_sun_sa *= fixed_sun_sa * PI; break; case 'i': timeinterval = atof(argv[++i]); break; case 'o': /* output format */ switch (argv[i][2]) { case 'f': case 'd': case 'a': outfmt = argv[i][2]; break; default: goto userr; } break; default: goto userr; } } if (i < argc - 1) goto userr; epw = EPWopen(argv[i]); if (epw == NULL) exit(1); if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) { fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); exit(1); } if (verbose) { if (i == argc - 1) fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); else fprintf(stderr, "%s: reading weather tape from \n", progname); } s_latitude = epw->loc.latitude; s_longitude = -epw->loc.longitude; s_meridian = -15.*epw->loc.timezone; elevation = epw->loc.elevation; switch (epw->isWEA) { /* translate units */ case WEAnot: case WEAradnorm: input = 1; /* radiometric quantities */ dir_is_horiz = 0; /* direct is perpendicular meas. */ break; case WEAradhoriz: input = 1; /* radiometric quantities */ dir_is_horiz = 1; /* solar measured horizontally */ break; case WEAphotnorm: input = 2; /* photometric quantities */ dir_is_horiz = 0; /* direct is perpendicular meas. */ break; default: goto fmterr; } rh_init(); if (verbose) { fprintf(stderr, "%s: location '%s %s'\n", progname, epw->loc.city, epw->loc.country); fprintf( stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", progname, s_latitude, s_longitude); if (rotation != 0) fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); } s_latitude = deg_to_rad(s_latitude); s_longitude = deg_to_rad(s_longitude); s_meridian = deg_to_rad(s_meridian); /* initial allocation */ mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch); /* Load mie density data */ DATARRAY *mie_dp = getdata(mie_path); if (mie_dp == NULL) { fprintf(stderr, "Error reading mie data\n"); return 0; } if (epw->isWEA == WEAnot) { fprintf(stderr, "EPW input\n"); } else if (epw->isWEA != WEAphotnorm) { fprintf(stderr, "need WEA in photopic unit\n"); exit(1); } while ((j = EPWread(epw, &erec)) > 0) { const int mo = erec.date.month+1; const int da = erec.date.day; const double hr = erec.date.hour; double aod = erec.optdepth; double cc = erec.skycover; double sda, sta, st; int sun_in_sky; if (aod == 0.0) { aod = AOD0_CA; fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA); } /* compute solar position */ if ((mo == 2) & (da == 29)) { julian_date = 60; leap_day = 1; } else julian_date = jdate(mo, da) + leap_day; sda = sdec(julian_date); sta = stadj(julian_date); st = hr + sta; if (timeinterval > 0) { if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) st = (st - timeinterval/120 + solar_sunset(mo, da))/2; } altitude = salt(sda, st); sun_in_sky = (altitude > -deg_to_rad(SUN_ANG_DEG / 2.)); azimuth = sazi(sda, st) + PI - deg_to_rad(rotation); vectorize(altitude, azimuth, sundir); if (sun_hours_only && !sun_in_sky) { continue; /* skipping nighttime points */ } sun_ct = fdot(view_point, sundir) / ER; dni = erec.dirillum; dhi = erec.diffillum; mtx_offset = NSSAMP * nskypatch * nstored; nstored += 1; /* make space for next row */ if (nstored > tstorage) { tstorage += (tstorage >> 1) + nstored + 7; mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); } ntsteps++; /* keep count of time steps */ /* compute sky patch values */ Atmosphere clear_atmos = init_atmos(aod, grefl); int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END); if (s_latitude < 0) { is_summer = !is_summer; } set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude); clear_atmos.beta_m = mie_dp; char gsdir[PATH_MAX]; size_t siz = strlen(ddir); if (ISDIRSEP(ddir[siz - 1])) ddir[siz - 1] = '\0'; snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP); if (!make_directory(gsdir)) { fprintf(stderr, "Failed creating atmos_data directory"); exit(1); } DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag); if (getpath(clear_paths.tau, ".", R_OK) == NULL || getpath(clear_paths.scat, ".", R_OK) == NULL || getpath(clear_paths.scat1m, ".", R_OK) == NULL || getpath(clear_paths.irrad, ".", R_OK) == NULL) { fprintf(stderr, "# Pre-computing...\n"); if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) { fprintf(stderr, "Pre-compute failed\n"); return 0; } } DATARRAY *tau_clear_dp = getdata(clear_paths.tau); DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad); DATARRAY *scat_clear_dp = getdata(clear_paths.scat); DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m); if (!solar_only) compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, cc, dhi, view_point, mtx_data + mtx_offset); if (!sky_only) add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp, cc, dni, mtx_data + mtx_offset); /* monthly reporting */ if (verbose && mo != last_monthly) fprintf(stderr, "%s: stepping through month %d...\n", progname, last_monthly = mo); } if (j != EOF) { fprintf(stderr, "%s: error on input\n", progname); exit(1); } EPWclose(epw); epw = NULL; freedata(mie_dp); if (!ntsteps) { fprintf(stderr, "%s: no valid time steps on input\n", progname); exit(1); } /* write out matrix */ if (outfmt != 'a') SET_FILE_BINARY(stdout); #ifdef getc_unlocked flockfile(stdout); #endif if (verbose) fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, outfmt == 'a' ? "" : "binary ", nstored); if (doheader) { newheader("RADIANCE", stdout); printargs(argc, argv, stdout); printf("LATLONG= %.8f %.8f\n", rad_to_deg(s_latitude), -rad_to_deg(s_longitude)); printf("NROWS=%d\n", nskypatch); printf("NCOLS=%d\n", nstored); printf("NCOMP=%d\n", NSSAMP); float wvsplit[4] = {380, 480, 588, 780}; fputwlsplit(wvsplit, stdout); if ((outfmt == 'f') | (outfmt == 'd')) fputendian(stdout); fputformat((char *)getfmtname(outfmt), stdout); putchar('\n'); } /* patches are rows (outer sort) */ for (i = 0; i < nskypatch; i++) { mtx_offset = NSSAMP * i; switch (outfmt) { case 'a': for (j = 0; j < nstored; j++) { int k; for (k = 0; k < NSSAMP; k++) { printf("%.3g ", mtx_data[mtx_offset + k]); } printf("\n"); mtx_offset += NSSAMP * nskypatch; } if (nstored > 1) fputc('\n', stdout); break; case 'f': for (j = 0; j < nstored; j++) { putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout); mtx_offset += NSSAMP * nskypatch; } break; case 'd': for (j = 0; j < nstored; j++) { double ment[NSSAMP]; for (j = 0; j < NSSAMP; j++) ment[j] = mtx_data[mtx_offset + j]; putbinary(ment, sizeof(double), NSSAMP, stdout); mtx_offset += NSSAMP * nskypatch; } break; } if (ferror(stdout)) goto writerr; } return 0; userr: fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r " "deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", progname); exit(1); fmterr: fprintf(stderr, "%s: weather tape format error in header\n", progname); exit(1); writerr: fprintf(stderr, "%s: write error on output\n", progname); exit(1); }