ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gensdaymtx.c
Revision: 1.4
Committed: Thu Aug 8 02:00:20 2024 UTC (8 months, 3 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.3: +23 -13 lines
Log Message:
fix(gensdaymtx): Fixed sky value accumulation in first column/timestep

File Contents

# User Rev Content
1 greg 1.2 #ifndef lint
2 greg 1.4 static const char RCSid[] = "$Id$";
3 greg 1.2 #endif
4 greg 1.1 #include "atmos.h"
5     #include "copyright.h"
6     #include "data.h"
7     #include "platform.h"
8     #include "rtio.h"
9     #include <ctype.h>
10     #include <stdlib.h>
11     #ifdef _WIN32
12     #include <windows.h>
13     #else
14     #include <errno.h>
15     #include <sys/stat.h>
16     #include <sys/types.h>
17     #endif
18    
19     char *progname;
20    
21     double altitude; /* Solar altitude (radians) */
22     double azimuth; /* Solar azimuth (radians) */
23     int julian_date; /* Julian date */
24     double sun_zenith; /* Sun zenith angle (radians) */
25     int input = 0; /* Input type */
26     int output = 0; /* Output type */
27     FVECT sundir;
28    
29     const double ARCTIC_LAT = 67.;
30     const double TROPIC_LAT = 23.;
31     const int SUMMER_START = 4;
32     const int SUMMER_END = 9;
33     const double GNORM = 0.777778;
34    
35     const double D65EFF = 203.; /* standard illuminant D65 */
36    
37     /* Mean normalized relative daylight spectra where CCT = 6415K for overcast */
38     const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
39     1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
40     1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
41     0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
42     /* Degrees into radians */
43     #define DegToRad(deg) ((deg) * (PI / 180.))
44    
45     /* Radiuans into degrees */
46     #define RadToDeg(rad) ((rad) * (180. / PI))
47    
48     #ifndef NSUNPATCH
49     #define NSUNPATCH 4 /* max. # patches to spread sun into */
50     #endif
51    
52     #define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */
53    
54     int nsuns = NSUNPATCH; /* number of sun patches to use */
55     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
56    
57     int verbose = 0; /* progress reports to stderr? */
58    
59     int outfmt = 'a'; /* output format */
60    
61     int rhsubdiv = 1; /* Reinhart sky subdivisions */
62    
63     COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
64     COLOR suncolor = {1., 1., 1.}; /* sun color */
65     double grefl = .2; /* ground reflectance */
66    
67     int nskypatch; /* number of Reinhart patches */
68     float *rh_palt; /* sky patch altitudes (radians) */
69     float *rh_pazi; /* sky patch azimuths (radians) */
70     float *rh_dom; /* sky patch solid angle (sr) */
71    
72     double sun_ct;
73    
74     #define vector(v, alt, azi) \
75     ((v)[1] = cos(alt), (v)[0] = (v)[1] * sin(azi), (v)[1] *= cos(azi), \
76     (v)[2] = sin(alt))
77    
78     #define rh_vector(v, i) vector(v, rh_palt[i], rh_pazi[i])
79    
80     #define rh_cos(i) tsin(rh_palt[i])
81    
82     #define solar_minute(jd, hr) ((24 * 60) * ((jd) - 1) + (int)((hr) * 60. + .5))
83    
84     inline void vectorize(double altitude, double azimuth, FVECT v) {
85     v[1] = cos(altitude);
86     v[0] = (v)[1] * sin(azimuth);
87     v[1] *= cos(azimuth);
88     v[2] = sin(altitude);
89     }
90    
91     static int make_directory(const char *path) {
92     #ifdef _WIN32
93     if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
94     return 1;
95     }
96     return 0;
97     #else
98     if (mkdir(path, 0777) == 0 || errno == EEXIST) {
99     return 1;
100     }
101     return 0;
102     #endif
103     }
104    
105     static const char *getfmtname(int fmt) {
106     switch (fmt) {
107     case 'a':
108     return ("ascii");
109     case 'f':
110     return ("float");
111     case 'd':
112     return ("double");
113     }
114     return ("unknown");
115     }
116    
117     static inline double wmean2(const double a, const double b, const double x) {
118     return a * (1 - x) + b * x;
119     }
120    
121     static inline double wmean(const double a, const double x, const double b,
122     const double y) {
123     return (a * x + b * y) / (a + b);
124     }
125    
126     static double get_zenith_brightness(const double sundir[3]) {
127     double zenithbr;
128     if (sundir[2] < 0) {
129     zenithbr = 0;
130     } else {
131     zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
132     }
133     return zenithbr;
134     }
135    
136     /* from gensky.c */
137     static double get_overcast_brightness(const double dz, const double zenithbr) {
138     double groundbr = zenithbr * GNORM;
139     return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
140     pow(dz + 1.01, -10), groundbr);
141     }
142    
143     int rh_init(void) {
144     #define NROW 7
145     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
146     const double alpha = (PI / 2.) / (NROW * rhsubdiv + .5);
147     int p, i, j;
148     /* allocate patch angle arrays */
149     nskypatch = 0;
150     for (p = 0; p < NROW; p++)
151     nskypatch += tnaz[p];
152     nskypatch *= rhsubdiv * rhsubdiv;
153     nskypatch += 2;
154     rh_palt = (float *)malloc(sizeof(float) * nskypatch);
155     rh_pazi = (float *)malloc(sizeof(float) * nskypatch);
156     rh_dom = (float *)malloc(sizeof(float) * nskypatch);
157     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
158     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
159     exit(1);
160     }
161     rh_palt[0] = -PI / 2.; /* ground & zenith patches */
162     rh_pazi[0] = 0.;
163     rh_dom[0] = 2. * PI;
164     rh_palt[nskypatch - 1] = PI / 2.;
165     rh_pazi[nskypatch - 1] = 0.;
166     rh_dom[nskypatch - 1] = 2. * PI * (1. - cos(alpha * .5));
167     p = 1; /* "normal" patches */
168     for (i = 0; i < NROW * rhsubdiv; i++) {
169     const float ralt = alpha * (i + .5);
170     const int ninrow = tnaz[i / rhsubdiv] * rhsubdiv;
171     const float dom =
172     2. * PI * (sin(alpha * (i + 1)) - sin(alpha * i)) / (double)ninrow;
173     for (j = 0; j < ninrow; j++) {
174     rh_palt[p] = ralt;
175     rh_pazi[p] = 2. * PI * j / (double)ninrow;
176     rh_dom[p++] = dom;
177     }
178     }
179     return nskypatch;
180     #undef NROW
181     }
182    
183     /* Resize daylight matrix (GW) */
184     float *resize_dmatrix(float *mtx_data, int nsteps, int npatch) {
185     if (mtx_data == NULL)
186     mtx_data = (float *)malloc(sizeof(float) * NSSAMP * nsteps * npatch);
187     else
188     mtx_data =
189     (float *)realloc(mtx_data, sizeof(float) * NSSAMP * nsteps * npatch);
190     if (mtx_data == NULL) {
191     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname,
192     nsteps, npatch);
193     exit(1);
194     }
195     return (mtx_data);
196     }
197    
198     static Atmosphere init_atmos(const double aod, const double grefl) {
199     Atmosphere atmos = {.ozone_density = {.layers =
200     {
201     {.width = 25000.0,
202     .exp_term = 0.0,
203     .exp_scale = 0.0,
204     .linear_term = 1.0 / 15000.0,
205     .constant_term = -2.0 / 3.0},
206     {.width = AH,
207     .exp_term = 0.0,
208     .exp_scale = 0.0,
209     .linear_term = -1.0 / 15000.0,
210     .constant_term = 8.0 / 3.0},
211     }},
212     .rayleigh_density = {.layers =
213     {
214     {.width = AH,
215     .exp_term = 1.0,
216     .exp_scale = -1.0 / HR_MS,
217     .linear_term = 0.0,
218     .constant_term = 0.0},
219     }},
220     .beta_r0 = BR0_MS,
221     .beta_scale = aod / AOD0_CA,
222     .beta_m = NULL,
223     .grefl = grefl};
224     return atmos;
225     }
226    
227     static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
228     const char *tag) {
229     DpPaths paths;
230    
231     snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
232     mname, aod);
233     snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
234     mname, aod);
235     snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
236     tag, mname, aod);
237     snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
238     mname, aod);
239    
240     return paths;
241     }
242     static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
243     const int is_summer,
244     const double s_latitude) {
245     /* Set rayleigh density profile */
246     if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
247     tag[0] = 's';
248     if (is_summer) {
249     tag[1] = 's';
250     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
251     atmos->beta_r0 = BR0_SS;
252     } else {
253     tag[1] = 'w';
254     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
255     atmos->beta_r0 = BR0_SW;
256     }
257     } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
258     tag[0] = 'm';
259     if (is_summer) {
260     tag[1] = 's';
261     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
262     atmos->beta_r0 = BR0_MS;
263     } else {
264     tag[1] = 'w';
265     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
266     atmos->beta_r0 = BR0_MW;
267     }
268     } else {
269     tag[0] = 't';
270     tag[1] = 'r';
271     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
272     atmos->beta_r0 = BR0_T;
273     }
274     tag[2] = '\0';
275     }
276     /* Add in solar direct to nearest sky patches (GW) */
277     void add_direct(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m,
278     DATARRAY *irrad, double ccover, float *parr) {
279     FVECT svec;
280     double near_dprod[NSUNPATCH];
281     int near_patch[NSUNPATCH];
282     double wta[NSUNPATCH], wtot;
283     int i, j, p;
284    
285     /* identify nsuns closest patches */
286     for (i = nsuns; i--;)
287     near_dprod[i] = -1.;
288     vectorize(altitude, azimuth, svec);
289     for (p = 1; p < nskypatch; p++) {
290     FVECT pvec;
291     double dprod;
292     vectorize(rh_palt[p], rh_pazi[p], pvec);
293     dprod = DOT(pvec, svec);
294     for (i = 0; i < nsuns; i++)
295     if (dprod > near_dprod[i]) {
296     for (j = nsuns; --j > i;) {
297     near_dprod[j] = near_dprod[j - 1];
298     near_patch[j] = near_patch[j - 1];
299     }
300     near_dprod[i] = dprod;
301     near_patch[i] = p;
302     break;
303     }
304     }
305     /* Get solar radiance */
306     double sun_radiance[NSSAMP] = {0};
307     get_solar_radiance(tau, scat, scat1m, sundir, ER, sun_ct, sun_radiance);
308     if (ccover > 0) {
309     double zenithbr = get_zenith_brightness(sundir);
310     double skybr = get_overcast_brightness(sundir[2], zenithbr);
311 greg 1.4 int l;
312     for (l = 0; l < NSSAMP; ++l) {
313 greg 1.1 sun_radiance[l] =
314     wmean2(sun_radiance[l], D6415[l] * skybr / WVLSPAN, ccover);
315     }
316     }
317     /* weight by proximity */
318     wtot = 0;
319     for (i = nsuns; i--;)
320     wtot += wta[i] = 1. / (1.002 - near_dprod[i]);
321     /* add to nearest patch radiances */
322     for (i = nsuns; i--;) {
323     float *pdest = parr + NSSAMP * near_patch[i];
324 greg 1.4 int k;
325     for (k = 0; k < NSSAMP; k++) {
326 greg 1.1 *pdest++ = sun_radiance[k] * wta[i] / wtot;
327     }
328     }
329     }
330    
331     void calc_sky_patch_radiance(DATARRAY *scat, DATARRAY *scat1m, double ccover,
332     float *parr) {
333     int i;
334     double mu_sky; /* Sun-sky point azimuthal angle */
335     double sspa; /* Sun-sky point angle */
336     FVECT view_point = {0, 0, ER};
337     for (i = 1; i < nskypatch; i++) {
338     FVECT rdir_sky;
339 greg 1.4 int k;
340 greg 1.1 vectorize(rh_palt[i], rh_pazi[i], rdir_sky);
341     mu_sky = fdot(view_point, rdir_sky) / ER;
342     sspa = fdot(rdir_sky, sundir);
343     SCOLOR sky_radiance = {0};
344    
345     get_sky_radiance(scat, scat1m, ER, mu_sky, sun_ct, sspa, sky_radiance);
346 greg 1.4 for (k = 0; k < NSSAMP; ++k) {
347 greg 1.1 sky_radiance[k] *= WVLSPAN;
348     }
349    
350     if (ccover > 0) {
351     double zenithbr = get_zenith_brightness(sundir);
352     double grndbr = zenithbr * GNORM;
353     double skybr = get_overcast_brightness(rdir_sky[2], zenithbr);
354 greg 1.4 int k;
355     for (k = 0; k < NSSAMP; ++k) {
356 greg 1.1 sky_radiance[k] = wmean2(sky_radiance[k], skybr * D6415[k], ccover);
357     }
358     }
359    
360 greg 1.4 for (k = 0; k < NSSAMP; ++k) {
361 greg 1.1 parr[NSSAMP * i + k] = sky_radiance[k];
362     }
363     }
364     }
365    
366     /* Return maximum of two doubles */
367     static inline double dmax(double a, double b) { return (a > b) ? a : b; }
368    
369     /* Compute sky patch radiance values (modified by GW) */
370     void compute_sky(DATARRAY *tau, DATARRAY *scat, DATARRAY *scat1m,
371     DATARRAY *irrad, double ccover, float *parr) {
372     int index; /* Category index */
373     int i;
374     float sun_zenith;
375     SCOLOR sky_radiance = {0};
376     SCOLOR ground_radiance = {0};
377     SCOLR sky_sclr = {0};
378     SCOLR ground_sclr = {0};
379     FVECT view_point = {0, 0, ER};
380     const double radius = VLEN(view_point);
381     const double sun_ct = fdot(view_point, sundir) / radius;
382     const FVECT rdir_grnd = {0, 0, -1};
383     const double mu_grnd = fdot(view_point, rdir_grnd) / radius;
384     const double nu_grnd = fdot(rdir_grnd, sundir);
385 greg 1.4 int j;
386 greg 1.1
387     /* Calculate sun zenith angle (don't let it dip below horizon) */
388     /* Also limit minimum angle to keep circumsolar off zenith */
389     if (altitude <= 0.0)
390     sun_zenith = DegToRad(90.0);
391     else if (altitude >= DegToRad(87.0))
392     sun_zenith = DegToRad(3.0);
393     else
394     sun_zenith = DegToRad(90.0) - altitude;
395    
396     /* Compute ground radiance (include solar contribution if any) */
397     get_ground_radiance(tau, scat, scat1m, irrad, view_point, rdir_grnd, radius,
398     mu_grnd, sun_ct, nu_grnd, grefl, sundir, parr);
399 greg 1.4 for (j = 0; j < NSSAMP; j++) {
400 greg 1.1 parr[j] *= WVLSPAN;
401     }
402     calc_sky_patch_radiance(scat, scat1m, ccover, parr);
403     }
404    
405     int main(int argc, char *argv[]) {
406    
407     char buf[256];
408     int doheader = 1; /* output header? */
409     double rotation = 0.0;
410     double elevation = 0;
411     int leap_day = 0; /* add leap day? */
412     int sun_hours_only = 0; /* only output sun hours? */
413     float *mtx_data = NULL;
414     int ntsteps = 0; /* number of time steps */
415     int tstorage = 0; /* number of allocated time steps */
416     int nstored = 0; /* number of time steps in matrix */
417     int last_monthly = 0; /* month of last report */
418     int mo, da;
419     double hr, aod, cc;
420     double dni, dhi;
421     int mtx_offset = 0;
422     int i, j;
423     char lstag[3];
424     char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
425     char *ddir = ".";
426     char mie_name[20] = "mie_ca";
427     int num_threads = 1;
428     int sorder = 4;
429     int solar_only = 0;
430     int sky_only = 0;
431     FVECT view_point = {0, 0, ER};
432    
433     progname = argv[0];
434    
435     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
436     switch (argv[i][1]) {
437     case 'd': /* solar (direct) only */
438     solar_only = 1;
439     break;
440     case 's': /* sky only (no direct) */
441     sky_only = 1;
442     break;
443     case 'g':
444     grefl = atof(argv[++i]);
445     break;
446     case 'm':
447     rhsubdiv = atoi(argv[++i]);
448     break;
449     case 'n':
450     num_threads = atoi(argv[++i]);
451     break;
452     case 'r': /* rotate distribution */
453     if (argv[i][2] && argv[i][2] != 'z')
454     goto userr;
455     rotation = atof(argv[++i]);
456     break;
457     case 'u': /* solar hours only */
458     sun_hours_only = 1;
459     break;
460     case 'p':
461     ddir = argv[++i];
462     break;
463     case 'v': /* verbose progress reports */
464     verbose++;
465     break;
466     case 'h': /* turn off header */
467     doheader = 0;
468     break;
469     case '5': /* 5-phase calculation */
470     nsuns = 1;
471     fixed_sun_sa = PI / 360. * atof(argv[++i]);
472     if (fixed_sun_sa <= 0) {
473     fprintf(stderr,
474     "%s: missing solar disk size argument for '-5' option\n",
475     progname);
476     exit(1);
477     }
478     fixed_sun_sa *= fixed_sun_sa * PI;
479     break;
480     case 'o': /* output format */
481     switch (argv[i][2]) {
482     case 'f':
483     case 'd':
484     case 'a':
485     outfmt = argv[i][2];
486     break;
487     default:
488     goto userr;
489     }
490     break;
491     default:
492     goto userr;
493     }
494     }
495     if (i < argc - 1)
496     goto userr;
497     if (i == argc - 1 && freopen(argv[i], "r", stdin) == NULL) {
498     fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]);
499     exit(1);
500     }
501     if (verbose) {
502     if (i == argc - 1)
503     fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]);
504     else
505     fprintf(stderr, "%s: reading weather tape from <stdin>\n", progname);
506     }
507     /* read weather tape header */
508     if (scanf("place %[^\r\n] ", buf) != 1)
509     goto fmterr;
510     if (scanf("latitude %lf\n", &s_latitude) != 1)
511     goto fmterr;
512     if (scanf("longitude %lf\n", &s_longitude) != 1)
513     goto fmterr;
514     if (scanf("time_zone %lf\n", &s_meridian) != 1)
515     goto fmterr;
516     if (scanf("site_elevation %lf\n", &elevation) != 1)
517     goto fmterr;
518     if (scanf("weather_data_file_units %d\n", &input) != 1)
519     goto fmterr;
520    
521     rh_init();
522     if (verbose) {
523     fprintf(stderr, "%s: location '%s'\n", progname, buf);
524     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
525     progname, s_latitude, s_longitude);
526     if (rotation != 0)
527     fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation);
528     }
529    
530     s_latitude = DegToRad(s_latitude);
531     s_longitude = DegToRad(s_longitude);
532     s_meridian = DegToRad(s_meridian);
533     /* initial allocation */
534     mtx_data = resize_dmatrix(mtx_data, tstorage = 2, nskypatch);
535    
536     /* Load mie density data */
537     DATARRAY *mie_dp = getdata(mie_path);
538     if (mie_dp == NULL) {
539     fprintf(stderr, "Error reading mie data\n");
540     return 0;
541     }
542    
543     while (scanf("%d %d %lf %lf %lf %lf %lf\n", &mo, &da, &hr, &dni, &dhi, &aod,
544     &cc) == 7) {
545 greg 1.4 if (aod == 0.0) {
546     aod = AOD0_CA;
547     fprintf(stderr, "aod is zero, using default value %.3f\n", AOD0_CA);
548     }
549 greg 1.1 double sda, sta;
550     int sun_in_sky;
551     /* compute solar position */
552     if ((mo == 2) & (da == 29)) {
553     julian_date = 60;
554     leap_day = 1;
555     } else
556     julian_date = jdate(mo, da) + leap_day;
557     sda = sdec(julian_date);
558     sta = stadj(julian_date);
559     altitude = salt(sda, hr + sta);
560     sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG / 2.));
561    
562     azimuth = sazi(sda, hr + sta) + PI - DegToRad(rotation);
563    
564     vectorize(altitude, azimuth, sundir);
565     if (sun_hours_only && sundir[2] <= 0.) {
566     continue; /* skipping nighttime points */
567     }
568     sun_ct = fdot(view_point, sundir) / ER;
569    
570     mtx_offset = NSSAMP * nskypatch * nstored;
571     nstored += 1;
572 greg 1.4 printf("mtx_offset = %d nstored = %d nskypatch = %d\n", mtx_offset, nstored,
573     nskypatch);
574 greg 1.1 /* make space for next row */
575     if (nstored > tstorage) {
576 greg 1.4 printf("make space for next row nstored = %d tstorage = %d\n", nstored,
577     tstorage);
578 greg 1.1 tstorage += (tstorage >> 1) + nstored + 7;
579     mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
580     }
581     ntsteps++; /* keep count of time steps */
582     /* compute sky patch values */
583     Atmosphere clear_atmos = init_atmos(aod, grefl);
584     int is_summer = (mo >= SUMMER_START && mo <= SUMMER_END);
585     if (s_latitude < 0) {
586     is_summer = !is_summer;
587     }
588     set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
589    
590     clear_atmos.beta_m = mie_dp;
591    
592     char gsdir[PATH_MAX];
593     size_t siz = strlen(ddir);
594     if (ISDIRSEP(ddir[siz - 1]))
595     ddir[siz - 1] = '\0';
596     snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
597     if (!make_directory(gsdir)) {
598     fprintf(stderr, "Failed creating atmos_data directory");
599     exit(1);
600     }
601     DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
602    
603     if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
604     getpath(clear_paths.scat, ".", R_OK) == NULL ||
605     getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
606     getpath(clear_paths.irrad, ".", R_OK) == NULL) {
607     printf("# Pre-computing...\n");
608     if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
609     fprintf(stderr, "Pre-compute failed\n");
610     return 0;
611     }
612     }
613    
614     DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
615     DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
616     DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
617     DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
618    
619     if (!solar_only)
620     compute_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp,
621     cc, mtx_data + mtx_offset);
622     if (!sky_only)
623     add_direct(tau_clear_dp, scat_clear_dp, scat1m_clear_dp, irrad_clear_dp,
624     cc, mtx_data + mtx_offset);
625     /* monthly reporting */
626     if (verbose && mo != last_monthly)
627     fprintf(stderr, "%s: stepping through month %d...\n", progname,
628     last_monthly = mo);
629     }
630     freedata(mie_dp);
631     if (!ntsteps) {
632     fprintf(stderr, "%s: no valid time steps on input\n", progname);
633     exit(1);
634     }
635     /* check for junk at end */
636     while ((i = fgetc(stdin)) != EOF)
637     if (!isspace(i)) {
638     fprintf(stderr, "%s: warning - unexpected data past EOT: ", progname);
639     buf[0] = i;
640     buf[1] = '\0';
641     fgets(buf + 1, sizeof(buf) - 1, stdin);
642     fputs(buf, stderr);
643     fputc('\n', stderr);
644     break;
645     }
646     /* write out matrix */
647     if (outfmt != 'a')
648     SET_FILE_BINARY(stdout);
649     #ifdef getc_unlocked
650     flockfile(stdout);
651     #endif
652     if (verbose)
653     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname,
654     outfmt == 'a' ? "" : "binary ", nstored);
655     if (doheader) {
656     newheader("RADIANCE", stdout);
657     printargs(argc, argv, stdout);
658     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
659     -RadToDeg(s_longitude));
660     printf("NROWS=%d\n", nskypatch);
661     printf("NCOLS=%d\n", nstored);
662     printf("NCOMP=%d\n", NSSAMP);
663     if ((outfmt == 'f') | (outfmt == 'd'))
664     fputendian(stdout);
665     fputformat((char *)getfmtname(outfmt), stdout);
666     putchar('\n');
667     }
668     /* patches are rows (outer sort) */
669     for (i = 0; i < nskypatch; i++) {
670     mtx_offset = NSSAMP * i;
671     switch (outfmt) {
672     case 'a':
673     for (j = 0; j < nstored; j++) {
674 greg 1.4 int k;
675     for (k = 0; k < NSSAMP; k++) {
676     printf("%.3g ", mtx_data[mtx_offset + k]);
677 greg 1.1 }
678     printf("\n");
679     mtx_offset += NSSAMP * nskypatch;
680     }
681     if (nstored > 1)
682     fputc('\n', stdout);
683     break;
684     case 'f':
685     for (j = 0; j < nstored; j++) {
686     putbinary(mtx_data + mtx_offset, sizeof(float), NSSAMP, stdout);
687     mtx_offset += NSSAMP * nskypatch;
688     }
689     break;
690     case 'd':
691     for (j = 0; j < nstored; j++) {
692     double ment[NSSAMP];
693     for (j = 0; j < NSSAMP; j++)
694     ment[j] = mtx_data[mtx_offset + j];
695     putbinary(ment, sizeof(double), NSSAMP, stdout);
696     mtx_offset += NSSAMP * nskypatch;
697     }
698     break;
699     }
700     if (ferror(stdout))
701     goto writerr;
702     }
703     alldone:
704     if (fflush(NULL) == EOF)
705     goto writerr;
706     if (verbose)
707     fprintf(stderr, "%s: done.\n", progname);
708     exit(0);
709     userr:
710     fprintf(stderr,
711     "Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r "
712     "deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
713     progname);
714     exit(1);
715     fmterr:
716     fprintf(stderr, "%s: weather tape format error in header\n", progname);
717     exit(1);
718     writerr:
719     fprintf(stderr, "%s: write error on output\n", progname);
720     exit(1);
721     }