ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.40
Committed: Fri Apr 26 23:10:59 2024 UTC (2 days, 14 hours ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.39: +63 -3 lines
Log Message:
fix(gendaymtx): Added -i option and improved consistency with gendaylit, thanks to Yongqing

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.39 static const char RCSid[] = "$Id: gendaymtx.c,v 2.38 2020/09/11 16:50:50 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdlib.h>
85     #include <ctype.h>
86 greg 2.30 #include "platform.h"
87 greg 2.1 #include "rtmath.h"
88 greg 2.23 #include "rtio.h"
89 greg 2.1 #include "color.h"
90 greg 2.30 #include "sun.h"
91 greg 2.1
92 greg 2.38 char *progname; /* Program name */
93 greg 2.1 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
94     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
95    
96     double altitude; /* Solar altitude (radians) */
97     double azimuth; /* Solar azimuth (radians) */
98     double apwc; /* Atmospheric precipitable water content */
99     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
100     double diff_illum; /* Diffuse illuminance */
101     double diff_irrad; /* Diffuse irradiance */
102     double dir_illum; /* Direct illuminance */
103     double dir_irrad; /* Direct irradiance */
104     int julian_date; /* Julian date */
105     double perez_param[5]; /* Perez sky model parameters */
106     double sky_brightness; /* Sky brightness */
107     double sky_clearness; /* Sky clearness */
108     double solar_rad; /* Solar radiance */
109     double sun_zenith; /* Sun zenith angle (radians) */
110     int input = 0; /* Input type */
111 greg 2.11 int output = 0; /* Output type */
112 greg 2.1
113     extern double dmax( double, double );
114     extern double CalcAirMass();
115     extern double CalcDiffuseIllumRatio( int );
116     extern double CalcDiffuseIrradiance();
117     extern double CalcDirectIllumRatio( int );
118     extern double CalcDirectIrradiance();
119     extern double CalcEccentricity();
120     extern double CalcPrecipWater( double );
121     extern double CalcRelHorzIllum( float *parr );
122     extern double CalcRelLuminance( double, double );
123     extern double CalcSkyBrightness();
124     extern double CalcSkyClearness();
125     extern int CalcSkyParamFromIllum();
126     extern int GetCategoryIndex();
127     extern void CalcPerezParam( double, double, double, int );
128     extern void CalcSkyPatchLumin( float *parr );
129     extern void ComputeSky( float *parr );
130    
131 greg 2.40
132     extern double solar_sunset(int month, int day);
133     extern double solar_sunrise(int month, int day);
134    
135 greg 2.1 /* Degrees into radians */
136     #define DegToRad(deg) ((deg)*(PI/180.))
137    
138     /* Radiuans into degrees */
139     #define RadToDeg(rad) ((rad)*(180./PI))
140    
141     /* Perez sky model coefficients */
142    
143     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
144     /* Weather Model for Sky Luminance Distribution - */
145     /* Preliminary Configuration and Validation," Solar */
146     /* Energy 50(3):235-245, Table 1. */
147    
148     static const double PerezCoeff[8][20] =
149     {
150     /* Sky clearness (epsilon): 1.000 to 1.065 */
151     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
152     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
153     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
154     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
155     /* Sky clearness (epsilon): 1.065 to 1.230 */
156     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
157     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
158     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
159     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
160     /* Sky clearness (epsilon): 1.230 to 1.500 */
161     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
162     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
163     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
164     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
165     /* Sky clearness (epsilon): 1.500 to 1.950 */
166     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
167     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
168     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
169     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
170     /* Sky clearness (epsilon): 1.950 to 2.800 */
171     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
172     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
173     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
174     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
175     /* Sky clearness (epsilon): 2.800 to 4.500 */
176     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
177     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
178     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
179     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
180     /* Sky clearness (epsilon): 4.500 to 6.200 */
181     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
182     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
183     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
184     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
185     /* Sky clearness (epsilon): 6.200 to ... */
186     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
187     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
188     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
189     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
190     };
191    
192     /* Perez irradiance component model coefficients */
193    
194     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
195     /* Stewart. 1990. ìModeling Daylight Availability and */
196     /* Irradiance Components from Direct and Global */
197     /* Irradiance,î Solar Energy 44(5):271-289. */
198    
199     typedef struct
200     {
201     double lower; /* Lower bound */
202     double upper; /* Upper bound */
203     } CategoryBounds;
204    
205     /* Perez sky clearness (epsilon) categories (Table 1) */
206     static const CategoryBounds SkyClearCat[8] =
207     {
208     { 1.000, 1.065 }, /* Overcast */
209     { 1.065, 1.230 },
210     { 1.230, 1.500 },
211     { 1.500, 1.950 },
212     { 1.950, 2.800 },
213     { 2.800, 4.500 },
214     { 4.500, 6.200 },
215 greg 2.12 { 6.200, 12.01 } /* Clear */
216 greg 2.1 };
217    
218     /* Luminous efficacy model coefficients */
219     typedef struct
220     {
221     double a;
222     double b;
223     double c;
224     double d;
225     } ModelCoeff;
226    
227     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
228     static const ModelCoeff DiffuseLumEff[8] =
229     {
230     { 97.24, -0.46, 12.00, -8.91 },
231     { 107.22, 1.15, 0.59, -3.95 },
232     { 104.97, 2.96, -5.53, -8.77 },
233     { 102.39, 5.59, -13.95, -13.90 },
234     { 100.71, 5.94, -22.75, -23.74 },
235     { 106.42, 3.83, -36.15, -28.83 },
236     { 141.88, 1.90, -53.24, -14.03 },
237     { 152.23, 0.35, -45.27, -7.98 }
238     };
239    
240     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
241     static const ModelCoeff DirectLumEff[8] =
242     {
243     { 57.20, -4.55, -2.98, 117.12 },
244     { 98.99, -3.46, -1.21, 12.38 },
245     { 109.83, -4.90, -1.71, -8.81 },
246     { 110.34, -5.84, -1.99, -4.56 },
247     { 106.36, -3.97, -1.75, -6.16 },
248     { 107.19, -1.25, -1.51, -26.73 },
249     { 105.75, 0.77, -1.26, -34.44 },
250     { 101.18, 1.58, -1.10, -8.29 }
251     };
252    
253 greg 2.3 #ifndef NSUNPATCH
254 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
255 greg 2.3 #endif
256    
257 greg 2.35 #define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */
258    
259 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
260     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
261    
262 greg 2.1 int verbose = 0; /* progress reports to stderr? */
263    
264     int outfmt = 'a'; /* output format */
265    
266     int rhsubdiv = 1; /* Reinhart sky subdivisions */
267    
268 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
269     COLOR suncolor = {1., 1., 1.}; /* sun color */
270     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
271 greg 2.1
272     int nskypatch; /* number of Reinhart patches */
273     float *rh_palt; /* sky patch altitudes (radians) */
274     float *rh_pazi; /* sky patch azimuths (radians) */
275     float *rh_dom; /* sky patch solid angle (sr) */
276    
277 greg 2.36 #define vector(v,alt,azi) ( (v)[1] = cos(alt), \
278     (v)[0] = (v)[1]*sin(azi), \
279     (v)[1] *= cos(azi), \
280     (v)[2] = sin(alt) )
281 greg 2.1
282     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
283    
284     #define rh_cos(i) tsin(rh_palt[i])
285    
286 greg 2.36 #define solar_minute(jd,hr) ((24*60)*((jd)-1)+(int)((hr)*60.+.5))
287    
288 greg 2.1 extern int rh_init(void);
289     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
290 greg 2.36 extern void OutputSun(int id, int goodsun, FILE *fp, FILE *mfp);
291 greg 2.1 extern void AddDirect(float *parr);
292    
293 greg 2.14
294     static const char *
295     getfmtname(int fmt)
296     {
297     switch (fmt) {
298     case 'a':
299     return("ascii");
300     case 'f':
301     return("float");
302     case 'd':
303     return("double");
304     }
305     return("unknown");
306     }
307    
308    
309 greg 2.1 int
310     main(int argc, char *argv[])
311     {
312     char buf[256];
313 greg 2.14 int doheader = 1; /* output header? */
314 greg 2.8 double rotation = 0; /* site rotation (degrees) */
315 greg 2.1 double elevation; /* site elevation (meters) */
316 greg 2.36 int leap_day = 0; /* add leap day? */
317 greg 2.37 int sun_hours_only = 0; /* only output sun hours? */
318 greg 2.1 int dir_is_horiz; /* direct is meas. on horizontal? */
319 greg 2.34 FILE *sunsfp = NULL; /* output file for individual suns */
320 greg 2.36 FILE *modsfp = NULL; /* modifier output file */
321 greg 2.1 float *mtx_data = NULL; /* our matrix data */
322 greg 2.28 int avgSky = 0; /* compute average sky r.t. matrix? */
323 greg 2.27 int ntsteps = 0; /* number of time steps */
324 greg 2.28 int tstorage = 0; /* number of allocated time steps */
325     int nstored = 0; /* number of time steps in matrix */
326 greg 2.1 int last_monthly = 0; /* month of last report */
327     int mo, da; /* month (1-12) and day (1-31) */
328     double hr; /* hour (local standard time) */
329     double dir, dif; /* direct and diffuse values */
330     int mtx_offset;
331     int i, j;
332 greg 2.40 double timeinterval = 0;
333 greg 2.1
334     progname = argv[0];
335     /* get options */
336     for (i = 1; i < argc && argv[i][0] == '-'; i++)
337     switch (argv[i][1]) {
338 greg 2.4 case 'g': /* ground reflectance */
339     grefl[0] = atof(argv[++i]);
340     grefl[1] = atof(argv[++i]);
341     grefl[2] = atof(argv[++i]);
342 greg 2.1 break;
343 greg 2.4 case 'v': /* verbose progress reports */
344 greg 2.1 verbose++;
345     break;
346 greg 2.14 case 'h': /* turn off header */
347     doheader = 0;
348     break;
349 greg 2.4 case 'o': /* output format */
350 greg 2.1 switch (argv[i][2]) {
351     case 'f':
352     case 'd':
353     case 'a':
354     outfmt = argv[i][2];
355     break;
356     default:
357     goto userr;
358     }
359     break;
360 greg 2.11 case 'O': /* output type */
361     switch (argv[i][2]) {
362     case '0':
363     output = 0;
364     break;
365     case '1':
366     output = 1;
367     break;
368     default:
369     goto userr;
370     }
371     if (argv[i][3])
372     goto userr;
373     break;
374 greg 2.4 case 'm': /* Reinhart subdivisions */
375 greg 2.1 rhsubdiv = atoi(argv[++i]);
376     break;
377 greg 2.4 case 'c': /* sky color */
378 greg 2.1 skycolor[0] = atof(argv[++i]);
379     skycolor[1] = atof(argv[++i]);
380     skycolor[2] = atof(argv[++i]);
381     break;
382 greg 2.36 case 'D': /* output suns to file */
383     if (strcmp(argv[++i], "-")) {
384     sunsfp = fopen(argv[i], "w");
385     if (sunsfp == NULL) {
386     fprintf(stderr,
387     "%s: cannot open '%s' for output\n",
388     progname, argv[i]);
389     exit(1);
390     }
391     break; /* still may output matrix */
392     }
393     sunsfp = stdout; /* sending to stdout, so... */
394     /* fall through */
395 greg 2.34 case 'n': /* no matrix output */
396     avgSky = -1;
397     rhsubdiv = 1;
398     /* fall through */
399 greg 2.4 case 'd': /* solar (direct) only */
400 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
401 greg 2.33 grefl[0] = grefl[1] = grefl[2] = 0;
402 greg 2.1 break;
403 greg 2.36 case 'M': /* send sun modifiers to file */
404     if ((modsfp = fopen(argv[++i], "w")) == NULL) {
405 greg 2.34 fprintf(stderr, "%s: cannot open '%s' for output\n",
406 greg 2.35 progname, argv[i]);
407 greg 2.34 exit(1);
408     }
409     break;
410 greg 2.4 case 's': /* sky only (no direct) */
411     suncolor[0] = suncolor[1] = suncolor[2] = 0;
412 greg 2.1 break;
413 greg 2.37 case 'u': /* solar hours only */
414     sun_hours_only = 1;
415     break;
416 greg 2.8 case 'r': /* rotate distribution */
417     if (argv[i][2] && argv[i][2] != 'z')
418     goto userr;
419     rotation = atof(argv[++i]);
420     break;
421 greg 2.10 case '5': /* 5-phase calculation */
422     nsuns = 1;
423 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
424 greg 2.21 if (fixed_sun_sa <= 0) {
425     fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
426 greg 2.35 progname);
427 greg 2.21 exit(1);
428     }
429 greg 2.19 fixed_sun_sa *= fixed_sun_sa*PI;
430 greg 2.10 break;
431 greg 2.27 case 'A': /* compute average sky */
432     avgSky = 1;
433     break;
434 greg 2.40 case 'i':
435     timeinterval = atof(argv[++i]);
436     break;
437 greg 2.1 default:
438     goto userr;
439     }
440     if (i < argc-1)
441     goto userr;
442     if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
443     fprintf(stderr, "%s: cannot open '%s' for input\n",
444     progname, argv[i]);
445     exit(1);
446     }
447 greg 2.36 if ((modsfp != NULL) & (sunsfp == NULL))
448     fprintf(stderr, "%s: warning -M output will be empty without -D\n",
449     progname);
450 greg 2.1 if (verbose) {
451     if (i == argc-1)
452     fprintf(stderr, "%s: reading weather tape '%s'\n",
453     progname, argv[i]);
454     else
455     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
456     progname);
457     }
458     /* read weather tape header */
459 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
460 greg 2.1 goto fmterr;
461     if (scanf("latitude %lf\n", &s_latitude) != 1)
462     goto fmterr;
463     if (scanf("longitude %lf\n", &s_longitude) != 1)
464     goto fmterr;
465     if (scanf("time_zone %lf\n", &s_meridian) != 1)
466     goto fmterr;
467     if (scanf("site_elevation %lf\n", &elevation) != 1)
468     goto fmterr;
469     if (scanf("weather_data_file_units %d\n", &input) != 1)
470     goto fmterr;
471     switch (input) { /* translate units */
472     case 1:
473     input = 1; /* radiometric quantities */
474     dir_is_horiz = 0; /* direct is perpendicular meas. */
475     break;
476     case 2:
477     input = 1; /* radiometric quantities */
478     dir_is_horiz = 1; /* solar measured horizontally */
479     break;
480     case 3:
481     input = 2; /* photometric quantities */
482     dir_is_horiz = 0; /* direct is perpendicular meas. */
483     break;
484     default:
485     goto fmterr;
486     }
487     rh_init(); /* initialize sky patches */
488     if (verbose) {
489     fprintf(stderr, "%s: location '%s'\n", progname, buf);
490     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
491     progname, s_latitude, s_longitude);
492 greg 2.35 if (avgSky >= 0)
493     fprintf(stderr, "%s: %d sky patches\n",
494     progname, nskypatch);
495     if (sunsfp)
496 greg 2.39 fprintf(stderr, "%s: outputting suns to %s\n",
497     progname, sunsfp==stdout ? "stdout" : "file");
498 greg 2.8 if (rotation != 0)
499     fprintf(stderr, "%s: rotating output %.0f degrees\n",
500     progname, rotation);
501 greg 2.1 }
502 greg 2.2 /* convert quantities to radians */
503     s_latitude = DegToRad(s_latitude);
504     s_longitude = DegToRad(s_longitude);
505     s_meridian = DegToRad(s_meridian);
506 greg 2.27 /* initial allocation */
507 greg 2.28 mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch);
508 greg 2.1 /* process each time step in tape */
509     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
510 greg 2.40 double sda, sta, st;
511 greg 2.37 int sun_in_sky;
512 greg 2.1 /* compute solar position */
513 greg 2.36 if ((mo == 2) & (da == 29)) {
514     julian_date = 60;
515     leap_day = 1;
516     } else
517     julian_date = jdate(mo, da) + leap_day;
518 greg 2.1 sda = sdec(julian_date);
519     sta = stadj(julian_date);
520 greg 2.40 st = hr + sta;
521    
522     if (timeinterval > 0) {
523     if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120)
524     st = (st + timeinterval/120 + solar_sunrise(mo, da))/2;
525     else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120)
526     st = (st - timeinterval/120 + solar_sunset(mo, da))/2;
527     }
528     altitude = salt(sda, st);
529 greg 2.37 sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG/2.));
530     if (sun_hours_only && !sun_in_sky)
531     continue; /* skipping nighttime points */
532 greg 2.40 azimuth = sazi(sda, st) + PI - DegToRad(rotation);
533 greg 2.36
534 greg 2.37 mtx_offset = 3*nskypatch*nstored;
535     nstored += !avgSky | !nstored;
536     /* make space for next row */
537     if (nstored > tstorage) {
538     tstorage += (tstorage>>1) + nstored + 7;
539     mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
540     }
541     ntsteps++; /* keep count of time steps */
542    
543 greg 2.36 if (dir+dif <= 1e-4) { /* effectively nighttime? */
544     if (!avgSky | !mtx_offset)
545     memset(mtx_data+mtx_offset, 0,
546     sizeof(float)*3*nskypatch);
547 greg 2.37 /* output black sun? */
548     if (sunsfp && sun_in_sky)
549 greg 2.36 OutputSun(solar_minute(julian_date,hr), 0,
550     sunsfp, modsfp);
551     continue;
552     }
553 greg 2.38 if (!sun_in_sky && dir > (input==1 ? 20. : 20.*WHTEFFICACY))
554     fprintf(stderr,
555     "%s: warning - unusually bright at %.1f on %d-%d\n",
556     progname, hr, mo, da);
557 greg 2.1 /* convert measured values */
558 greg 2.38 if (dir_is_horiz && altitude > FTINY)
559 greg 2.1 dir /= sin(altitude);
560     if (input == 1) {
561     dir_irrad = dir;
562     diff_irrad = dif;
563     } else /* input == 2 */ {
564     dir_illum = dir;
565     diff_illum = dif;
566     }
567     /* compute sky patch values */
568     ComputeSky(mtx_data+mtx_offset);
569 greg 2.37 /* output sun if requested */
570     if (sunsfp && sun_in_sky)
571 greg 2.36 OutputSun(solar_minute(julian_date,hr), 1,
572     sunsfp, modsfp);
573 greg 2.35
574 greg 2.34 if (avgSky < 0) /* no matrix? */
575     continue;
576    
577 greg 2.4 AddDirect(mtx_data+mtx_offset);
578 greg 2.27 /* update cumulative sky? */
579     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
580     mtx_data[i] += mtx_data[mtx_offset+i];
581 greg 2.34 /* monthly reporting */
582     if (verbose && mo != last_monthly)
583     fprintf(stderr, "%s: stepping through month %d...\n",
584     progname, last_monthly=mo);
585 greg 2.36 /* note whether leap-day was given */
586 greg 2.34 }
587     if (!ntsteps) {
588     fprintf(stderr, "%s: no valid time steps on input\n", progname);
589     exit(1);
590 greg 2.1 }
591     /* check for junk at end */
592     while ((i = fgetc(stdin)) != EOF)
593     if (!isspace(i)) {
594     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
595     progname);
596     buf[0] = i; buf[1] = '\0';
597     fgets(buf+1, sizeof(buf)-1, stdin);
598     fputs(buf, stderr); fputc('\n', stderr);
599     break;
600     }
601 greg 2.34
602     if (avgSky < 0) /* no matrix output? */
603     goto alldone;
604    
605 greg 2.27 dif = 1./(double)ntsteps; /* average sky? */
606     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
607     mtx_data[i] *= dif;
608 greg 2.1 /* write out matrix */
609 greg 2.14 if (outfmt != 'a')
610     SET_FILE_BINARY(stdout);
611 greg 2.1 #ifdef getc_unlocked
612     flockfile(stdout);
613     #endif
614     if (verbose)
615     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
616 greg 2.28 progname, outfmt=='a' ? "" : "binary ", nstored);
617 greg 2.14 if (doheader) {
618     newheader("RADIANCE", stdout);
619     printargs(argc, argv, stdout);
620     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
621     -RadToDeg(s_longitude));
622     printf("NROWS=%d\n", nskypatch);
623 greg 2.28 printf("NCOLS=%d\n", nstored);
624 greg 2.14 printf("NCOMP=3\n");
625 greg 2.29 if ((outfmt == 'f') | (outfmt == 'd'))
626     fputendian(stdout);
627 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
628 greg 2.14 putchar('\n');
629     }
630 greg 2.1 /* patches are rows (outer sort) */
631     for (i = 0; i < nskypatch; i++) {
632     mtx_offset = 3*i;
633     switch (outfmt) {
634     case 'a':
635 greg 2.28 for (j = 0; j < nstored; j++) {
636 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
637 greg 2.1 mtx_data[mtx_offset+1],
638     mtx_data[mtx_offset+2]);
639     mtx_offset += 3*nskypatch;
640     }
641 greg 2.28 if (nstored > 1)
642 greg 2.2 fputc('\n', stdout);
643 greg 2.1 break;
644     case 'f':
645 greg 2.28 for (j = 0; j < nstored; j++) {
646 greg 2.23 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
647 greg 2.1 stdout);
648     mtx_offset += 3*nskypatch;
649     }
650     break;
651     case 'd':
652 greg 2.28 for (j = 0; j < nstored; j++) {
653 greg 2.1 double ment[3];
654     ment[0] = mtx_data[mtx_offset];
655     ment[1] = mtx_data[mtx_offset+1];
656     ment[2] = mtx_data[mtx_offset+2];
657 greg 2.23 putbinary(ment, sizeof(double), 3, stdout);
658 greg 2.1 mtx_offset += 3*nskypatch;
659     }
660     break;
661     }
662     if (ferror(stdout))
663     goto writerr;
664     }
665 greg 2.34 alldone:
666     if (fflush(NULL) == EOF)
667 greg 2.1 goto writerr;
668     if (verbose)
669     fprintf(stderr, "%s: done.\n", progname);
670     exit(0);
671     userr:
672 greg 2.37 fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
673 greg 2.1 progname);
674     exit(1);
675     fmterr:
676 greg 2.34 fprintf(stderr, "%s: weather tape format error in header\n", progname);
677 greg 2.1 exit(1);
678     writerr:
679     fprintf(stderr, "%s: write error on output\n", progname);
680     exit(1);
681     }
682    
683 greg 2.40
684 greg 2.1 /* Return maximum of two doubles */
685     double dmax( double a, double b )
686     { return (a > b) ? a : b; }
687    
688     /* Compute sky patch radiance values (modified by GW) */
689     void
690     ComputeSky(float *parr)
691     {
692     int index; /* Category index */
693     double norm_diff_illum; /* Normalized diffuse illuimnance */
694     int i;
695    
696     /* Calculate atmospheric precipitable water content */
697     apwc = CalcPrecipWater(dew_point);
698    
699 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
700     /* Also limit minimum angle to keep circumsolar off zenith */
701     if (altitude <= 0.0)
702     sun_zenith = DegToRad(90.0);
703     else if (altitude >= DegToRad(87.0))
704     sun_zenith = DegToRad(3.0);
705     else
706     sun_zenith = DegToRad(90.0) - altitude;
707 greg 2.1
708     /* Compute the inputs for the calculation of the sky distribution */
709    
710     if (input == 0) /* XXX never used */
711     {
712     /* Calculate irradiance */
713     diff_irrad = CalcDiffuseIrradiance();
714     dir_irrad = CalcDirectIrradiance();
715    
716     /* Calculate illuminance */
717     index = GetCategoryIndex();
718     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
719     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
720     }
721     else if (input == 1)
722     {
723     sky_brightness = CalcSkyBrightness();
724     sky_clearness = CalcSkyClearness();
725    
726 greg 2.9 /* Limit sky clearness */
727     if (sky_clearness > 11.9)
728     sky_clearness = 11.9;
729 greg 2.40 else if (sky_clearness < 1.0)
730     sky_clearness = 1.0;
731 greg 2.9
732     /* Limit sky brightness */
733     if (sky_brightness < 0.01)
734 greg 2.11 sky_brightness = 0.01;
735 greg 2.40 else if (sky_brightness > 0.6)
736     sky_brightness = 0.6;
737 greg 2.9
738 greg 2.1 /* Calculate illuminance */
739     index = GetCategoryIndex();
740     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
741     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
742     }
743     else if (input == 2)
744     {
745     /* Calculate sky brightness and clearness from illuminance values */
746     index = CalcSkyParamFromIllum();
747     }
748    
749 greg 2.11 if (output == 1) { /* hack for solar radiance */
750     diff_illum = diff_irrad * WHTEFFICACY;
751     dir_illum = dir_irrad * WHTEFFICACY;
752     }
753 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
754 greg 2.3 parr[0] = diff_illum;
755 greg 2.1 if (altitude > 0)
756 greg 2.3 parr[0] += dir_illum * sin(altitude);
757 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
758     multcolor(parr, grefl);
759 greg 2.1
760 greg 2.32 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
761     memset(parr+3, 0, sizeof(float)*3*(nskypatch-1));
762     return;
763     }
764 greg 2.1 /* Calculate Perez sky model parameters */
765     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
766    
767     /* Calculate sky patch luminance values */
768     CalcSkyPatchLumin(parr);
769    
770     /* Calculate relative horizontal illuminance */
771     norm_diff_illum = CalcRelHorzIllum(parr);
772    
773 greg 2.13 /* Check for zero sky -- make uniform in that case */
774     if (norm_diff_illum <= FTINY) {
775     for (i = 1; i < nskypatch; i++)
776     setcolor(parr+3*i, 1., 1., 1.);
777     norm_diff_illum = PI;
778     }
779 greg 2.1 /* Normalization coefficient */
780     norm_diff_illum = diff_illum / norm_diff_illum;
781    
782     /* Apply to sky patches to get absolute radiance values */
783     for (i = 1; i < nskypatch; i++) {
784 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
785 greg 2.1 multcolor(parr+3*i, skycolor);
786     }
787     }
788    
789 greg 2.40
790     double
791     solar_sunset(int month, int day)
792     {
793     float W;
794     W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day))));
795     return(12 + (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15));
796     }
797    
798    
799     double
800     solar_sunrise(int month, int day)
801     {
802     float W;
803     W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day))));
804     return(12 - (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15));
805     }
806    
807    
808 greg 2.1 /* Add in solar direct to nearest sky patches (GW) */
809     void
810     AddDirect(float *parr)
811     {
812     FVECT svec;
813 greg 2.3 double near_dprod[NSUNPATCH];
814     int near_patch[NSUNPATCH];
815     double wta[NSUNPATCH], wtot;
816 greg 2.1 int i, j, p;
817    
818 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
819 greg 2.1 return;
820 greg 2.10 /* identify nsuns closest patches */
821     if (nsuns > NSUNPATCH)
822     nsuns = NSUNPATCH;
823     else if (nsuns <= 0)
824     nsuns = 1;
825     for (i = nsuns; i--; )
826 greg 2.1 near_dprod[i] = -1.;
827     vector(svec, altitude, azimuth);
828     for (p = 1; p < nskypatch; p++) {
829     FVECT pvec;
830     double dprod;
831     rh_vector(pvec, p);
832     dprod = DOT(pvec, svec);
833 greg 2.10 for (i = 0; i < nsuns; i++)
834 greg 2.1 if (dprod > near_dprod[i]) {
835 greg 2.10 for (j = nsuns; --j > i; ) {
836 greg 2.1 near_dprod[j] = near_dprod[j-1];
837     near_patch[j] = near_patch[j-1];
838     }
839     near_dprod[i] = dprod;
840     near_patch[i] = p;
841     break;
842     }
843     }
844     wtot = 0; /* weight by proximity */
845 greg 2.10 for (i = nsuns; i--; )
846 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
847     /* add to nearest patch radiances */
848 greg 2.10 for (i = nsuns; i--; ) {
849 greg 2.2 float *pdest = parr + 3*near_patch[i];
850 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
851    
852     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
853     : rh_dom[near_patch[i]] ;
854 greg 2.4 *pdest++ += val_add*suncolor[0];
855     *pdest++ += val_add*suncolor[1];
856     *pdest++ += val_add*suncolor[2];
857 greg 2.2 }
858 greg 2.1 }
859    
860 greg 2.35 /* Output a sun to indicated file if appropriate for this time step */
861     void
862 greg 2.36 OutputSun(int id, int goodsun, FILE *fp, FILE *mfp)
863 greg 2.35 {
864     double srad;
865     FVECT sv;
866    
867 greg 2.36 srad = DegToRad(SUN_ANG_DEG/2.);
868     srad = goodsun ? dir_illum/(WHTEFFICACY * PI*srad*srad) : 0;
869 greg 2.35 vector(sv, altitude, azimuth);
870     fprintf(fp, "\nvoid light solar%d\n0\n0\n", id);
871     fprintf(fp, "3 %.3e %.3e %.3e\n", srad*suncolor[0],
872     srad*suncolor[1], srad*suncolor[2]);
873     fprintf(fp, "\nsolar%d source sun%d\n0\n0\n", id, id);
874     fprintf(fp, "4 %.6f %.6f %.6f %.4f\n", sv[0], sv[1], sv[2], SUN_ANG_DEG);
875 greg 2.36
876     if (mfp != NULL) /* saving modifier IDs? */
877     fprintf(mfp, "solar%d\n", id);
878 greg 2.35 }
879    
880 greg 2.1 /* Initialize Reinhart sky patch positions (GW) */
881     int
882     rh_init(void)
883     {
884     #define NROW 7
885     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
886     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
887     int p, i, j;
888     /* allocate patch angle arrays */
889     nskypatch = 0;
890     for (p = 0; p < NROW; p++)
891     nskypatch += tnaz[p];
892     nskypatch *= rhsubdiv*rhsubdiv;
893     nskypatch += 2;
894     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
895     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
896     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
897     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
898     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
899     exit(1);
900     }
901     rh_palt[0] = -PI/2.; /* ground & zenith patches */
902     rh_pazi[0] = 0.;
903     rh_dom[0] = 2.*PI;
904     rh_palt[nskypatch-1] = PI/2.;
905     rh_pazi[nskypatch-1] = 0.;
906     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
907     p = 1; /* "normal" patches */
908     for (i = 0; i < NROW*rhsubdiv; i++) {
909     const float ralt = alpha*(i + .5);
910     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
911 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
912     (double)ninrow;
913 greg 2.1 for (j = 0; j < ninrow; j++) {
914     rh_palt[p] = ralt;
915     rh_pazi[p] = 2.*PI * j / (double)ninrow;
916     rh_dom[p++] = dom;
917     }
918     }
919     return nskypatch;
920     #undef NROW
921     }
922    
923     /* Resize daylight matrix (GW) */
924     float *
925     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
926     {
927     if (mtx_data == NULL)
928     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
929     else
930     mtx_data = (float *)realloc(mtx_data,
931     sizeof(float)*3*nsteps*npatch);
932     if (mtx_data == NULL) {
933     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
934     progname, nsteps, npatch);
935     exit(1);
936     }
937     return(mtx_data);
938     }
939    
940     /* Determine category index */
941     int GetCategoryIndex()
942     {
943     int index; /* Loop index */
944    
945     for (index = 0; index < 8; index++)
946     if ((sky_clearness >= SkyClearCat[index].lower) &&
947     (sky_clearness < SkyClearCat[index].upper))
948     break;
949    
950     return index;
951     }
952    
953     /* Calculate diffuse illuminance to diffuse irradiance ratio */
954    
955     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
956     /* Stewart. 1990. ìModeling Daylight Availability and */
957     /* Irradiance Components from Direct and Global */
958     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
959    
960     double CalcDiffuseIllumRatio( int index )
961     {
962     ModelCoeff const *pnle; /* Category coefficient pointer */
963    
964     /* Get category coefficient pointer */
965     pnle = &(DiffuseLumEff[index]);
966    
967     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
968     pnle->d * log(sky_brightness);
969     }
970    
971     /* Calculate direct illuminance to direct irradiance ratio */
972    
973     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
974     /* Stewart. 1990. ìModeling Daylight Availability and */
975     /* Irradiance Components from Direct and Global */
976     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
977    
978     double CalcDirectIllumRatio( int index )
979     {
980     ModelCoeff const *pnle; /* Category coefficient pointer */
981    
982     /* Get category coefficient pointer */
983     pnle = &(DirectLumEff[index]);
984    
985     /* Calculate direct illuminance from direct irradiance */
986    
987     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
988     sun_zenith - 5.0) + pnle->d * sky_brightness),
989     0.0);
990     }
991    
992     /* Calculate sky brightness */
993    
994     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
995     /* Stewart. 1990. ìModeling Daylight Availability and */
996     /* Irradiance Components from Direct and Global */
997     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
998    
999     double CalcSkyBrightness()
1000     {
1001     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
1002     CalcEccentricity());
1003     }
1004    
1005     /* Calculate sky clearness */
1006    
1007     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1008     /* Stewart. 1990. ìModeling Daylight Availability and */
1009     /* Irradiance Components from Direct and Global */
1010     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
1011    
1012     double CalcSkyClearness()
1013     {
1014     double sz_cubed; /* Sun zenith angle cubed */
1015    
1016     /* Calculate sun zenith angle cubed */
1017 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
1018 greg 2.1
1019     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
1020     sz_cubed) / (1.0 + 1.041 * sz_cubed);
1021     }
1022    
1023     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
1024    
1025     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1026     /* Stewart. 1990. ìModeling Daylight Availability and */
1027     /* Irradiance Components from Direct and Global */
1028     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
1029     /* (inverse). */
1030    
1031     double CalcDiffuseIrradiance()
1032     {
1033     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
1034     CalcAirMass();
1035     }
1036    
1037     /* Calculate direct normal irradiance from Perez sky clearness */
1038    
1039     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1040     /* Stewart. 1990. ìModeling Daylight Availability and */
1041     /* Irradiance Components from Direct and Global */
1042     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
1043     /* (inverse). */
1044    
1045     double CalcDirectIrradiance()
1046     {
1047     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
1048 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
1049 greg 2.1 }
1050    
1051     /* Calculate sky brightness and clearness from illuminance values */
1052     int CalcSkyParamFromIllum()
1053     {
1054     double test1 = 0.1;
1055     double test2 = 0.1;
1056     int counter = 0;
1057     int index = 0; /* Category index */
1058    
1059     /* Convert illuminance to irradiance */
1060     diff_irrad = diff_illum * DC_SolarConstantE /
1061     (DC_SolarConstantL * 1000.0);
1062     dir_irrad = dir_illum * DC_SolarConstantE /
1063     (DC_SolarConstantL * 1000.0);
1064    
1065     /* Calculate sky brightness and clearness */
1066     sky_brightness = CalcSkyBrightness();
1067     sky_clearness = CalcSkyClearness();
1068    
1069     /* Limit sky clearness */
1070     if (sky_clearness > 12.0)
1071     sky_clearness = 12.0;
1072    
1073     /* Limit sky brightness */
1074 greg 2.9 if (sky_brightness < 0.01)
1075 greg 2.1 sky_brightness = 0.01;
1076    
1077 greg 2.40 if (sky_clearness < 1.0000)
1078     {
1079     sky_clearness = 1.0000;
1080     }
1081    
1082     if (sky_brightness > 0.6)
1083     {
1084     sky_brightness = 0.6;
1085     }
1086    
1087 greg 2.1 while (((fabs(diff_irrad - test1) > 10.0) ||
1088     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
1089     {
1090     test1 = diff_irrad;
1091     test2 = dir_irrad;
1092     counter++;
1093    
1094     /* Convert illuminance to irradiance */
1095     index = GetCategoryIndex();
1096     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
1097 greg 2.26 dir_irrad = CalcDirectIllumRatio(index);
1098     if (dir_irrad > 0.1)
1099     dir_irrad = dir_illum / dir_irrad;
1100 greg 2.1
1101     /* Calculate sky brightness and clearness */
1102     sky_brightness = CalcSkyBrightness();
1103     sky_clearness = CalcSkyClearness();
1104    
1105     /* Limit sky clearness */
1106     if (sky_clearness > 12.0)
1107     sky_clearness = 12.0;
1108    
1109     /* Limit sky brightness */
1110 greg 2.9 if (sky_brightness < 0.01)
1111 greg 2.1 sky_brightness = 0.01;
1112 greg 2.40
1113     if (sky_clearness < 1.0000)
1114     {
1115     sky_clearness = 1.0000;
1116     }
1117    
1118     if (sky_brightness > 0.6)
1119     {
1120     sky_brightness = 0.6;
1121     }
1122 greg 2.1 }
1123    
1124     return GetCategoryIndex();
1125     }
1126    
1127     /* Calculate relative luminance */
1128    
1129     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1130     /* ìAll-Weather Model for Sky Luminance Distribution - */
1131     /* Preliminary Configuration and Validation,î Solar Energy */
1132     /* 50(3):235-245, Eqn. 1. */
1133    
1134     double CalcRelLuminance( double gamma, double zeta )
1135     {
1136     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
1137     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
1138     perez_param[4] * cos(gamma) * cos(gamma));
1139     }
1140    
1141     /* Calculate Perez sky model parameters */
1142    
1143     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1144     /* ìAll-Weather Model for Sky Luminance Distribution - */
1145     /* Preliminary Configuration and Validation,î Solar Energy */
1146     /* 50(3):235-245, Eqns. 6 - 8. */
1147    
1148     void CalcPerezParam( double sz, double epsilon, double delta,
1149     int index )
1150     {
1151     double x[5][4]; /* Coefficents a, b, c, d, e */
1152     int i, j; /* Loop indices */
1153    
1154     /* Limit sky brightness */
1155     if (epsilon > 1.065 && epsilon < 2.8)
1156     {
1157     if (delta < 0.2)
1158     delta = 0.2;
1159     }
1160    
1161     /* Get Perez coefficients */
1162     for (i = 0; i < 5; i++)
1163     for (j = 0; j < 4; j++)
1164     x[i][j] = PerezCoeff[index][4 * i + j];
1165    
1166     if (index != 0)
1167     {
1168     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1169     for (i = 0; i < 5; i++)
1170     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1171     x[i][3] * sz);
1172     }
1173     else
1174     {
1175     /* Parameters a, b and e (Eqn. 6) */
1176     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1177     x[0][3] * sz);
1178     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1179     x[1][3] * sz);
1180     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1181     x[4][3] * sz);
1182    
1183     /* Parameter c (Eqn. 7) */
1184     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1185     x[2][2])) - x[2][3];
1186    
1187     /* Parameter d (Eqn. 8) */
1188     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1189     x[3][2] + delta * x[3][3];
1190     }
1191     }
1192    
1193     /* Calculate relative horizontal illuminance (modified by GW) */
1194    
1195     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1196     /* ìAll-Weather Model for Sky Luminance Distribution - */
1197     /* Preliminary Configuration and Validation,î Solar Energy */
1198     /* 50(3):235-245, Eqn. 3. */
1199    
1200     double CalcRelHorzIllum( float *parr )
1201     {
1202     int i;
1203     double rh_illum = 0.0; /* Relative horizontal illuminance */
1204    
1205     for (i = 1; i < nskypatch; i++)
1206 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1207 greg 2.1
1208 greg 2.7 return rh_illum;
1209 greg 2.1 }
1210    
1211     /* Calculate earth orbit eccentricity correction factor */
1212    
1213     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1214     /* Techniques. Springer, p. 72. */
1215    
1216     double CalcEccentricity()
1217     {
1218     double day_angle; /* Day angle (radians) */
1219     double E0; /* Eccentricity */
1220    
1221     /* Calculate day angle */
1222     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1223    
1224     /* Calculate eccentricity */
1225     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1226     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1227     day_angle);
1228    
1229     return E0;
1230     }
1231    
1232     /* Calculate atmospheric precipitable water content */
1233    
1234     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1235     /* Stewart. 1990. ìModeling Daylight Availability and */
1236     /* Irradiance Components from Direct and Global */
1237     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1238    
1239     /* Note: The default surface dew point temperature is 11 deg. C */
1240     /* (52 deg. F). Typical values are: */
1241    
1242     /* Celsius Fahrenheit Human Perception */
1243     /* > 24 > 75 Extremely uncomfortable */
1244     /* 21 - 24 70 - 74 Very humid */
1245     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1246     /* 16 - 18 60 - 64 OK for most people */
1247     /* 13 - 16 55 - 59 Comfortable */
1248     /* 10 - 12 50 - 54 Very comfortable */
1249     /* < 10 < 49 A bit dry for some */
1250    
1251     double CalcPrecipWater( double dpt )
1252     { return exp(0.07 * dpt - 0.075); }
1253    
1254     /* Calculate relative air mass */
1255    
1256     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1257     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1258     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1259    
1260     /* Note: More sophisticated relative air mass models are */
1261     /* available, but they differ significantly only for */
1262     /* sun zenith angles greater than 80 degrees. */
1263    
1264     double CalcAirMass()
1265     {
1266     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1267     RadToDeg(sun_zenith), -1.253)));
1268     }
1269    
1270     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1271    
1272     /* NOTE: The sky patches centers are determined in accordance with the */
1273     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1274     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1275     /* for the Validation of Illuminance Prediction Techniques," */
1276     /* Lighting Research & Technology 33(2):117-136.) */
1277    
1278     void CalcSkyPatchLumin( float *parr )
1279     {
1280     int i;
1281     double aas; /* Sun-sky point azimuthal angle */
1282     double sspa; /* Sun-sky point angle */
1283     double zsa; /* Zenithal sun angle */
1284    
1285     for (i = 1; i < nskypatch; i++)
1286     {
1287     /* Calculate sun-sky point azimuthal angle */
1288     aas = fabs(rh_pazi[i] - azimuth);
1289    
1290     /* Calculate zenithal sun angle */
1291     zsa = PI * 0.5 - rh_palt[i];
1292    
1293     /* Calculate sun-sky point angle (Equation 8-20) */
1294     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1295     sin(zsa) * cos(aas));
1296    
1297     /* Calculate patch luminance */
1298     parr[3*i] = CalcRelLuminance(sspa, zsa);
1299     if (parr[3*i] < 0) parr[3*i] = 0;
1300     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1301     }
1302     }